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UNIVERSAL CENTRAL EXTENSIONS OF LIE–RINEHART

ALGEBRAS

J. L. CASTIGLIONI, X. GARCÍA–MARTÍNEZ, AND M. LADRA

Abstract. In this paper we study the universal central extension of a Lie–
Rinehart algebra and we give a description of it. Then we study the lifting
of automorphisms and derivations to central extensions. We also give a defi-
nition of a non-abelian tensor product in Lie–Rinehart algebras based on the
construction of Ellis of non-abelian tensor product of Lie algebras. We relate
this non-abelian tensor product to the universal central extension.

1. Introduction

Let A be a unital commutative algebra over a commutative ring K with unit.
A Lie–Rinehart algebra is a Lie K-algebra, which is also an A-module and these
two structures are related in an appropriate way [6]. The leading example of Lie–
Rinehart algebras is the set DerK(A) of all K-derivations of A. Lie–Rinehart alge-
bras are the algebraic counterpart of Lie algebroids [12].

The concept of Lie–Rinehart algebra generalizes the notion of Lie algebra. In [5]
universal central extensions of Lie algebra are studied, proving that if a Lie algebra
is perfect then it has a universal central extension. Moreover, it is characterized the
kernel of the universal central extension as de second homology group with trivial
coefficients. In this paper we extend this study to Lie–Rinehart algebras.

On the other hand, in [4] a non-abelian tensor product of Lie algebras is intro-
duced, its more important properties are studied and it is related to the universal
central extension. In this paper we extend this construction to a non-abelian ten-
sor product of Lie–Rinehart algebras, we study some important properties and we
relate it to the universal central extension of Lie–Rinehart algebras.

After the introduction, the paper is organized in four sections. In Sec. 2, we
recall some needed notions and facts on Lie–Rinehart algebras, actions, crossed
modules, universal enveloping algebras, free algebras, homology and cohomology
and abelian extensions of Lie–Rinehart algebras. In Sec. 3, following Neher’s paper
on Lie superalgebras [13], we introduce central extensions and universal central ex-
tensions of Lie–Rinehart algebras giving a characterization of them (Theorem 3.6),
extending classic results of Lie algebras (see [5]). We construct an endofucntor
uceA that when the Lie–Rinehart algebra is perfect gives explicitly the universal
central extension. In Sec. 4, we study the lifting of automorphisms and deriva-
tions to central extensions. Finally, in Sec. 5, we introduce a non-abelian tensor
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product of Lie–Rinehart algebras extending Ellis [4] non-abelian tensor product of
Lie algebras. We relate this non-abelian tensor product with the universal central
extension.

2. Preliminaries on Lie–Rinehart algebras

Most of the content of this section is well known, or follows from known results.
We included it in order to fix terminology, notations and main examples. In what
follows we fix a unital commutative ring K. All modules are considered over K.
We write ⊗ and Hom instead of ⊗K and HomK .

2.1. Definitions, Examples. Let A be a unital commutative algebra over K.
Then the set DerK(A) of allK-derivations of A is a Lie K-algebra and an A-module
simultaneously. These two structures are related by the following identity

[D, aD′] = a[D,D′] +D(a)D′, D,D′ ∈ DerK(A).

This leads to the notion below, which goes back to Herz under the name “pseudo-
algèbre de Lie” and which is the algebraic counterpart of the Lie algebroid [12].

Definition 2.1. A Lie–Rinehart A-algebra consists of a Lie K-algebra L together
with an A-module structure on L and a morphism, called the anchor map,

α : L→ DerK(A),

which is simultaneously a Lie algebra and A-module homomorphism such that

[x, ay] = a[x, y] + x(a)y.

Here x, y ∈ L, a ∈ A and we write x(a) for α(x)(a) [6]. These objects are also
known as (K,A)-Lie algebras [15] and d-Lie rings [14].

Thus DerK(A) with α = IdDerK(A) is a Lie–Rinehart A-algebra. Let us observe
that Lie–Rinehart A-algebras with trivial homomorphism α : L → DerK(A) are
exactly Lie A-algebras. Therefore the concept of Lie–Rinehart algebras generalizes
the concept of Lie A-algebras. If A = K, then DerK(A)=0 and there is no difference
between Lie and Lie–Rinehart algebras. If L is an A-module, then L is a trivial
Lie–Rinehart A-algebra, that is L itself endowed with trivial Lie bracket and trivial
anchor map.

If L and L′ are Lie–Rinehart algebras, a Lie–Rinehart A-algebra homomorphism
f : L → L′ is a map, which is simultaneously a Lie K-algebra homomorphism and
a homomorphism of A-modules. Furthermore it has to conserve the action on
DerK(A), in other words the diagram

L
f //

α
##❍

❍❍
❍❍

❍❍
❍❍

L′

α′

zz✈✈
✈✈
✈✈
✈✈
✈

DerK(A)

commutes. We denote by LRAK the category of Lie–Rinehart A-algebras. We have
the full inclusion

LieA ⊂ LRAK,

where LieA denotes the category of Lie A-algebras.
It is important to see that the product in this category is not the cartesian

product. For two Lie–Rinehart algebras L andM , the product in LRAK is L×DerK(A)
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M = {(l,m) ∈ L × M : l(a) = m(a) for all a ∈ A}, where L × M denotes the
cartesian product, with the action (l,m)(a) = l(a) = m(a) for all a ∈ A.

Note also that the category LRAK does not have zero object. This way, when we
speak about a short exact sequence I → E → L in LRAK, we mean that the first
homomorphism is injective and the second is surjective.

Let L be a Lie–Rinehart A-algebra. A Lie–Rinehart subalgebra M of L is a
K-Lie subalgebra which is an A-module, with action induced by the inclusion in L.
IfM and N are two Lie–Rinehart subalgebras of L, we define the commutator ofM
and N , denoted by {M,N} as the span as a K-module of the elements of the form
a[x, y] where a ∈ A, x ∈ M and y ∈ N . Given a subalgebra M of L we say that
is an ideal if M is K-Lie ideal of L and the action induced by the inclusion is the
trivial action. An example of ideal is the kernel of a Lie–Rinehart homomorphism.
Another example is the center of a Lie–Rinehart algebra, defined by

ZA(L) = {x ∈ L : [ax, z] = 0 for all a ∈ A, z ∈ L}.

Note that {L,L} is a subalgebra of L but it is not an ideal of L. We denote by
Lab the A-module L/{L,L}.

Example 2.2. If g is a K-Lie algebra acting on a commutative K-algebra A by
derivations (that is, a homomorphism of Lie K-algebras γ : g → DerK(A) is given),
then the transformation Lie–Rinehart algebra of (g,A) is L = A ⊗ g with the Lie
bracket

[a⊗ g, a′ ⊗ g′] := aa′ ⊗ [g, g′] + aγ(g)(a′)⊗ g′ − a′γ(g′)(a) ⊗ g,

where a, a′ ∈ A, g, g′ ∈ g and the action α : L→ DerK(A) is given by α(a⊗g)(a′) =
aγ(g)(a′).

Example 2.3. Let M be an A-module. The Atiyah algebra AM of M is the
Lie–Rinehart A-algebra whose elements are pairs (f,D) with f ∈ EndK(M) and
D ∈ DerK(A) satisfying the following property:

f(am) = af(m) +D(a)m, a ∈ A,m ∈ M .

AM is a Lie–Rinehart A-algebra with the Lie bracket

[(f,D), (f ′, D′)] = ([f, f ′], [D,D′])

and anchor map (f,D) 7→ D (see [9]).

Example 2.4. Consider the K-algebra of dual numbers,

A = K[ε] = K[X ]/(X2) =
{
c1 + c2ε | c1, c2 ∈ K, ε2 = 0

}
.

We can endow to A with the Lie algebra structure given by the bracket:

[c1 + c2ε, c
′
1 + c′2ε] = (c1c

′
2 − c2c

′
1)ε, c1 + c2ε, c

′
1 + c′2ε ∈ A.

Thus A is a Lie–Rinehart A-algebra with anchor map α : A → DerK(A), c1+c2ε 7→
adc1 , where adc1(c

′
1 + c′2ε) = [c1, c

′
1 + c′2ε] is the adjoint map of c1.

Example 2.5. The A-module DerK(A)⊕A is a Lie–Rinehart A-algebra with the
bracket

[(D, a), (D′, a′)] =
(
[D,D′], D(a′)−D′(a)

)
,

and anchor map π1 : DerK(A)⊕A → DerK(A), the projection onto the first factor.
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Example 2.6. Let us recall that a Poisson algebra is a commutative K-algebra P
equipped with a Lie K-algebra structure such that the following identity holds

[a, bc] = b[a, c] + [a, b]c, a, b, c ∈ P.

There are (at least) three Lie–Rinehart algebra related to P . The first one is P itself
considered as a P -module in an obvious way, where the action of P (as a Lie algebra)
on P (as a commutative algebra) is given by the homomorphism ad : P → Der(P )
given by ad(a) = [a,−] ∈ Der(P ). The second Lie–Rinehart algebra is the module
of Kähler differentials Ω1

P . It is easily shown (see [6]) that there is a unique Lie–
Rinehart algebra structure on Ω1

P such that [da, db] = d[a, b] and such that the Lie
algebra homomorphism Ω1

P → Der(P ) is given by adb 7→ a[b,−]. To describe the
third one, we need some preparations. We put

H0
Poiss(P, P ) := {a ∈ P | [a,−] = 0}.

Then H0
Poiss(P, P ) contains the unit of P and is closed with respect to products,

thus it is a subalgebra of P . A Poisson derivation of P is a linear map D : P → P
which is a simultaneous derivation with respect to commutative and Lie algebra
structures. We let DerPoiss(P ) be the collection of all Poisson derivations of P .
It is closed with respect to Lie bracket. Moreover if a ∈ H0

Poiss(P, P ) and D ∈
DerPoiss(P ) then aD ∈ DerPoiss(P ). It follows that DerPoiss(P ) is a Lie–Rinehart
H0

Poiss(P, P )- algebra. There is the following variant of the first construction in the
graded case. Let P∗ =

⊕
n≥0 Pn be a commutative graded K-algebra in the sense

of commutative algebra (i.e., no signs are involved) and assume P∗ is equipped
with a Poisson algebra structure such that the bracket has degree (−1). Thus
[−,−] : Pn ⊗ Pm → Pn+m−1. Then P1 is a Lie–Rinehart P0-algebra, where the
Lie algebra homomorphism P1 → Der(P0) is given by a1 7→ [a1,−], [a1,−](a0) =
[a1, a0], where ai ∈ Pi, i = 0, 1.

2.2. Actions and Semidirect Product of Lie–Rinehart algebras.

Definition 2.7. Let L ∈ LRAK and let R be a Lie A-algebra. We will say that L
acts on R if it is given a K-linear map

L⊗R → R, (x, r) 7→ x ◦ r, x ∈ L, r ∈ R

such that the following identities hold

1) [x, y] ◦ r = x ◦ (y ◦ r)− y ◦ (x ◦ r),
2) x ◦ [r, r′] = [x ◦ r, r′]− [x ◦ r′, r],
3) ax ◦ r = a(x ◦ r),
4) x ◦ (ar) = a(x ◦ r) + x(a)r,

where a ∈ A, x, y ∈ L and r, r′ ∈ R.

Let us observe that 1) and 2) mean that L acts on R in the category of Lie
K-algebras.

Let us consider a Lie–Rinehart algebra L and a Lie A-algebra R on which L
acts. Since L acts on R in the category of Lie K-algebras as well, we can form the
semi–direct product L ⋊ R in the category of Lie K-algebras, which is L ⊕ R as a
K-module, equipped with the following bracket

[(x, r), (y, r′)] := ([x, y], [r, r′] + x ◦ r′ − y ◦ r),
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where x, y ∈ L and r, r′ ∈ R. We claim that L⋊R has also a natural Lie–Rinehart
algebra structure. Firstly, L⋊R as an A-module is the direct sum of A-modules L
and R. Hence a(x, r) = (ax, ar). Secondly the map

α̃ : L⋊R → DerK(A)

is given by α̃(x, r) := α(x). In this way we really get a Lie–Rinehart algebra.
Indeed, it is clear that α̃ is simultaneously an A-modules and Lie algebras homo-
morphism and it is obtained

[(x, r), a(y, r′)] = [(x, r), (ay, ar′)] = ([x, ay], [r, ar′] + x ◦ (ar′)− ay ◦ r)

=
(
a[x, y] + x(a)y, a[r, r′] + a(x ◦ r′) + x(a)r′ − a(y ◦ r)

)

= a([x, y], [r, r′] + x ◦ r′ − y ◦ r) + (x(a)y, x(a)r′)

= a[(x, r), (y, r′)] + x(a)(y, r′).

Thus L⋊R is indeed a Lie–Rinehart algebra.

Definition 2.8 ([14]). A left Lie–Rinehart (A, L)-module over a Lie–Rinehart A-
algebra L is a K-module M together with two operations

L⊗M → M, (x,m) 7→ xm,

and
A⊗M → M, (a,m) 7→ am,

such that the first one makes M into a module over the Lie K-algebra L in the
sense of the Lie algebra theory, while the second map makes M into an A-module
and additionally the following compatibility conditions hold

(ax)(m) = a(xm),

x(am) = a(xm) + x(a)m, a ∈ A,m ∈ M and x ∈ L.

That is, M is an abelian Lie A-algebra and L acts on M .
Notice that a left Lie–Rinehart (A, L)-module is equivalent to give a morphism

of Lie–Rinehart A-algebras L→ AM (see Example 2.3).
It follows that A is a left Lie–Rinehart (A, L)-module for any Lie–Rinehart al-

gebra L given by the anchor.

Definition 2.9 ([8]). A right Lie–Rinehart (A, L)-module over a Lie–Rinehart A-
algebra L is a K-module M together with two operations

M⊗L→ M, (m,x) 7→ mx,

and
A⊗M → M, (a,m) 7→ am,

such that the first one makes M into a module over the Lie K-algebra L in the
sense of the Lie algebra theory, while the second map makes M into an A-module
and additionally the following compatibility conditions hold

(am)x = m(ax) = a(mx) − x(a)m, a ∈ A,m ∈ M and x ∈ L.

Remark 2.10. The differences between the definitions of left and right (A, L)-module
are significantly large. While in Lie algebras left and right L-modules are equivalent,
in Lie–Rinehart that is not true. Concretely, A has a canonical left (A, L)-module
structure but it does not hold a canonical right (A, L)-module structure. See [7]
for a characterization of right (A, L)-module structures and see [11] for a concrete
example.
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2.3. Crossed Modules of Lie–Rinehart algebras. A crossed module ∂ : R →
L of Lie–Rinehart A-algebras (see [2]) consists of a Lie–Rinehart algebra L and
a Lie A-algebra R together with the action of L on R and the Lie K-algebra
homomorphism ∂ such that the following identities hold:

(1) ∂(x ◦ r) = [x, ∂(r)],
(2) ∂(r′) ◦ r = [r′, r],
(3) ∂(ar) = a∂(r),
(4) ∂(r)(a) = 0,

for all a ∈ A, r ∈ R and x ∈ L.
We can see some examples of crossed modules of Lie–Rinehart algebras.

(1) For any Lie–Rinehart homomorphism f : L → R, the diagram Ker f → L
is a crossed module of Lie–Rinehart algebras.

(2) If M is an ideal of L, the inclusion M →֒ L is a crossed module where the
action of L on M is given by the Lie bracket.

(3) If R is a left Lie–Rinehart (A, L)-module, the morphism 0: R → L is a
crossed module.

(4) If ∂ : R → L is a central epimorphism
(
i.e. Ker ∂ ⊂ Z(R)

)
from a Lie A-

algebra R to a Lie–Rinehart algebra L, ∂ is a crossed module where the
action from L to R is given by x ◦ r = [r′, r], such that ∂(r′) = x.

2.4. Universal enveloping algebras and related constructions. There is a
K-algebra UA L that has the property that the category of left UA L-modules is
equivalent to the category of left (A, L)-modules. Actually this algebra was con-
structed in [15]. We define the algebra UA L in terms of generators and relations.
We have generators i(x) for each x ∈ L and j(a) for each a ∈ A. These generators
must satisfy the following relations

j(1) = 1, j(ab) = j(a)j(b),

i(ax) = j(a)i(x),

i([x, y]) = i(x)i(y)− i(y)i(x),

i(x)j(a) = j(a)i(x) + j
(
x(a)

)
.

The first relations show that j : A → UA L is an algebra homomorphism.
Notice that in case of a trivial anchor one obtains the universal enveloping algebra

of L as a Lie A-algebra.
We let Vn be the A-submodule spanned on all products i(x1) · · · i(xk), where

k ≤ n. Then

0 ⊂ A = V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ UA L

defines an algebra filtration on UA L. It is clear that UA L = ∪n≥0Vn. It follows
from the third relation that the associated graded object gr∗(V ) is a commutative A-
algebra. In other words, UA L is an almost commutative A-algebra in the following
sense.

An almost commutative A-algebra is an associative K-algebra C together with
a filtration

0 ⊂ A = C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C =
⋃

n≥0

Cn

such that CnCm ⊂ Cn+m and such that the associated graded object gr∗(C) =⊕
n≥0 Cn/Cn−1 is a commutative A-algebra.
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Remark 2.11. It is well known that if C is an almost commutative A-algebra, then
there is a well-defined bracket

[−,−] : grn(C)⊗ grm(C) −→ grn+m−1(C)

which is given as follows. Let a ∈ grn(C) and b ∈ grm(C) and â ∈ Cn and b̂ ∈ Cm

representing a and b respectively. Since gr∗(C) is a commutative algebra it follows

that âb̂ − b̂â ∈ Cn+m−1 and the corresponding class in grn+m−1(C) is [a, b]. It is
also well known that in this way we obtain a Poisson algebra structure on gr∗(C).
Since the bracket is of degree (-1) it follows from Example 2.6 that L = gr1(C) is
a Lie–Rinehart A = gr0(C)-algebra. Moreover the short exact sequence

A → C1 → L

is an abelian extension of Lie–Rinehart algebras (see below Definition 2.16).

Proposition 2.12. The correspondence assigning C1 to the almost commutative
A-algebra C, defines a functor LR : ACommA → LRAK.

Proof. Let f : C → D ∈ ACommA. Since f preserves the filtration, f(C1) ⊆ D1.
Furthermore, f(ax) = f(a)f(x) = af(x), for any a ∈ C0 = D0 and x ∈ C1, and
f([x, y]) = f(xy − yx) = f(x)f(y) − f(y)f(x) = [f(x), f(y)], for x, y ∈ C1. Hence
the restriction of f to C1, which we shall call LR(f), is a morphism of K-Lie
algebras and of A-modules such that the following diagram commutes in LieK,

C1
LR(f) //

[◦,−] $$❍
❍❍

❍❍
❍❍

❍❍
D1

[◦,−]zz✉✉
✉✉
✉✉
✉✉
✉

DerK(A)

Thus, LR(f) ∈ LRAK.
On the other hand, it is clear that LR(1C) = 1C1

and the following diagram
commutes in K-mod,

C
f // D

g // E

C1

?�

iC

OO

LR(f) // D1

?�

iD

OO

LR(g) // E1

?�

iE

OO

Hence LR is functorial. �

Proposition 2.13. The functor LR is right adjoint to the universal enveloping
functor UA : LRAK → ACommA.

Proof. Let Φ: ACommA(UA L,C) → LRAK

(
L,LR(C)

)
be the map given as follows.

Since UA L is generated as a K-algebra by L and A, a morphism f : UA L → C
is completely determined by its restriction to L and A. Since f(a) = a for every
a ∈ A, and f(L) ⊆ f

(
(UA L)1

)
⊆ C1, it follows that the restriction of f to L,

Φf : L→ C1 = LR(C) is a monomorphism of Lie–Rinehart algebras.
Let g : L → C1 ∈ LRAK. We build up g̃ : UA L → C by g̃(ax1 · · ·xm) :=

ag(x1) · · · g(xm) ∈ C. It is straightforward to see that g̃ ∈ ACommA and Φg̃ = g.
Hence Φ is bijective, and UA and LR form an adjoint pair. �
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2.5. Free Lie–Rinehart Algebras. We have the functor

U : LRAK → Kmod/DerK(A)

which assigns α : L→ DerK(A) to a Lie–Rinehart algebra L. Here Kmod/DerK(A)
is the category of K-linear maps ψ : V → DerK(A), where V is a K-module. A
morphism ψ → ψ1 in Kmod/DerK(A) is a K-linear map f : V → V1 such that
ψ = ψ1 ◦ f . Now we construct the functor

F : Kmod/DerK(A) → LRAK

as follows. Let ψ : V → DerK(A) be aK-linear map. We let L(V ) be the free LieK-
algebra generated by V . Then we have the unique Lie K-algebra homomorphism
L(V ) → DerK(A) which extends the map ψ, which is still denoted by ψ. Now
we can apply the construction from Example 2.2 to get a Lie–Rinehart algebra
structure on A ⊗ L(V ). We let F (ψ) be this particular Lie–Rinehart algebra and
we call it the free Lie–Rinehart algebra generated by ψ. In this way we obtain the
functor F , which is the left adjoint to U .

Kapranov [10] defines a different concept of free Lie–Rinehart algebra as the
adjoint of the forgetful functor U ′ : LRAK → Amod/DerK(A). The relation between
both constructions is given in [10, (2.2.8) Proposition].

2.6. Rinehart homology and cohomology of Lie–Rinehart algebras. LetM
be a left Lie–Rinehart (A, L)-module. Let us recall the definition of the Rinehart
cohomology H∗

Rin(L,M) of a Lie–Rinehart algebra L with coefficients in a Lie–
Rinehart module M (see [14, 15] and [3, 6]). We put

Cn
A(L,M) := HomA(Λ

n
AL,M), n ≥ 0,

where Λ∗
A(V ) denotes the exterior algebra over A generated by an A-module V .

The coboundary map

δ : Cn−1
A (L,M) −→ Cn

A(L,M),

is given by

(δf)(x1, . . . , xn) =

n∑

i=1

(−1)(i−1) xi
(
f(x1, . . . , x̂i, . . . , xn)

)

+
∑

j<k

(−1)j+k f([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),

where x1, . . . , xn ∈ L,m ∈ M, f ∈ Cn−1
A (L,M).

We note that the differential δ is not A-linear unless L acts trivially on A.
For any left Lie–Rinehart (A, L)-module M, the Lie–Rinehart cohomology is

defined by

Hn
Rin(L,M) = Hn

(
Cn

A(L,M)
)
, n ≥ 0.

Let M be a right Lie–Rinehart (A, L)-module. Let us recall the definition of the
Rinehart homology HRin

∗ (L,M) of a Lie–Rinehart algebra L with coefficients in a
Lie–Rinehart module M. We put

CA
n (L,M) := M⊗AΛ

n
AL, n ≥ 0.

The boundary map

∂ : CA
n (L,M) −→ CA

n−1(L,M),
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is given by

∂
(
m⊗A (x1, . . . , xn)

)
=

n∑

i=1

(−1)(i−1)mxi ⊗A (x1, . . . , x̂i, . . . , xn)

+
∑

j<k

(−1)j+km⊗A ([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),

where x1, . . . , xn ∈ L,m ∈ M.
We note that the differential ∂ is not A-linear unless L acts trivially on A.
For any right Lie–Rinehart (A, L)-module M, the Lie–Rinehart homology is

defined by
HRin

n (L,M) = Hn

(
CA

n (L,M)
)
, n ≥ 0.

Let g be a Lie algebra over K and let M be a g-module. Then we have
the Chevalley–Eilenberg chain and cochain complexes CLie

∗ (g,M) and C∗
Lie(g,M),

which compute the Lie algebra (co)homology (see [1]):

CLie
n (g,M) = Λn(g)⊗M,

Cn
Lie(g,M) = Hom(Λn(g),M).

Here Λ∗ denotes the exterior algebra defined over K.
One observes that if A = K, then HRin

∗ (L,M) and H∗
Rin(L,M) generalize the

classical definition of Lie algebra (co)homology.
For a general A by forgetting the A-module structure one obtains the canonical

homomorphisms

HLie
∗ (L,M) → HRin

∗ (L,M), H∗
Rin(L,M) → H∗

Lie(L,M),

where HLie
∗ (L,M) and H∗

Lie(L,M) denote the homology and cohomology of L
considered as a Lie K-algebra. On the other hand if A is a smooth commutative
algebra, then H∗

Rin(Der(A),A) is isomorphic to the de Rham cohomology of A (see
[15] and [6]).

Lemma 2.14. Let g be a Lie K-algebra acting on a commutative algebra A by
derivations and let L be the transformation Lie–Rinehart algebra of (g,A) (see
Example 2.2). Then for any Lie–Rinehart (A, L)-module M we have the canonical
isomorphisms of complexes CA

∗ (L,M) ∼= CLie
∗ (g,M), C∗

A(L,M) ∼= Cn
Lie(g,M) and

in particular the isomorphisms

HRin
∗ (L,M) ∼= HLie

∗ (g,M),

H∗
Rin(L,M) ∼= H∗

Lie(g,M).

Proof. Since L = A⊗ g we have Λn
AL⊗A M ∼= Λn

Ag⊗A M and HomA(Λ
n
AL,M) ∼=

Hom(Λng,M) and lemma follows. �

Proposition 2.15. Let L be a free Lie–Rinehart algebra generated by ψ : V →
DerK(A) and let M be any Lie–Rinehart (A, L)-module. Then

HRin
n (L,M) = 0, n > 1,

Hn
Rin(L,M) = 0, n > 1.

Proof. By our construction L is a transformation Lie–Rinehart algebra of (L(V ),A).
Thus we can apply Lemma 2.14 to get isomorphismsHRin

∗ (L,M) ∼= HLie
∗ (L(V ),M)

and H∗
Rin(L,M) ∼= H∗

Lie(L(V ),M) and then we can use the well-known vanishing
result for free Lie algebras. �
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2.7. Low degree homology groups of Lie–Rinehart algebras. By definition,
HRin

0 (L,M) = M
M◦L , is the module of coinvariants of M, where M◦L means the

K-submodule of M generated by mx, x ∈ L,m ∈ M, and H0
Rin(L,M) = ML =

{m ∈ M | xm = 0 for all x ∈ L}, is the invariant K-submodule of M.
It follows from the definition that one has the following exact sequence

0 → H0
Rin(L,M) → M

d
−−→ DerA(L,M) → H1

Rin(L,M) → 0, (1)

where DerA(L,M) consists of A-linear maps d : L→ M which are derivations from
the Lie K-algebra L to M. In other words d must satisfy the following conditions:

d(ax) = ad(x),

d([x, y]) = x
(
d(y)

)
− y

(
d(x)

)
, a ∈ A, x, y ∈ L.

If m ∈ M, the map dm : L→ M, x 7→ xm, is a derivation. The maps dm are called
inner derivations of L into M, and they form an K-submodule IDerA(L,M) of
DerA(L,M). By (1), H1

Rin(L,M) ∼= DerA(L,M)/ IDerA(L,M).
IfM is a trivial (A, L)-module, thenH1

Rin(L,M) ∼= DerA(L,M) ∼= HomA(L
ab,M)

and HRin
1 (L,M) ∼= M⊗AL

M⊗A{L,L}
∼= M⊗AL

ab.

2.8. Abelian extensions of Lie–Rinehart algebras.

Definition 2.16. Let L be a Lie–Rinehart A-algebra and let M a left Lie-Rinehart
(A, L)-module. An abelian extension of L by M is a short exact sequence

M
i

−−→ L′ ∂
−−→ L,

where L′ is a Lie–Rinehart A-algebra and ∂ is a Lie–Rinehart algebra homomor-
phism. Moreover, i is an A-linear map and the following identities hold

[i(m), i(n)] = 0,

[i(m), x′] =
(
∂(x′)

)
(m), m, n ∈ M, x′ ∈ L′.

An abelian extension is called A-split if ∂ has an A-linear section.

Proposition 2.17 ([6, Theorem 2.6]). If L is A-projective, then the cohomology
H2

Rin(L,M) classifies the abelian extensions

M −→ L′ −→ L

of L by M in the category of Lie–Rinehart algebras which split in the category of
A-modules.

For a left Lie-Rinehart (A, L)-module M one can define the semi-direct product
L⋊M to be L⊕M as an A-module with the bracket [(x,m), (y, n)] =

(
[x, y], xn−

ym
)
, x, y ∈ L,m, n ∈ M.

The extension M −→ L⋊M −→ L represents 0 ∈ H2
Rin(L,M).

3. Universal central extensions of Lie–Rinehart algebras

3.1. Central extensions. An extension of a Lie–Rinehart algebra L is a short
exact sequence

I
i

−−→ E
p

−−→ L, (2)

where I, E and L are Lie–Rinehart algebras and i, p are Lie–Rinehart homomor-
phisms. Since i : I → i(I) = Ker p is an isomorphism we shall identify I and i(I).
In other words, an extension of L is an surjective Lie–Rinehart homomorphism
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p : E → L. If p : E → L and p′ : E′ → L are two extensions of L, a homomorphism
from p to p′ is a commutative diagram in LRAK of the form

E
f //

p �� ��❄
❄❄

❄❄
❄❄

❄ E′

p′~~~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

L

In particular,

Ker f ⊆ f−1(Ker p′) = Ker p and E′ = f(E) + Ker p′.

An extension (2) is called split if there exists a Lie–Rinehart morphism s : L→ E,
called splitting homomorphism, such that ps = 1L. In this case, E = I ⊕ s(L) and
s : L → s(L) is an isomorphism with inverse f |s(L). Moreover, E ≃ I ⋊ L, the
semidirect product. In this way, semidirect products and split exact sequences are
in a one to one correspondence. We point out that not every extension splits.
We shall say that an extension splits uniquely whenever the splitting morphism is
unique.

A central extension of L is an extension p such that Ker p ⊆ ZA(E). In particular,

if p : E
p

// // L
s

tt
is a split central extension, it is a direct product of K-Lie

algebras E = Ker p× L, which is also a Lie–Rinehart algebra.

Proposition 3.1. If L is A-projective, then H2
Rin(L, I) classifies the central exten-

sions

I −→ E −→ L

of L by I.

Proof. Note that, if I is a trivial left Lie–Rinehart (A, L)-module, then an abelian
extension of L by I is a central extension, and so the assertion follows by Proposition
2.17. �

A Lie–Rinehart A-algebra L is said perfect if L = {L,L}. A central extension E
of L is called a covering if E is perfect; in that case, L is also perfect.

A central extension u : L → L is called universal if there exists a unique homo-
morphism from u to any other central extension of L. From the universal property
of universal central extensions it immediately follows that two universal central
extensions of L are isomorphic as extensions.

Lemma 3.2. (central trick) Let p : E −−−։ L be a central extension.

(a) If p(x) = p(x′) and p(y) = p(y′) then [x, y] = [x′, y′] and for every a ∈ A,
x(a) = x′(a).

(b) If the following diagram commutes in LRAK,

P
f

//
g // E

p // // L

then the restriction of both f and g to {P, P} agree; i.e., f |{P,P} = g|{P,P}.

Proof. (a) We have x′ = x + z and y′ = y + z′ for some z, z′ ∈ Ker p ⊂ ZAE, so
it is clear that [x′, y′] = [x + z, y + z′] = [x, y]. In addition, if p is a Lie–Rinehart
homomorphism, the action on DerK(A) must be preserved so x(a) = x(a′).
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(b) Using part (a), we have g(a[x, y]) = a[g(x), g(y)] = a[f(x), f(y)] = f(a[x, y]).
�

Lemma 3.3. Let p : E −−−։ L be a central extension where L is perfect. Then

(a) E = {E,E}+ Ker p, and p′ = p{E,E} : {E,E} −−−։ L is a covering.

(b) ZAE = p−1(ZA L) and p(ZAE) = ZA L.
(c) If f : L −−−։ M is a central extension then so is fp : E −−−։M .
(d) If f : C −−−։ L is a covering and

E
g //

p �� ��❄
❄❄

❄❄
❄❄

❄ C

f����⑧⑧
⑧⑧
⑧⑧
⑧⑧

L

a morphism of extensions, then g : E −−−։ C is a central extension. In
particular, g is surjective.

Proof. (a) Since p({E,E}) = {L,L} = L it follows easily that E = {E,E}+ Ker p
and p{E,E} is clearly a covering.

(b) Let z ∈ ZA(A). For every a ∈ A we have [az,E] = 0, so 0 = [ap(z), p(E)] =
[ap(z), L] then p(z) ∈ ZA(L). Conversely, let z ∈ p−1

(
ZA(L)

)
. For every a ∈ A

we have p([az,E]) = [ap(z), L] = 0 so [az,E] ⊂ Ker p ⊂ ZA(E). Since [az,E] =
[az, {E,E}+ Ker p] = [az, {E,E}] we just have to check that [az, {E,E}] is zero.
Therefore,

[
az, b[x, y]

]
= b

[
az, [x, y]

]
= b

[
x, [az, y]

]
+ b

[
y, [x, az]

]
= 0.

(c) It is clearly surjective and Ker fp = p−1(Ker f) ⊂ p−1
(
ZA(L)

)
= ZA(E).

(d) By Lemma 3.2(b) we have that C = {C,C} = {g(E), g(E)} = g({E,E}) so
g is surjective. Moreover, it is central since Ker g ⊂ Ker p. �

Corollary 3.4. Let L ∈ LRAK, arbitrary. If L/ZA L is perfect, then ZA(L/ZA L) =
0.

Proof. It can be seen applying the second formula of Lemma 3.3(b) to the canonical

map p : L // // L/ZA L , which is a central extension. �

Lemma 3.5. (pullback Lemma) Let c : N −−−։ M be a central extension and
f : L→M a morphism of Lie–Rinehart algebras, then,

P := {(l, n) ∈ L×DerK(A) N : f(l) = c(l)}

is a Lie–Rinehart algebra and pL : P → L, (l, n) 7→ l, is a central extension. This
extension splits if and only if there exists a (unique) Lie–Rinehart morphism h : L→
N such that ch = f .

P
pN //

pL

����

N

c
����

L
f

//
h

>>

s

HH

M

Proof. It is clear that P is a Lie–Rinehart algebra with action (l, n)(a) = l(a) =
n(a), and pL is a central extension. Moreover, a splitting homomorphism s : L→ P
exists (uniquely) if and only if there exists a (unique) Lie–Rinehart homomorphism
h : L→ N such that s(l) =

(
l, h(l)

)
for all l ∈ L. �
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Theorem 3.6. (characterization of universal central extensions) For a
Lie–Rinehart algebra L, there are equivalent:

(1) Every central extension L′ → L splits uniquely.
(2) 1L : L→ L is a central extension.

If u : L→M is a central extension, then (1) and (2) are equivalent to
(3) u : L→M is a universal central extension of M . In this case,

(a) both L and M are perfect and
(b) ZA L = u−1(ZA L) = ZAM .

Proof. By definition, (1) is equivalent to (2). Suppose that (3) holds, we want to
proof (a). Let be the product as K-Lie algebras L × L/{L,L}. In this case, this
is actually a Lie–Rinehart algebra, with the usual operations and action (x, y +
{L,L})(a) = x(a), because

[(x, y + {L,L}), a(x′, y′ + {L,L})] = (a[x, x′], 0) + (x(a)x′, 0)

and

a[(x, y + {L,L}), (x′, y′ + {L,L})] = (a[x, x′], 0),

(x, y + {L,L})(a)(x′, y′ + {L,L}) = (x(a)x′, x(a)y′ + {L,L})

= (x(a)x′, [x, ay′]− a[x, y′] + {L,L}) = (x(a)x′, 0).

Now we can define the central extension ū : L × L/{L,L} → M , and two maps
f and g

L
u //

g %%❑❑
❑❑

❑❑
❑❑

❑❑
❑

f

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑ M

L× L/{L,L}

ū

88rrrrrrrrrr

where f(x) = (x, x + {L,L}) and g(x) = (x, 0). Since u is universal, f and g must
be equal, so L/{L,L} = 0. By the surjectivity of u, M is perfect too. The assertion
(b) is consequence of Lemma 3.3(b).

We can proof now (3) ⇒ (1). Let f : L′ → L a central extension. By Lemma
3.3(c) uf is a central extension too, so by the universality of u, it exists g : L→ L′

such that ufg = u and by Lemma 3.2(b) fg = 1L.
To show (1) ⇒ (3), for a central extension f : N →M we construct as in Lemma

3.5 the central extension pL. Since pL splits uniquely, by Lemma 3.5 it exists a
unique map h : L→ N such that fh = u �

Corollary 3.7. Let f : E → L and g : L→M be central extensions. Then gf : E →
M is a universal central extension if and only if f is a universal central extension.

Proof. The extension gf is central because E is perfect, so we can apply Lemma
3.3(c). Hence, f is universal if and only if 1E : E → E is universal, if and only if
gf is universal. �

Corollary 3.8. Let L and L′ be perfect Lie–Rinehart algebras, with universal cen-
tral extensions u : L → L and u′ : L′ → L′ respectively. Then

L/ZA(L) ∼= L′/ZA(L
′) ⇐⇒ L ∼= L′.
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Proof. Given the diagram

L
u //

φ

��

L
π // L/ZA(L)

ϕ

��
L′ ū // L′ π′

// L/ZA(L
′),

we know that φ exists and is an isomorphism if and only if ϕ exists and is an
isomorphism. Since πu and π′u′ are universal central extensions by Corollary
3.7 and L/ZA(L) is isomorphic to L′/ZA(L

′), by the uniqueness of the univer-
sal central extension, L ∼= L′. Conversely, by Corollary 3.4 L/ZA(L) is centre-
less. By Lemma 3.3 (b) ZA(L) = Ker(πu) and ZA(L

′) = Ker(π′u′). Therefore,
Ker(π′u′φ) = φ−1

(
Ker(π′u′)

)
= φ−1

(
ZA(L

′)
)
= ZA(L) = Ker(πu). Since πu and

π′u′φ are surjective, ϕ exists and is an isomorphism. �

Note that the results obtained in this section generalize classic results of Lie
algebras (see [5]).

3.2. The functor uceA. Let L be a Lie–Rinehart A-algebra. We denote by MAL
the A-submodule of A⊗K L⊗K L spanned by the elements of the form

(1) a⊗ x⊗ x
(2) a⊗ x⊗ y + a⊗ y ⊗ x
(3) a⊗ x⊗ [y, z] + a⊗ y ⊗ [z, x] + a⊗ z ⊗ [x, y]
(4) a⊗ [x, y]⊗ [x′, y′] + [x, y](a)⊗ x′ ⊗ y′ − 1⊗ [x, y]⊗ a[x′, y′]

with x, x′, y, y′, z ∈ L and a ∈ A, and put

uceAL := A⊗K L⊗K L/MAL.

We shall write (a, x, y) := a⊗ x⊗ y +MAL ∈ uceAL.
By construction, the following identities hold in in uceA:

(1) (a, x, y) = −(a, y, x),
(2) (a, x, [y, z]) + (a, y, [z, x]) + (a, z, [x, y]) = 0,
(3) (1, [x, y], a[x′, y′]) = (a, [x, y], [x′, y′]) + ([x, y](a), x′, y′).

The map of A-modules A ⊗K L ⊗K L → L, determined by (a, x, y) 7→ a[x, y],
which vanishes on MAL and hence descends to a linear map

u : uceAL→ L.

Note that

Ker u =
{∑

i

(ai, xi, yi) :
∑

i

ai[xi, yi] = 0
}

It is an easy, but tedious calculation to see that the module uceAL becomes a
Lie–Rinehart algebra with the product

[(a, x, y), (a′, x′, y′)] := (aa′, [x, y], [x′, y′]) + (a[x, y](a′), x′, y′)− ([x′, y′](a)a′, x, y),

and action

(a, x, y)(b) := a[x, y](b).

It then follows that u : uceAL→ {L,L} is a central extension of {L,L}.
Let f : L → M ∈ LRAK. Let MAM ∈ A ⊗K M ⊗K M defined analogously to

MAL. The map 1A ⊗K f ⊗K f : MAL→MAM induces an A-linear map

uceA(f) : uceAL→ uceAM, (a, x, y) 7→
(
a, f(x), f(y)

)
.
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Note that the following diagram commutes by construction,

uceAL

uL

��

uceA(f) // uceAM

uM

��
L

f
// M

(3)

To check that uceAf is a morphism it suffices to show that

uceA(f)([(a, x, y), (a
′, x,′ y, )]) = [uceA(f)(a, x, y), uceA(f)(a

′, x′, y′)],

which since f is a Lie–Rinehart homomorphism, we have that a[x, y](a′) = f(a[x, y])(a′) =
a[f(x), f(y)](a′) and the proof follows immediately.

Proposition 3.9. Let f : L → M be a morphism of Lie–Rinehart algebras and
suppose that g : M ′ →M is a central extension. Then there exists a homomorphism
f : uceAL→M ′, making the following diagram commute,

uceAL

u

��

f // M ′

g

��
L

f
// M,

(4)

the map f is uniquely determined on the derived algebra {uceAL, uceAL}, by the
commutativity of (4).

Proof. Let s : M →M ′ a section of g in Set. The map s may not be linear but we
know that s(km)− ks(m) ∈ Ker g ⊂ ZA(M

′) and s(m+n)− s(m)− s(n) ∈ Ker g ⊂

ZA(M
′) for k ∈ K and m,n ∈M . Using this, we claim that the map

A× L× L
f̄

−−→M ′

(a, x, y) 7−−−→ a[sf(x), sf(y)],

is bilinear, since a[sf(kx), sf(y)] = a[sf(kx)−ksf(x)+ksf(x), sf(y)] = a[ksf(x), sf(y)].
The other property follows in the same way. By the universal property of tensor
product, f̄ defines a unique map between A ⊗K L ⊗K L and M ′. In addition,
the map is zero in MAL, so it can be extended to f : uceAL → M ′, making the
diagram commutative. This map conserves the action on DerK(A) because the sec-
tion s must conserve it too. Using the property that a[x, y](a′) = f(a[x, y])(a′) =
a[f(x), f(y)](a′), it follows immediately that f is a Lie algebra homomorphism,
hence it is a Lie–Rinehart algebra homomorphism that makes the diagram commu-
tative. The uniqueness in {uceAL, uceAL} follows from Lemma 3.2(b). �

Theorem 3.10. Let L be a perfect Lie–Rinehart algebra. Then

Ker u −→ uceAL
u

−−→ L,

is a universal central extension of L. Moreover, if L is centreless, then Ker u =

ZA(uceAL).

Proof. It can be seen that uceA({L,L}) ⊂ {uceAL, uceAL} ⊂ uceAL. Thus when L
is perfect, {uceAL, uceAL} = uceAL, so applying Proposition 3.9 for every central
extension f : M → L we have a unique map f : uceAL → M making the diagram
commutative. In other words, uceAL is the universal central extension of L. �
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Remark 3.11. In many algebraic structures as Lie algebras, Ker u is the second
homology group with trivial coefficients. However, this is not possible here since
we do not have a canonical right (A, L)-module structure in A as we have seen in
Remark 2.10.

4. Lifting automorphisms and derivations

Let f : L′ → L be a covering. Recovering the commutative diagram (3) we get

L′

u′

��

f // L

u

��
L′

f
// L

where L′ = uceA(L
′), L = uceA(L) and u′ = uL′ , u = uL. Since both u′ and f are

central extensions, by Corollary 3.7 we know that fu′ : L′ → L is a universal central
extension of L. By the uniqueness of the universal central extension, we know that
L′ ∼= L. In addition, since f is a morphism from the universal central extension fu′

to the central extension u, it must be an isomorphism. Therefore, we get a covering
u′f−1 : L → L′ with kernel

C := Ker(u′f−1) = f(Ker u′).

4.1. Lifting of automorphisms.

Theorem 4.1. Using the notation of the beginning of this section,

(a) Let h ∈ Aut(L). Then there exists h′ ∈ Aut(L′) such that the diagram

L′

h′

��

f // L

h

��
L′

f
// L

(5)

commutes if and only if uceA(h)(C) = C. Moreover, h′ is uniquely deter-
mined by the diagram (5) and h′(Ker f) = Ker f .

(b) The group homomorphism which sends h ∈ Aut(L) to its lifting h′ ∈ Aut(L′)

{h ∈ Aut(L) : uceA(h)(C) = C} → {g ∈ Aut(L′) : g(Ker f) = Ker f}

is a group isomorphism.

Proof. (a) If h′ exists, it is a morphism from the covering hf to the covering f so
by Lemma 3.2(b) it is uniquely determined by the commutative of the diagram (5).
Let suppose then that h′ exists. If we apply the uceA functor to the diagram (5),
we obtain the commutative diagram

L′

uceA(h′)
��

f // L

uceA(h)

��
L′

f
// L
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In this way, uceA(h)(C) = uceA(h)
(
f(Ker u′)

)
= (uceA(h) ◦ f)(Ker u′) = (f ◦

uceA(h
′))(Ker u′) = f(Ker u′) = C. Suppose now that uceA(h)(C) = C. We ob-

tain the commutative diagram

L

uceA(h)

��

u′f−1

// L′

��✤
✤

✤

f // L

h

��
L

u′f−1

// L′ f // L

(6)

If uceA(h)(C) = C, the kernel of the epimorphism u′f−1 ◦ uceA(h) is C, i.e. the
kernel of u′f−1. In this way, we obtain an automorphism h′ : L′ → L′ such that
(6) commutes. The condition that h′(Ker f) = Ker f follows immediately by the
commutativity of (5).

(b) The map is well defined and injective by part (a) of the Theorem. Let
g ∈ Aut(L′) such that g(Ker f) = Ker f . It descends to h ∈ Aut(L) such that
fg = hf . Again by (a), g must be the lifting of h and since the lifting exists it
follows that uceA(h)(C) = C. �

Corollary 4.2. If L is perfect, the map

Aut(L) → {g ∈ Aut
(
uceA(L)

)
: g(Ker u) = Ker u}

that sends f to uceA(f), is a group isomorphism. Moreover, if L is centreless,
Aut(L) ∼= Aut

(
uceA(L)

)
.

Proof. Applying the last theorem to the covering u : uceA(L) → L, we have that u′

is the identity map, so C = 0 and the corollary follows immediately. By 3.3(b), if
L is perfect we have that Ker u = ZA uceA(L) and since every automorphism leaves
the centre invariant it is straightforward that Aut(L) ∼= Aut

(
uceA(L)

)
. �

4.2. Lifting of derivations.

Definition 4.3. Let L be a Lie–Rinehart algebra over A. A derivation of L is a pair
D := (δ, δ0), where δ : L→ L is a derivation of L as a K-Lie algebra, δ0 ∈ DerK(A)
and the following identities hold:

δ(ax) = aδ(x) + δ0(a)x,

δ0
(
x(a)

)
= x

(
δ0(a)

)
+ δ(x)(a),

with a ∈ A and x ∈ L. Note that the second identity means that the following
diagram commutes,

L

α

��

δ // L

α

��
DerK(A)

[δ0,−]
// DerK(A)

We shall write Der(L) the A-module of all derivations of the Lie–Rinehart algebra
L. Observe that Der(L), with Lie bracket [(δ, δ0), (δ

′, δ′0)] = ([δ, δ′], [δ0, δ
′
0]) and

anchor map Der(L) → DerK(A), (δ, δ0) 7→ δ0 is a Lie–Rinehart algebra over A.

Given a derivation D = (δ, δ0) ∈ Der(L), one can define uceA(D) = (δu, δ0),
where δu is defined in generators as (a, x, y) 7→ (δ0(a), x, y)+(a, δ(x), y)+

(
a, x, δ(y)

)
.
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It is a straightforward verification that he map uceA(D) is also a derivation of the
Lie–Rinehart algebra uceA(L) and yields the following commutative diagram

uceA(L)

u

��

δu // uceA(L)

u

��
L

δ
// L

leaving Ker u invariant. Moreover, the map

uceA : Der(L) → {F = (γ, γ0) ∈ Der
(
uceA(L)

)
: γ(Ker u) ⊂ (Ker u)},

sending D to uceA(D) is a Lie–Rinehart homomorphism, and its kernel is contained
in the subalgebra of those derivations vanishing on {L,L}.

We can check the functoriality of uceA for derivations, in the following lemma.

Lemma 4.4. Let f : L → M be a morphism of Lie–Rinehart algebras and let
(δL, δ0) ∈ Der(L) and (δM , δ0) ∈ Der(M) be such that fδL = δMf . Then, we have
that

uceA(f)δ
u
L = δuMuceA(f).

Proof. It suffices to check it for an element (a, x, y) ∈ uceA(L).

uceA(f)δ
u
L(a, x, y) = uceA(f)

(
(δ0(a), x, y) + (a, δL(x), y) + (a, x, δL(y))

)

=
(
δ0(a), f(x), f(y)

)
+
(
a, f

(
δL(x)

)
, f(y)

)
+
(
a, f(x), f

(
δL(y)

))

=
(
δ0(a), f(x), f(y)

)
+
(
a, δM

(
f(x)

)
, f(y)

)
+
(
a, f(x), δM

(
f(y)

))

= δM
(
a, f(x), f(y)

)

= δMuceA(f)(a, x, y).

�

We will state now the analogue of Theorem 4.1 for derivations.

Theorem 4.5. Let f : L′ → L be a covering of the Lie–Rinehart algebra L and as
before, we denote C = uceA(f)(ker u

′).

(a) A derivation (δ, δ0) ∈ Der(L) lifts to a derivation (δ′, δ0) of L′ satisfying
δ′f = fδ if and only if the derivation δu(C) ⊂ C. Moreover, δ′ is uniquely
determined and leaves Ker f invariant.

(b) The map which sends (δ, δ0) ∈ Der(L) to its lifting (δ′, δ0) ∈ Der(L′)

{(δ, δ0) ∈ Der(L) : uceA(δ
u)(C) ⊂ C} → {(η, η0) ∈ Der(L′) : ηu(Ker f) ⊂ Ker f}

is an isomorphism of Lie–Rinehart algebras.
(c) In particular, from the covering u : uceA(L) → L we obtain that the map

uceA : Der(L) → {(γ, γ0) ∈ Der
(
uceA(L)

)
: γ(Ker u) ⊂ Ker u}

is an isomorphism. Moreover, if L is centreless, we have that Der(L) ∼=
Der

(
uceA(L)

)
.

Proof. The proof is analogue of the proofs of Theorem 4.1 and Corollary 4.2. The
fact that a derivation is not a Lie–Rinehart morphism, do not add any complication.

�
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4.3. Universal central extensions of split exact sequences.

Theorem 4.6. Let L
f // M

g
// // N

s
tt

be a split short exact sequence of

perfect Lie–Rinehart algebras. We have the following commutative diagram

uceA(L)
ϕ //

uL

��

uceA(M)
γ

//

uM

��

uceA(N)
σqq

uN

��
L

f // M
g

// N
s

rr

where uceA(M) is a semidirect product

uceA(M) = ϕ
(
uceA(L)

)
⋊ σ

(
uceA(N)

)
,

and
Ker uM = ϕ(Ker uL)⊕ σ(kerN ).

We know that M ∼= L⋊N since the bottom row exact sequence splits. If M = L×N
is a direct product, i.e. [f(L), s(N)] = {0}, we have

uceA(L×N) ∼= uceA(L)× uceA(N).

Proof. In order to simplify the notation, we can interpret f and s as identifications,
so we will write l for f(l) and n for s(n). Given any (a, ñ, l̃) ∈ uceA(M) where ñ ∈ N

and l̃ ∈ L, by the perfectness of L and the properties of uceA(M)

(a, ñ, l̃) = (a, b[n, n′], c[l, l′])

= (ac, b[n, n′], [l, l′]) + (ab[n, n′](c), l, l′)

= (ac, [b[n, n′], l], l′) + (ac, l, [b[n, n′], l]) + (ab[n, n′](c), l, l′),

which means that (A,N,L) ⊂ (A,L, L), so uceA(M) = (A,L, L) + (A,N,N).
By definition, (A,L, L) = ϕ

(
uceA(L)

)
and (A,N,N) = σ

(
uceA(N)

)
. Now since

γσ is the identity map, we know that uceA(M) ∼= Ker γ ⋊ σ
(
uceA(N)

)
. In this

way, σ
(
uceA(N)

)
∼= uceA(N) and since (A,L, L) ⊂ Ker γ it follows that Ker γ =

(A,L, L) = ϕ
(
uceA(L)

)
, so we have that uceA(M) = ϕ

(
uceA(L)

)
⋊ σ

(
uceA(N)

)
.

Every element of uceA(M) has the form ϕ(l) ⊗ σ(n) where l ∈ uceA(L) and
n ∈ uceA(N). This means that any element of uceA(M) is in Ker uM if and only if
0 = uMϕ(l) = uL(l) and 0 = uMσ(n) = uN(n), so Ker uM = ϕ(Ker uL)⊕ σ(kerN ).

In the particular case that M = L×N , we can define the induced map

ϕ× σ : uceA(L)× uceA(N) → uceA(M),

and it is an easy computation that it is a Lie–Rinehart algebra morphism. Moreover,
Ker(ϕ × σ) = Kerϕ. Given l ∈ Kerϕ, uMϕ(l) = 0 = uL(l) so l ∈ Ker uL ∈ ZA(L),
which means that ϕ× σ is a covering. We can use now Theorem 3.6(2) to see that
ϕ× σ is an isomorphism completing the proof. �

5. Non-abelian tensor product of Lie–Rinehart algebras

A non-abelian tensor product of Lie algebras was introduced by Ellis [4]. Here
we adapt some of his results to the case of Lie–Rinehart algebras, in order to use
them to obtain a description of universal central extensions in this category.

Let L,M ∈ LRAK. By an action of L onM , we mean an K-linear map, L×M →
M , (x,m) 7→ xm, satisfying
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(1) x(am) = a(xm) + x(a)m,
(2) [x,y]m = x(ym)− y(xm),
(3) x[m,n] = [xm,n] + [m,x n],

for all a ∈ A, x, y ∈ L and m,n ∈ M . For example, if L is a subalgebra of some
Lie–Rinehart algebra L and M is an ideal of L then the bracket in L yields an
action of L on M .

If we have an action of L on M and an action of M on L, for any Lie–Rinehart
algebra L we call a K-bilinear function f : L×M → L a Lie–Rinehart pairing if

(1) αL

(
f(x,m)

)
= [αL(x), αM (m)],

(2) f([x, y],m) = f(x, ym)− f(y, xm),
(3) f(x, [m,n]) = f(nx,m)− f(mx, n),
(4) f

(
a(mx), b(yn)

)
= −ab[f(x,m), f(y, n)]− a[αL(x), αM (m)](b)f(y, n)

+ [αL(y), αM (n)](a)bf(x,m),

for all a, b ∈ A, x, y ∈ L and m,n ∈M .
We say that a Lie pairing f : L×M → L is universal if for any other Lie–Rinehart

pairing g : L ×M → L′ there is a unique Lie–Rinehart homomorphism ϕ : L → L′

making commutative the diagram:

L×M
f //

g
''PP

PP
PP

PP
PP

PP
P L

ϕ

��
L′

The Lie–Rinehart algebra L is unique up to isomorphism which we will describe as
the non-abelian tensor product of L and M .

Definition 5.1. Let L and M be a pair of Lie–Rinehart algebras together with
an action of L on M and an action of M on L. We define the non-abelian tensor
product of L and M in LRAK, L ⊗M , as the Lie–Rinehart A-algebra spanned as
an A-module by the symbols x⊗m, and subject only to the relations:

(1) k(x⊗m) = kx⊗m = x⊗ km,
(2) x⊗ (m+ n) = x⊗m+ x⊗ n,

(x + y)⊗m = x⊗m+ y ⊗m,
(3) [x, y]⊗m = x⊗ ym− y ⊗ xm,

x⊗ [m,n] = nx⊗m− mx⊗ n,
(4) [a(x⊗m), b(y⊗n)] = −ab(mx⊗yn)+aα(x⊗m)(b)(y⊗n)−α(y⊗n)(a)b(x⊗

m),

for every k ∈ K, a, b ∈ A, x, y ∈ L and m,n ∈ M . Here the map α : L ⊗M →
DerK(A) is given by α

(
a(x⊗m)

)
:= a[αL(x), αM (m)].

This way, the map f : L×M → L⊗M which sends (x,m) to x⊗m is a universal
Lie–Rinehart pairing by construction.

Definition 5.2. Two actions L×M →M andM×L→ L are said to be compatible
if for all x, y ∈ L and m,n ∈M ,

(1) −αL(
mx) = αM (xm) = [αL(x), αM (m)],

(2) (mx)n = [n, xm],
(3) (xm)y = [y,mx].



UNIVERSAL CENTRAL EXTENSIONS OF LIE–RINEHART ALGEBRAS 21

This is the case, for example, if L and M are both ideals of some Lie–Rinehart
algebra and the actions are given by multiplication. We can see another example of
compatible actions when ∂ : L → N and ∂′ : M → N are crossed modules. In this
case, L andM act on each other via the action of N . These actions are compatible.

From this point on we shall assume that all actions are compatible.

Proposition 5.3. Let µ : L⊗M → L and ν : L⊗M →M be the homomorphisms
defined on generators by µ

(
a(x ⊗m)

)
= −a(mx) and ν

(
a(x ⊗m)

)
= a(xm). They

are Lie–Rinehart homomorphisms and the following diagram is commutative:

L⊗M
ν //

µ

��

α

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
M

αM

��
L

αL

// DerK(A)

We can relate the Lie–Rinehart tensor product L ⊗M with the tensor product
of L and M as an A-module. We will denote it by L ⊗

mod
M the K-module and

A-module generated by the symbols x⊗m subject to the relations

(1) k(x⊗m) = kx⊗m = x⊗ km,
(2) x⊗ (m+ n) = x⊗m+ x⊗ n,

(x + y)⊗m = x⊗m+ y ⊗m,

for every k ∈ K, x, y ∈ L and m,n ∈M .

Proposition 5.4. The canonical map L ⊗
mod

M → L⊗M is a A-module homomor-

phism and is surjective. In addition, if L and M act trivially on each other, there
is an isomorphism of A-modules:

L⊗M ∼= Lab ⊗
mod

Mab.

Proof. If L acts trivially on M we have that x(a)m = 0 for a ∈ A, x ∈ L and
m ∈M . This means that

a[x, y]⊗m = x⊗ a(ym) + x⊗ y(a)m− ay ⊗ xm− x(a)y ⊗m = 0

being straightforward the isomorphism. �

Proposition 5.5. The Lie–Rinehart algebras L⊗M and M ⊗ L are isomorphic.

Proof. The map f : L × M → M ⊗ L which sends (x,m) → m ⊗ x is a Lie–
Rinehart pairing, then by the universal property of L⊗M there is a Lie–Rinehart
homomorphism L ⊗M → M ⊗ L. In a similar way, we can construct the inverse
M ⊗ L→ L⊗M and establish an isomorphism. �

Proposition 5.6. Consider the following short exact sequence of Lie–Rinehart
algebras

L
f // M

g // N,

and assume that P is a Lie–Rinehart algebra which acts compatibly on L, M and
N , and the Lie–Rinehart algebras L,M,N act compatibly on P . Suppose also that
the Lie–Rinehart morphisms f and g conserve these actions, i.e., f(pm) = pf(m)
and mp = f(m)p. Then, the following sequence is exact

L⊗ P
f⊗1 // M ⊗ P

g⊗1 // N ⊗ P.
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Proof. Since f and g conserve the actions, it is easy to see that f ⊗ 1 and g ⊗ 1
are Lie–Rinehart algebra morphisms. Furthermore, the morphism g ⊗ 1 is clearly
surjective, and Im(f ⊗ 1) ⊂ Ker(g ⊗ 1). Since fg = 0, we have that f(x)(a) = 0 for
every a ∈ A and x ∈ L. This means that (f⊗1)(x⊗p)(a) = [αM

(
f(x)

)
, αP (p)](a) =

0. Moreover, Im(f ⊗ 1) is an A-module and conserves the Lie bracket since f and
g conserve the actions, so Im(f ⊗ 1) is an ideal. Then to proof the other inclusion,
we will show that M ⊗ P/ Im(f ⊗ 1) ∼= N ⊗ P . Since Im(f ⊗ 1) ⊂ Ker(g ⊗ 1)
we have a natural epimorphism φ : M ⊗ P/ Im(f ⊗ 1) → N ⊗ P . Now we define
the map ϕ : N × P → M ⊗ P/ Im(f ⊗ 1) such that ϕ(n, p) = m ⊗ p + Im(f ⊗ 1)
where m is such that f(m) = n. It follows that it is a Lie pairing, so by the
universality of the tensor product, there exists a unique Lie–Rinehart morphism
ϕ̄ : N ⊗ P →M ⊗ P/ Im(f ⊗ 1), and it is straightforward that φ and ϕ are inverse
morphisms. �

Proposition 5.7. Given a perfect Lie–Rinehart algebra L, the non-abelian tensor
product L ⊗ L where the action of L on L is the Lie bracket, with the additional
relation

(a[x, y]⊗ b[x′, y′]) = ab([x, y]⊗ [x′, y′])− b[x′, y′](a)(x⊗ y) + a[x, y](b)(x′ ⊗ y′),

denoted by L⊗̂L, is the universal central extension of L.

Proof. It is routine to check that L⊗̂L → L is a central extension. To see the
universality, given a central extension p :M → L, we pick a section in Set s : L→
M . We define now a map f : L × L → M by f(x, y) = [s(x), s(y)]. Doing the
same trick as in Proposition 3.9, we see that is a Lie–Rinehart pairing, so it can be
extended to L ⊗ L → M . It is easy to see that the map vanishes in the elements
of the additional relation. Since L is perfect, we saw in Lemma 3.2 that this map
is unique. �
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