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a b s t r a c t

Ball milling experiments performed in the last decade in various systems opened the question about the
stability of crystalline nanoparticles with respect to the same group of atoms but in the amorphous state.
The general purpose of the present work is to develop a predictive approach to this problem, and assess
its accuracy by confronting thermodynamic calculations with experimental observations on Cu-Zn
nanoparticles. The bases of the approach are as follows. First, the present Gibbs energy formalism
makes use of the “lattice-stability” concept currently applied in so-called CALPHAD (“Calculation of Phase
Diagrams”) modeling work. Second, the enthalpy of formation of the alloy phases is treated in the
framework of the Miedema model, with special attention to the parameters for the amorphous phase.
Third, the surface contribution to Gibbs energy is accounted for. With the current thermodynamic
description, the sizes of the crystalline nanoparticles which are stable with respect to the amorphous are
determined by calculation. These predictions are confronted with the minimum size of the nanoparticles
generated by subjecting g-Cu-Zn powders to low-energy milling treatments, which is determined by X-
ray diffraction and high-resolution transmission electron microscopy techniques. On this basis, a dis-
cussion is reported of the accuracy of the present approach. In particular, the parameters in the Gibbs
energy description which crucially affect the agreement between calculations and experiments are
highlighted.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The current development of experimental methods to produce
metallic nanoparticles has stimulated the theoretical interest in the
thermodynamic account of the relative stability between the
crystalline and amorphous phases in the nanoscale [1e4]. In prin-
ciple, this problem should be treated in thermodynamic terms, by
comparing the molar Gibbs energy (Gm) of the competing phases.
However, the often limited equilibrium information on the crys-
talline phases, or the general lack of experimental data on the
amorphous phases, makes it difficult to establish accurately the
necessary Gm functions. As a consequence, there is a strong interest
in the development of predictive methods to account for the
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stability of crystalline and amorphous nanoparticles, in particular,
for alloys of practical interest.

Current attempts to produce Gm information on multicompo-
nent alloy phases often make use of the so-called CALPHAD
(“Calculation of Phase Diagrams”) method [5,6]. This method aims
at constructing phenomenological models for Gm of the various
phases, and determining the parameters in themodels by searching
for the best fit (“optimization”) to experimental phase-equilibrium
and thermochemical data. The systematic application of this tech-
nique has shown that by combining the Gm functions for the binary
subsystems, rather accurate predictions for the higher-order sys-
tem properties might be obtained. On the other hand, when the
binary experimental data are scarce, unreliable or lacking, the
standard CALPHAD optimization method needs to be com-
plemented by predictive approaches for thermodynamic
properties.

The first purpose of the present work is the development of a
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predictive approach to crystalline/amorphous relative stability of
metallic nanoparticles, which is consistent with the formulation of
Gm currently adopted in CALPHAD modeling work. Specifically,
when referring Gm of an alloy to that of the constituent elements,
the structure differences will be accounted for in this work by using
the concept of “lattice-stability” introduced by Kaufman [5]. For the
usual structures of the elements, “lattice-stability” values have
been presented [7], whereas the amorphous might be treated by
relying either on specific approaches, such as that suggested by
Loeff, Weeber and Miedema [8], or upon alternative, rather general
assumptions on the amorphous state (Section 5). Once the refer-
ence states have been established, the various contributions to
excess Gibbs energy of the competing phases will be treated in the
framework of the Miedema approach [9] for the enthalpy of for-
mation of alloys, by accounting for the structure effect upon the
model parameters. In particular, the size-dependent surface
contribution to Gm of these phases will be discussed in detail.

It should be emphasized that the Miedema model is currently
the subject of a renewed interest in connection with the treatment
of, in particular, the stability of amorphous phases and glasses
[10e16] and the enthalpy of multicomponent, high-entropy liquid
alloys [17e19]. In this context, the present work offers an alterna-
tive, enlightening way to test the predictive possibilities of the
model.

The second purpose of the work is to assess the accuracy of the
present approach by confronting its predictions with experimental
data. The current methodology involves the thermodynamic pre-
diction of the critical diameter (dtherc ) of the crystalline nano-
particles which are stable with respect to the amorphous phase,
and the comparison with the minimum diameter (dmin) of metallic
nanoparticles obtained in ball milling experiments [20].

Specifically, the experimental part of the paper involves a study
of the size-effect upon the stability of particles of the g phase, a
complex cubic phase [21] of the Cu-Zn system. To this aim, g-Cu-Zn
particles are generated through a mechanical milling treatment.
This technique has previously been applied to the Cu-Zn system. In
particular, high-energy ball milling techniques have previously
been used to prepare alloys of various compositions starting from
the elements [22e26]. Besides, exploratory mechanical-alloying
(MA) studies for near equiatomic [22] and Zn-rich [23] composi-
tions have also been reported. Moreover, Pabi et al. [24e26] studied
the evolution of Cu-Zn phaseswith various compositions formed by
MA, and related the phase stability to the particle sizes.

A particular motivation for the present experiments is the
disagreement found between previous reports on the size effects
upon the stability of nanoparticles in the Cu-Zn system [27,28]. In
one such studies, low-energy milling experiments were performed
upon a pre-alloyed equiatomic b2 (CsCl-type structure) phase
powder which induced a sharp reduction of the particle size [27].
Transmission electron microscopy (TEM) of the milled alloy indi-
cated that crystalline particles with diameters of few nanometers
were present, whereas X-ray diffraction (XRD) patterns suggested a
mean particle-size about 50 times larger [27]. On the other hand, in
Ref. [28] it was reported that the g phase of a Cu35-Zn65 alloy milled
in a medium-energy apparatus is quite stable, and TEM observa-
tions showed that crystallite sizes decreased down to 20 nm, only.
This result is unexpected because the g structure is more brittle
than b2, and thus it was expected that the degree of fragmentation
should be higher. In view of this striking discrepancy, new low-
energy milling experiments of the g phase have been performed
in this work, to be compared with thermodynamic predictions.

2. Experimental procedures

A Cu - 61.67 at%Zn alloy (in the g phase field) was prepared by
melting commercial (99.99%) Cu and Zn in a sealed fused silica tube
under Ar atmosphere in a resistance furnace. The resulting alloy
was filed to obtain the starting powder for the mechanical milling
process. The powder charge was of 10 g, without any process
control agent, and seven bearing balls were added, resulting in a
ball-to-powder weight ratio of about 47. An Ar atmosphere in the
chamber with an overpressure of around 0.5 MPawas adopted. The
mechanical milling was carried out at 177 rpm in an Uni-Ball-Mill II
equipment (Australian Scientific Instruments), which is a low-
energy milling device. It uses an external magnetic field to con-
trol the movement of the ferromagnetic steel balls that produce the
milling inside a stainless steel container.

At specific milling times, 200 mg of powder was removed. The
powder was scrapped from the walls when agglomeration and
sticking effects were observed. Afterwards, the Ar atmosphere was
reestablished. The structural and microstructural characteristics of
the powders were analyzed by XRD in a Philips PW 1710/01
diffractometer using Cu Ka radiation and a graphite mono-
chromator. The scans were recorded between 30� and 100� using a
step of 0.02� and a counting time of 1 s.

The chemical composition of the milled powder was analyzed in
a scanning electron microscope Philips SEM 515 using an EDAX
energy dispersive spectrometer (EDS). TEM was performed using a
Philips CM200 UT microscope operating at 200 kV, in either con-
ventional imaging or high-resolution mode. Samples for TEM were
prepared by dispersing a small amount of powder in ethanol,
applying ultrasound during 900 s and depositing a drop of the
resulting suspension on a commercial ultrathin carbon coated gold
grid or lacey carbon coated copper grid.

3. Experimental results

The XRD pattern of the as-milled powder is shown in Fig. 1a. All
the peaks can be consistently indexed with the structure of g-Cu-
Zn, indicating that the reduction in size of the powder did not favor
the decomposition of the alloy. Determination of crystallite size and
lattice strainwas performed from the broadening of the XRD peaks,
after subtracting the contribution of the instrument. A preliminary
HalleWilliamson analysis indicated that microstrains were negli-
gible in the powders. Therefore, crystallite sizes were calculated
through the Scherrer equation. Crystallite size and lattice param-
eter (LP) of g-Cu-Zn as a function of milling time is shown in Fig. 1b.
An exponential decay (dashed line in Fig. 1b) has been associated
with the evolution of the size of the diffracting domains, from
which a time constant of 15 h has been determined. From the least-
squares fit a mean value of (11 ± 1) nm for the final crystallite size
was established. Furthermore, taking into consideration the
experimental scatter, it can be stated that the LP shows a negligible
variation with milling time. The mean LP, as determined from
Fig. 1b, is (0.888 ± 0.001) nm.

The chemical analysis conducted in the scanning electron mi-
croscope by examining the as milled powder in several points was
consistent with the nominal composition of the alloy. Only traces of
Fe and Cr, the main constituents of the milling environment, were
found as contamination. The samples for TEM showed an
agglomeration of crystallites, as can be seen in Fig. 2a. The corre-
sponding selected area electron diffraction pattern, shown in Fig. 2a
inset, can be consistently indexed as that corresponding to the g
phase. Crystallite sizes were obtained from a dark field image of the
zone, which is shown in Fig. 2b. The particles highlighted with a
white square have a diameter of (9 ± 1) nm. The EDS analysis of the
crystallites, shown in Fig. 3a, yielded a value of Cu - 60 at%Zn, in
reasonable agreement with the nominal composition. A high-
resolution TEM image of one crystallite protruding out of one
border of the agglomerate is shown in Fig. 3b. The size of the



Fig. 1. a) XRD pattern of g-Cu-Zn milled for 60 h. b) Crystallite size and lattice
parameter of g-Cu-Zn as a function of milling time.

Fig. 2. Agglomerate of g phase crystallites. a) Bright field TEM micrograph and cor-
responding electron diffraction pattern (inset). b) Dark-field image using an inner
diffraction ring. The smaller crystallites are indicated by white squares.
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crystallite is around 9 nm and the orientation, obtained by per-
forming the Fast Fourier Transform of the image, corresponds to the
[3 2 5] zone axis of the g structure (Fig. 3b inset). It is to be
remarked that the difference between the particle sizes determined
by XRD and by TEM is not as high as that reported for the b2 phase
[27].

The key finding of the experimental part is that any possible
crystalline-to-amorphous transition can only take place for g phase
nanoparticles smaller than 9 nm, instead of the 20 nm limit re-
ported in Ref. [28]. The presently determined dminwill, therefore, be
adopted in the remaining of the paper as an upper limit of the
acceptable values for the thermodynamically predicted dtherc , i.e.

dtherc � dmin ¼ ð9±1Þ nm (1)
4. Gibbs energy formalism

The molar Gibbs energy (Gq) of a substitutional A-B crystalline
(“c”) or amorphous (“a”) phase q (q¼ c, a) at a given temperature (T)
and pressure will be expressed as
Gq ¼ XA
0Gq

A þ XB
0Gq

B þ DHq � TDSq þ DGg;q (2)

where Xi is themol fraction and 0Gq
i is the Gibbs energy per mole of

the element “i” (i ¼ A, B) in the phase q, DHq and DSq are respec-
tively the enthalpy and the entropy of formation of the phase, and
DGg;q is the surface contribution to Gibbs energy of q. In the present
work the focus is on DGq, the Gibbs energy formation of the phase,
with respect to the elements A and B in their stable (“st”) structure,
at the given temperature and pressure, which is obtained from eq.
(2) as

DGq ¼ Gq � XA
0Gst

A � XB
0Gst

B

¼ XA D0Gq=st
A þ XB D0Gq=st

B þ DHq � T DSq þ DGg;q
(3)

where D0Gq=st
i ¼ 0Gq

i � 0Gst
i (i ¼ A, B) are the “lattice stabilities” of

the elements [5].

4.1. Enthalpy of formation

4.1.1. General expressions
By adopting theMiedema approach, the DHq term in eq. (3) with

q ¼ c or a, will be expressed as the sum of a chemical (“chem”),
elastic (“elas”) and structural (“stru”) contribution [29], as follows



Fig. 3. a) EDS spectrum corresponding to the g phase Cu-Zn crystallites on an ultrathin
carbon-coated gold grid. b) High-resolution TEM micrograph of a protruding particle
oriented in the [3 2 5] zone axis, as indicated in the Fast Fourier Transform of the image
(inset).
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DHq ¼ DHq
chem þ DHq

elas þ DHq
stru (4)

The first contribution in eq. (4) is given by the Miedema model
as the weighted average of the solution enthalpies of one element
into the other, i.e.,

DHq
chem ¼ XA XB

�
f AB DHA in B

sol þ f BA DHB in A
sol

�
(5)

where the coefficients

f ij ¼ Cq
j

�
1þ kq

�
Cq
i C

q
j

�2�
(6)

represent the degree by which a “j” atom is surrounded by an “i”
atom, and are calculated from the surface concentration Cq

j of the
“j” atoms as Cq

j ¼ Xj ðVq
j Þ

2 =

3

Xj ðVq
j Þ

2 =

3þXi ðV q
i Þ

2 =

3
using the molar volumes Vq

i of the
elements.

The kq parameter in eq. (6) was introduced byMiedema in order
to account phenomenologically for the effect of the degree of
ordering of the phase upon the contact area between dissimilar
atoms. Three characteristic values have been generally adopted in
the literature. Disordered phases (both crystalline and amorphous)
were described with kq ¼ 0 [28,30]; short-range ordered alloys
(both crystalline and amorphous) with kq ¼ 5 [16,30,31], and long-
range ordered alloys and intermetallic compounds with kq ¼ 8
[28,30,31]. The kq values adopted in the present work are discussed
in the next subsection.

The solution enthalpy in eq. (5) is calculated by using the
relation

DHi in j
sol ¼

2
64
�
Vq
i

�2 =

3

�
n�

1 =

3
WS

�
av

3
75 �� Pq ðDFÞ2 þ Qq

�
Dn

1 =

3
WS

�2
� Rq

�
(7)

where nWS,i is the electron density at the boundary of the Wigner-
Seitz cell of the element “i”, Pq, Qq and Rq represent empirical
constants, and F the work function. The symbol “D” stands for the
difference and the subscript “av” for the arithmetical mean value.
With the volume expressed in cm3/mol, the work function F in
volts and the electron density nWS in cm�3 the enthalpy is obtained
in J/mol.

The second term in eq. (4) is due to the different sizes of the
atoms that occupy equivalent lattice positions. It is expressed as the
weighted average of the elastic mismatch energies [32].

DHq
elas ¼ XA XB

�
f AB DEA in B

elas þ f BA DEB in A
elas

�
(8)

with

DEi in j
elas ¼

2 Kq
i mqj

�
Vq
j � Vq

i

�2
3 Kq

i Vq
j þ 4 mqj V

q
i

(9)

where Kq
i and mqi are the bulk and the shear modulus of the “i”

element in the phase q, respectively.
The third term in eq. (4) has been considered to bemuch smaller

than the other two for alloys of a noble metal with an hcp transition
metal [8]. Therefore this term will be neglected in the present
calculations.
4.1.2. Application to the present crystalline and amorphous phases
For the crystalline phase (q ¼ c), DHc was obtained from eqs. (4),

(5) and (8) with the proper parameters. In particular, the values
Pc ¼ 12300, Qc ¼ 115620 and Rc ¼ 5170 suggested in Ref. [33] were
adopted. Concerning the “k” parameter in eq. (6), it should be
mentioned that equiatomic Cu-Zn alloys are prone to develop long-
range ordered structures [34] and also that the present g-Cu-Zn
alloy has ordered structural vacancies [35]. On these bases the value
kc ¼ 8 was accepted in the present calculations.

For the amorphous phase (q ¼ a) an expression similar to eq. (4)
will be adopted. However, as suggested by Loeff, Weeber and
Miedema [8], in this case the DHa

elas contribution might be strongly
reduced. Such approximation will be accepted, and thus the DHa

elas
term will be neglected in the present work, i.e., the enthalpy of
formation of the amorphous phase will be calculated as

DHa ¼ DHa
chem (10)

and this chemical contribution will be evaluated using eqs.
(5)e(7). In eq. (7) the same Pa and Qa parameters as for the crystal
were used, whereas Ra¼ 3770 given in Ref. [33] for the liquid phase,
were accepted. The latter choice is in line with the present
consideration of the amorphous as an undercooled liquid (Section
5). In eq. (6) the value ka ¼ 5 usually adopted for amorphous phases
[16] was used in this work.

Other parameters for the elements Cu and Zn used in the
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calculations are listed in Table 1.

4.2. Entropy of formation

The entropy of formation of the phase q will be expressed as

DSq ¼ DSq;id þ ESq ¼ �RG ðXA lnXA þ XB lnXBÞ þ ESq (11)

where RG is the gas constant. The first term (DSq;id) represents the
entropy of mixing of an ideal solution and the excess entropy term
(ESq) accounts for the deviations from the ideal model. Equation
(11) was used to describe the entropy of formation of both the
crystalline and the amorphous phase. As a first approximation, the
relation ESc ¼ ESa was adopted. This simplification implies that the
possible effects upon the excess entropy term of the difference in
the degree of ordering between the crystal and the amorphous is
neglected.

4.3. The DGg;q contribution

The key quantity to be compared with the low-energy milling
experiments is the Gibbs energy difference between a crystalline
spherical particle and the same particle in the amorphous state. The
proper evaluation of the surface contribution to Gibbs energy
(DGg;q) has been a subject of recent discussion. Often, the so-called
Kelvin formulation, based on the curvature of the surface, has been
used. However, Kaptay [38,39] has pointed out that the Gibbs
formulation, involving the specific area of the particle, should be
preferred. Accordingly, in the present work the last term in eq. (2) is
expressed as

DGg;q ¼
�
S

U

�
gq Vq ¼

�
6
d

�
gq Vq (12)

where gq (q ¼ c, a) is the surface energy per unit area of the ma-
terial, S ¼ p d2 the surface, U ¼ p d3

6 the volume and d is the
diameter of the spherical particles.

Equation (12) was applied assuming that both phases have the
same shape, viz. spherical. In this equation the gq parameter for the
amorphous and the crystalline phase is a temperature and
composition dependent quantity. Furthermore, the gq parameters
are assumed to depend upon the curvature of the particle. This
problem is the subject of an extensive literature, and various
alternative equations have been presented to account for the effect
of the diameter d of the particle upon gq [38]. In particular, the
equations by Tolman and Vogelsberger yield, respectively, the
highest and lowest surface energy corrections. Both equations
[38,40], viz.,

gq ¼
�

d

dþ 4 dq

�
gq∞ (13)

and

gq ¼
 
1� 4 dq

d

!
gq∞ (14)
Table 1
Values of the parameters of the Miedema model for Cu and Zn adopted in the present w

Vc

[cm3/mol]
Vliq

[cm3/mol]
F
[V]

n
1 =

3
WS

[cm�1]

Ref. [9] [36] [9] [9]
Cu 7.117 7.416 4.45 1.47
Zn 9.167 9.598 4.10 1.32
were tested. In eqs. (13) and (14), the surface energy parameter
gq∞ is a temperature- and composition-dependent quantity which
is assessed in the next section, and dq, the so-called Tolman
parameter, characterizes the width of the interface [40]. In the
present work, lacking more specific information, the Tolman
parameter was estimated for both phases as one half of the spacing
between the closest-packed planes in the crystalline phase. Using
the lattice parameter value reported in Section 3, this approxima-
tion yields dq ¼ 0.1 nm (q ¼ c,a).
5. “Lattice-stability” and surface energy contributions

5.1. “Lattice-stability” of Cu and Zn in the crystalline and
amorphous phases

For the fcc, bcc and hcp phases of the elements Cu and Zn, the
differences D0Gq=st

i ¼ 0Gq
i � 0Gst

i were taken directly from the
literature [7]. The structure of the g phase can be described by the
arrangement of 3 � 3 � 3 body centered cubic cells, having 52
atoms in this complex cubic structure and two structural vacancies,
one at the center and another at the vertices of the cube [41]. As a
first approximation this phase was treated as a bcc phase and the
differences D0Gc=st

i ¼ 0Gc
i � 0Gst

i were evaluated at T ¼ 300 K using
the bcc/fcc and bcc/hcp Gibbs energy differences presented in
Ref. [7], i.e.,

D0Gbcc=fcc
Cu ¼ 3641

J
mol

and D0Gbcc=hcp
zn ¼ 2134

J
mol

(15)

The D0Ga=st
i ¼ 0Ga

i � 0Gst
i differences corresponding to Cu and

Zn in the amorphous phase are not available. In view of this
problem, three estimation methods based on comparing the
amorphous with an undercooled liquid (“liq”) were tested, as
follows.

A first possibility is to directly identify the amorphous phase
with the undercooled liquid and assume

D0Ga=st
i ¼ D0Gliq=st

i (16)

and similarly for D0Ha=st
i and D0Sa=sti . However, when applying eq.

(16), the low-temperature values for D0Ga=st
i may be obtained in

different ways. The simplest alternative, referred to in the following
as “Method I” involves an extrapolation of the usually linear
D0Gliq=st

i vs. T relations based on information on the stable liquid
phase at high temperatures, such as those presented in Ref. [7].

Alternatively, when extrapolating the properties of the liquid
phase to low temperatures, Fern�andez Guillermet and Hillert [42]
accepted the general belief that: i) there will be a glass-transition
at about one third of the melting temperature (Tm), and below
that point the heat capacity of the liquid will be similar to that of
the crystalline phase; and, ii) the entropy of the liquid is more or
less approaching that of the crystalline phase at the glass transition.
Accepting these concepts they arrived [42] at an extrapolated
D0Gliq=st

i vs. T relation which becomes approximately horizontal for
temperatures below (1/3) Tm. If the amorphous phase is identified
with such undercooled liquid, for temperatures 0<T<(1/3) Tm the
ork.

Tm
[K]

Kc

[GPa]
mc

[GPa]
gc
∞

[J m�2]
gliq
∞

[J m�2]

[37] [28] [28] [9] [36]
1358 140 48 1.825 1.285
693 70 43 0.990 0.782



Fig. 4. The sum of the first two terms in eq. (3) for the amorphous phase as a function
of Zn concentration. The roman numbers refer to the particular method used to esti-
mate the energy of the amorphous phase (see text for details).
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results in Ref. [42] imply that

D0Ga=st
i ðTÞ ¼ D0Gliq=st

i ðTm=3Þ (17)

This extrapolation method will be referred to in the following as
“Method II”.

Finally, Loeff, Weeber and Miedema [8] focused directly on the
enthalpy of the amorphous phase, suggesting that

D0Ha=st
i <D0Hliq=st

i ðTmÞ (18)

Their estimation method is based on expressing D0Ha=st
i as

proportional to Tm with a proportionality coefficient that is smaller
than the usual entropy of melting of the elements [8], viz.,

D0Ha=st
i ¼ 3:5 Tm;i ði ¼ Cu; ZnÞ (19)

In this way they tried to account for a possible relaxation of the
amorphous towards the crystalline state. In the present work eq.
(19) was used to estimate the D0Ga=st

i differences for Cu and Zn, by
further assuming that D0Sa=sti is negligible at 300 K. This procedure,
will be referred to as “Method III”.

The D0Ga=st
i values obtained by applying the three estimation

procedures at T ¼ 300 K are listed in Table 2. The
XCu D0Ga=st

cu þ XZn D0Ga=st
zn vs. composition relations based on these

values are presented in Fig. 4. It is found that the treatment of the
amorphous phase as an undercooled liquid (Method I and Method
II) leads to the highest values, whereas Method III [8] yields the
lowest ones.
5.2. Surface Gibbs energy parameters

Direct measurements of the gq
∞ parameter for the present alloy

in both the crystalline and amorphous states were not found in the
literature. As a consequence, estimation methods were developed
which make use of experimental data available on Cu and Zn and
relies upon current generalizations about the composition depen-
dence of gq

∞ for alloys. As stated before, ga
∞ was identified with the

gliq
∞ parameter corresponding to a liquid phase undercooled down

to 300 K.
5.2.1. Database with gq
∞for solid and liquid phases of the elements

The gc
∞;i parameters for i ¼ Cu, Zn were taken from the work by

Miedema [43]. His values, corresponding to T ¼ 0 K were corrected
to 300 K by assuming linear temperature dependences, and the
(negative) (vgc

∞;i=vT) quantities recommended in the same paper
[43]. The gliq∞;i for Cu and Zn were taken from Ref. [36]. The rec-
ommended values, corresponding to measurements at high tem-
peratures, were corrected to 300 K by assuming linear temperature
dependencies, and the respective (negative) (vgliq∞;i=vT) quantities
recommended in the same table [36].

In order to apply the estimation methods for the composition
dependence of the surface energy parameter of the alloy (gq

∞;CuZn)
(see below), high-temperature values of gliq

∞;iðTmÞ and low-
temperature values gc

∞;ið0 KÞ were obtained from the quoted
sources [36,43] for various elements with similar values of the
electron-density parameter nWS,i(in parentheses), viz., Ag (2.515), Al
Table 2
Estimated D0Ga=st

i values for Cu and Zn.

Method Estimation based on

I Linear extrapolation [7]
II Approximate account of the glass transition [42]
III Loeff et al. [8]
(2.686), Cd (1.907), Cu (3.177), Ga (2.248), In (1.602) and Zn (2.300)
[9]. The selected values for gc

∞;i and gliq
∞;i are plotted in Fig. 5a using

squares and circles, respectively. The solid lines represent second-
degree least-squares fits. The smooth variations of the gq

∞ with
nWS encourages an interpolation for the present Cu-Zn alloy (Sec-
tion 5.2.2.). With this aim, the gc

∞;i and gliq∞;i data in Fig. 5a were
corrected to 300 K by using the temperature dependencies rec-
ommended in Refs. [36,43] respectively, and fitted to second-
degree polynomials. The results of the fit are plotted in Fig. 5b.

5.2.2. Estimation of the gq
∞;CuZn parameters for the Cu - 61.67 at%Zn

alloy
The composition dependence of gq

∞ parameters has been dis-
cussed in the literature in terms of thermodynamic models
involving the excess Gibbs energy of the components and their
segregation to the surface [44e46]. However, those approaches
involve thermodynamic information which unfortunately is not
available for the present alloys. As a consequence, two interpolation
procedures which are related to the present theoretical framework,
will be applied in the following.

The first procedure makes use of an equation derived by Bene-
dictus, B€ottger and Mittemeijer [47] on the basis of the Miedema
model, viz.,

gq∞;CuZn ¼ Cq
Cu gq∞;Cu þ Cq

Zn gq∞;Zn �
Cq
Cu Cq

Zn
C0

DHCu in Zn
sol�
Vq
Cu

�2 =

3
(20)

where C0 is a constant depending on the shape of the Wigner-Seitz
cell. According to [9], C0 ¼ 4.5 x 108.

The second interpolation procedure relies upon the empirical
correlation between gq

∞ and nWS for elements early discussed by
D0Ga=fcc
cu [J/mol] D0Ga=hcp

Zn [J/mol]

10112 4069
8660 4780
4753 2426



Fig. 5. Surface energy parameter as a function of the electron density. a) Selected
values for pure elements at 0 K for the crystal and at the melting temperature for the
liquid, with the corresponding parabolic least-squares fits. b) Second-degree least-
squares fits to the data of the pure elements corrected to room temperature.

Fig. 6. Surface energy parameter as a function of composition for a) the crystal and b)
the liquid Cu-Zn alloys. The filled circles with error bars represent present estimates
(see text for details).
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Miedema and coworkers [9] and demonstrated in Fig. 5. In the
present work these ideas were adopted to estimate gc∞;CuZn and
gliq
∞;CuZn by interpolating the values in Fig. 5b. To this end, the

ncWS;CuZn and nliqWS;CuZn parameters for the Cu - 61.67 at%Zn liquid and
crystalline alloys were evaluated using the following expression,
which has previously been applied to binary and ternary alloys and
intermetallic compounds [48].

nqWS;CuZn ¼ XCu Vq
Cu nWS;Cu þ XZn Vq

Zn nWS;Zn

XCu Vq
Cu þ XZn Vq

Zn

(21)

The composition dependence of the gc
∞;CuZn and gliq

∞;CuZn pa-
rameters for Cu-Zn alloys obtained by applying both interpolation
procedures are plotted using solid lines in Fig. 6a and b, respec-
tively. The filled symbols with error bars represent the present
estimates for the crystalline and amorphous Cu - 61.67 at%Zn alloys,

viz., gc
∞;CuZn ¼ ð1:20±0:03Þ J�m2 and gliq

∞;CuZn ¼ ð1:03±0:03Þ J�m2.

These estimates are in linewith twomain generalizations about the
surface energy data, reported by Chatain [49], viz., i) the
composition dependence of the gq
∞ parameters for alloys is non-

linear; and ii) the gc
∞
.
gliq∞

ratio for alloys falls in the range

1.15e1.20. The present value (1.155) matches this general trend.
In view of these facts, the estimated gc

∞;CuZn and
ga∞;CuZn ¼ gliq

∞;CuZn values were inserted in eqs. (13) and (14), to
model the surface contribution to Gibbs energy.
6. Discussion of critical diameters and concluding remarks

The critical diameter dtherc for crystalline/amorphous relative
stability was obtained from the present formalism (Eq. (3)) by
making

DGa ¼ DGc (22)

at T ¼ 300 K, for each of the amorphous lattice-stability estimation
methods I, II and III, and the results of Tolman and Vogelsberger
equations for gq. The dtherc values obtained in this way are listed in
Table 3. For each of the amorphous lattice-stability estimation
methods, the minimum dtherc is given by the Tolman equation and



Table 3
Calculated dtherc values (in [nm]).

Method I Method II Method III

Tolman equation 0.20 ± 0.05 0.22 ± 0.05 3.8 ± 0.4
Vogelsberger equation 0.60 ± 0.05 0.62 ± 0.05 4.2 ± 0.4
Recommended values 0.4 ± 0.2 0.4 ± 0.2 4.0 ± 0.5
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the maximum by the Vogelsberger equation.
In Table 3 the average dtherc corresponding to estimation

methods I to III (“recommended values”) are also presented, to be
compared with the experimental dmin ¼ (9 ± 1) nm. Evidently the
three estimation methods yield dtherc values in agreement with eq.
(1). Methods I and II lead to essentially the same value, which
represents the lowest predicted dtherc whereas Method III, based on
the work by Loeff, Weeber and Miedema represents the largest
predicted critical diameter.

The previous comparisons suggest that the present predictive
Gibbs energy approach to the amorphous/crystal phase stability
leads to predicted critical diameters for a stable g-Cu-Zn crystalline
particle, which are correctly related to the experimental dmin.

The key contribution of the present work is to study, using
detailed dtherc predictions, the effects of the uncertainty in various
parameters involved in the predictive formalism which are not
directly available from experiments. Specifically, various methods
have been proposed and tested to determine the “lattice-stability”
and the surface Gibbs energy parameter of the amorphous phase.

In particular, the present study has provided two well defined
bounds to the thermodynamic stability of the amorphous phase.
The lower bound corresponds to the treatment of the amorphous as
an undercooled liquid phase, and the upper bound to the consid-
eration of possible relaxation of the amorphous towards the crys-
talline state as suggested by Loeff, Weeber and Miedema.

Moreover, as a part of the extensive analysis of experimental
data performed in the current study, various quantities have been
identified which deserve further investigation. In particular, the
surface contribution to the Gibbs energy of the crystalline and the
amorphous phase of the present alloys should be measured. In
addition, new experimental determinations of the enthalpy dif-
ference between the crystal and the amorphous, would be valuable
to reduce the range of “lattice-stability” estimates for the latter
phase.
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