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Abstract

Knowledge bases in the form of ontologies are receiving increasing attention as they
allow to clearly represent both the available knowledge, which includes the knowledge in it-
self and the constraints imposed to it by the domain or the users. In particular, Datalog±

ontologies are attractive because of their property of decidability and the possibility of
dealing with the massive amounts of data in real world environments; however, as it is the
case with many other ontological languages, their application in collaborative environments
often lead to inconsistency related issues. In this paper we introduce the notion of inco-
herence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and
show how under specific conditions incoherence leads to inconsistent Datalog± ontologies.
The main contribution of this work is a novel approach to restore both consistency and
coherence in Datalog± ontologies. The proposed approach is based on kernel contraction
and restoration is performed by the application of incision functions that select formulas to
delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encoun-
tered in the ontologies, our operators produce incisions over non-minimal structures called
clusters. We present a construction for consolidation operators, along with the properties
expected to be satisfied by them. Finally, we establish the relation between the construc-
tion and the properties by means of a representation theorem. Although this proposal is
presented for Datalog± ontologies consolidation, these operators can be applied to other
types of ontological languages, such as Description Logics, making them apt to be used in
collaborative environments like the Semantic Web.

1. Introduction

The integration of different systems, and the interaction resulting from this integration, led
to a host of pervasive practical problems and challenging research opportunities; some of
the most interesting ones occurs in the Web’s collaborative environments, e.g., e-commerce,
and with the arrival of the Semantic Web, such as ontology engineering. However, the
collaboration among systems brings along the problem of conflicting pieces of information
that are likely to appear as knowledge repositories evolve. Admittedly, the management of
conflicting information is an important and challenging issue that has to be faced (Gómez,
Chesñevar, & Simari, 2010; Haase, van Harmelen, Huang, Stuckenschmidt, & Sure, 2005;
Huang, van Harmelen, & ten Teije, 2005; Bell, Qi, & Liu, 2007), specially when integrating
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knowledge coming from different sources (Black, Hunter, & Pan, 2009; Baral, Kraus, &
Minker, 1991; Amgoud & Kaci, 2005), or when such knowledge is expected to be exploited
by a reasoning process. In this context, knowledge bases in the form of ontologies are be-
coming a useful device that provide a convenient way to represent both the intensional and
extensional knowledge of the application domain. Moreover, the expressive power of ontolo-
gies allows to perform important tasks on data integration (Lenzerini, 2002), and also plays
a role of great importance in the aforementioned Semantic Web (Berners-Lee, Hendler, &
Lassila, 2001). In this work we adopt Datalog± ontologies, a family of rule-based ontology
languages (Cal̀ı, Gottlob, & Lukasiewicz, 2012). Datalog± enables a modular rule-based
style of knowledge representation, and it can represent syntactical fragments of first-order
logic (FOL) so that answering a Boolean Conjunctive Query (BCQs) Q under a set Σ
of Datalog± rules for an input database D is equivalent to the classical entailment check
D ∪ Σ |= Q. Tractable fragments of Datalog± guarantee termination of query answering
procedures in polynomial time in the data complexity and first-order rewritability. More-
over, ontologies described using existential rules generalize several well-known Description
Logics (DLs); in particular, linear and guarded Datalog± (two basic tractable fragments of
this family) are strictly more expressive than the whole DL-Lite family (Calvanese, De Gia-
como, Lembo, Lenzerini, & Rosati, 2005), and guarded Datalog± is strictly more expressive
than EL (Brandt, 2004; Baader, Brandt, & Lutz, 2005). Therefore, the results presented in
this paper extend directly to these DLs as well. These properties of Datalog± together with
its expressive power, and the fact that it keeps a syntax closer to that used in relational
databases for greater readability, make it very useful in modeling real applications, such as
ontology querying, Web data extraction, data exchange, ontology-based data access, and
data integration.

We focus on two particular problems that arise from the integration and/or evolution
of information systems: inconsistency and incoherence. Inconsistency refers to the lack of
models of a theory. On the other hand, in ontological settings, incoherence refers to a set
of ontological rules that cannot be applied without leading to violations of the constraints
imposed on the knowledge, making them unsatisfiable. Incoherence and inconsistency, which
can arise from automated procedures such as data integration and ontology matching, may
be serious issues in real world applications. Since standard ontology languages adhere to
the classical FOL semantics, classical inference semantics fails in the presence of this kind
of problems. Thus, it is important to focus on the formalization of methods to address both
inconsistency and incoherence in ontologies that are able to cope with the users’ expectations
in terms of effectiveness of the procedures for query answering and the meaning of these
answers when potential conflict exists.

This paper addresses the problem of handling inconsistencies and incoherences that
may appear in Datalog± ontologies. In this regard, we propose a general framework that
aims at the consolidation of Datalog± ontologies (i.e., solving every conflict of coherence
and consistency in them). That is, a consolidation operator takes as input a (possibly)
incoherent and inconsistent Datalog± ontology and returns another Datalog± ontology
where all conflicts are amended, thus ensuring that it is both coherent and consistent. As
it is usual in this setting, an assumption of minimal change is made, that is to say, it is
expected that the consolidation process changes the original ontology as little as possible.
The approach presented is based on the use of incision functions (Hansson, 1993, 1994, 1997,
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2001) from the Belief Revision literature. Instead of operators that only account for the
information included in the conflicts in a knowledge base, in this work we aim to capture
consolidation operators that can consider all the information included in a KB when solving
conflicts. The main contributions of this work are the following:

– We introduce a notion of incoherence tailored for Datalog±. To achieve this we adapt
to this setting similar notions from Description Logics. Also, we look into the relation-
ship of incoherence and inconsistency and how it impacts the consolidation process.

– We provide a set of properties expected to be satisfied by consolidation operators
for Datalog± ontologies by means of postulates. These postulates provide a formal
characterization of a consolidation operator without focusing on how the consolidation
process is actually performed, thus providing a formal comparison framework for
consolidation operators. The postulates consider some intuitions in classic Belief
Revision; nevertheless, they are adapted to the Datalog± ontological setting (and
could be also adapted to suit other ontological languages), meaning that they have
two versions (one addressing incoherence and another one for inconsistency).

– We present a complete construction of consolidation operators that take a (possibly)
incoherent and inconsistent Datalog± ontology and gives as a result a consistent and
coherent one. A noteworthy characteristic of such operators is that it involves a two
steps approach, first considering incoherence conflicts, and then solving inconsistency
conflicts as a latter step, helping to improve the final result in terms of the information
that needs to be deleted to solve conflicts.

– We study the relationship between the formal properties of the operator and the
construction we propose, demonstrating that they are equivalent; thus, this shows that
any consolidation operator satisfying the properties corresponds to the construction
introduced in this work.

The paper is organized as follows: in Section 2 we introduce the necessary notions from
Datalog± and Belief Revision. Next, though inconsistency and incoherence are related,
they are also two very distinct problems in the setting of ontological knowledge bases in
particular, where there is a clear separation of the intensional and the extensional knowledge.
Therefore, in Section 3, we discuss the two notions in Datalog± ontologies, how they relate
to each other, and the reasons why they need to be treated in combination but separately.
Then, in Section 4 we present the properties that an ontology consolidation operator must
satisfy, and in Section 5 we introduce the process used to restore consistency and coherence
of Datalog± ontologies, and relate the presented process to the given properties by means
of a representation theorem. Next, we present a complete example depicting the entire
consolidation process. Finally, in Sections 7 and 8 we discuss related work from different
areas in Artificial Intelligence and Database Theory, and provide conclusions and future
lines of research, respectively.

2. Preliminaries and Background

To facilitate the reading, we begin by introducing the notions from Datalog± and Belief
Revision that will be needed in the rest of the paper.
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2.1 Preliminaries on Datalog±

First, we recall the basic notions of Datalog± ontologies that will be used in the paper
(see Cal̀ı et al., 2012 for more details). Datalog± extends Datalog by allowing existential
quantification in the rule heads, together with other extensions that we enumerate below,
but limiting the interaction of these elements in order to achieve tractability.

We will assume that the domain of discourse of a Datalog± ontology consists of a
countable set of data constants ∆, a countable set of nulls ∆N (as place holders for unknown
values), and a countable set of variables V. We also assume that different constants represent
different values (unique names assumption). To distinguish constants from variables, we
adopt the standard notation from logic programming, where variable names begin with
uppercase letters, while constants and predicate symbols begin with lowercase letters.

We assume a relational schema R that is a finite set of predicate symbols (or simply pred-
icates). A term t is a constant, a null, or a variable. An atom a has the form p(t1, . . . , tn),
where p is an n-ary predicate and t1, . . . , tn are terms; an atom is ground iff all terms in
it are constants. Let L be a first-order language such that R ⊂ L; then LR denotes the
sublanguage generated by R. A database (instance) of R is a finite set of atoms with pred-
icates in R and terms in ∆ ∪ ∆N . A homomorphism on constants, nulls and variables is
a mapping h : ∆ ∪ ∆N ∪ V −→ ∆ ∪ ∆N ∪ V such that (i) c ∈ ∆ implies h(c) = c, (ii)
c ∈ ∆N implies h(c) ∈ ∆ ∪∆N , and (iii) h is naturally extended to atoms, sets of atoms,
and conjunctions of atoms.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-order
formula of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) where Φ(X,Y) and Ψ(X,Z) are conjunc-
tions of atoms over R called the body (denoted body(σ)) and the head (denoted head(σ)),
respectively. Consider a database D for a relational schema R, and a TGD σ on R of the
form Φ(X,Y) → ∃Z Ψ(X, Z). Then, σ is applicable to D if there exists a homomorphism
h that maps the atoms of Φ(X,Y) to atoms in D. Let σ be applicable to D, and h′ be
a homomorphism that extends h as follows: for each Xi ∈ X, h′(Xi) = h(Xi); for each
Zj ∈ Z, h′(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does not occur in D, and zj
lexicographically follows all other nulls already introduced. The application of σ on D adds
to D the atom h′(Ψ(X,Z)) if it is not already in D. After the application we say that σ is
satisfied by D. The Chase for a database D and a set of TGDs ΣT , denoted chase(D,ΣT ),
is the exhaustive application of the TGDs (Cal̀ı et al., 2012) in a breadth-first (level-sat-
urating) fashion, which leads to a (possibly infinite) chase for D and Σ. It is important
to remark that BCQs Q over D and ΣT can be evaluated on the chase for D and ΣT , i.e.,
D ∪ ΣT |= Q is equivalent to chase(D,ΣT ) |= Q (Cal̀ı et al., 2012).

Negative constraints (NCs) are first-order formulas of the form ∀XΦ(X)→ ⊥, where
Φ(X) is a conjunction of atoms (without nulls) and the head is the truth constant false,
denoted ⊥. An NC τ is satisfied by a database D under a set of TGDs ΣT iff there does not
exist a homomorphism h that maps the atoms of Φ(X) to D, where D is such that every
TGD in ΣT is satisfied, i.e., the atoms in the body cannot all be true together.

Equality-generating dependencies (EGDs) are first-order formulas of the form
∀XΦ(X)→ Xi = Xj , where Φ(X) is a conjunction of atoms, and Xi and Xj are vari-
ables from X. An EGD σ is satisfied in a database D for R iff, whenever there exists a
homomorphism h such that h(Φ(X)) ⊆ D, it holds that h(Xi) = h(Xj). In this work we
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will focus on a particular class of EGDs, called separable (Cal̀ı et al., 2012); intuitively,
separability of EGDs w.r.t. a set of TGDs states that, if an EGD is violated, then atoms
contained in D are the reason of the violation (and not the application of TGDs); i.e., if an
EGD in ΣE is violated when we apply the TGDs in ΣT for a database D, then the EGD
is also violated in D. Separability is a standard assumption in Datalog± ontology, as one
of the most important features of this family of languages is the focus on decidable (Cal̀ı,
Lembo, & Rosati, 2003) (actually tractable) fragments of Datalog±.

NCs and EGDs play an important role in the matter of conflicts in Datalog± ontologies.
In fact, the approach that we present in this work ensure that neither NCs nor EGDs are
violated in the resulting ontology. Also, as an important remark, note that the restriction
of using only separable EGDs makes that certain cases of conflicts are not considered in our
proposal. The treatment of such cases, though interesting from a technical point of view,
are outside the scope of this work since we focus on tractable fragments of Datalog±.

As is the usual case in the literature, in general the universal quantifiers in TGDs,
negative constraints and EGDs are omitted, and the sets of dependencies and constraints
are assumed to be finite. Now that we have presented the different ways of expressing
knowledge in Datalog±, we are ready to formally define Datalog± ontologies.

Definition 1 (Datalog± Ontology) A Datalog± ontology KB = (D,Σ), where Σ = ΣT ∪
ΣE ∪ ΣNC , consists of a database instance D that is a finite set of ground atoms (without
nulls), a set of TGDs ΣT , a set of separable EGDs ΣE and a set of NCs ΣNC .

Otherwise explicitly said, through the paper when it is clear from context we will refer
to the component Σ in KB as the set of constraints in the ontology, without distinguishing
between dependencies and constraints. Given a database D for R and a set of constraints
Σ = ΣT ∪ ΣE ∪ ΣNC , the set of models of D and Σ, denoted mods(D,Σ), is the set of
all databases B such that D ⊆ B and every formula in Σ is satisfied. The following
example shows a simple Datalog± ontology; the ontology describes knowledge about the
therapy/psychology domain.

Example 1 (Datalog± Ontology)

KB =



D: {a1 : in therapy(charlie), a2 : dating(kate, charlie),
a3 : therapist(kate), a4 : belongs to(g1 , charlie),
a5 : in therapy(patrick), a6 : belongs to(g2 , ed),
a7 : belongs to(g1 , kate)}

ΣNC : {τ1 : treating(T ,P) ∧ dating(T ,P)→ ⊥}

Σ
E

: {ν1 : treating(T ,P) ∧ treating(T ′,P)→ T = T ′}

Σ
T

: {σ1 : in therapy(P)→ patient(P),
σ2 : therapist(T ) ∧ belongs to(G ,T )→ leads(T ,G),
σ3 : leads(T ,G) ∧ belongs to(G ,P)→ treating(T ,P),
σ4 : treating(T ,P)→ therapist(T )}


The set ΣT of TGDs expresses dependencies such as: TGD σ1 states that if a person P

is in therapy then P is a patient, σ2 establishes that a therapist T that belongs to a group
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G is the leader of that group. The only NC τ1 states that a patient cannot be dating his
therapist, and EGD ν1 states that every patient is in treatment with at most one therapist.

Following the classical notion of consistency, we say that a consistent Datalog± ontology
has a non-empty set of models.

Definition 2 (Consistency) A Datalog± ontology KB = (D,Σ) is consistent iff
mods(D,Σ) 6= ∅. We say that KB is inconsistent otherwise.

Example 2 Consider the Datalog± ontology from the example above; this ontology is clearly
inconsistent. Database instance D is clearly not a model in itself since at least TGD σ2 is
applicable to D, but there is no superset of D such that it satisfies all TGDs and con-
straints in Σ at the same time. For instance TGDs σ2 is applicable in D creating the atom
leads(kate, g1) making now σ3 applicable and resulting in the new atom treating(kate, charlie),
which together with dating(kate, charlie) (that was already in D) violate the NC τ1, as a
therapist is dating one of her patients.

For the rest of the paper, otherwise explicitly stated KB = (D,Σ) will denote a Datalog±

ontology with Σ = ΣT ∪ ΣE ∪ ΣNC , where D is a database instance, ΣT is the set of all
TGDs, ΣE the set of all separable EGDs and ΣNC being the set of all NCs in Σ.

2.2 Background in Belief Revision

Establishing the origins of scientific ideas is a difficult task that sometimes can be contro-
versial; nevertheless, it could be argued that the origins of belief change theory go back to
the work of Isaac Levi (1977), who discussed the problems concerning this field of research,
and to William Harper’s proposal of a rational way to interrelate belief change opera-
tors (Harper, 1975). However, the main advances on belief change theory came during the
1980’s when Carlos Alchourrón and David Makinson studied changes in legal codes (Al-
chourrón & Makinson, 1981), and Peter Gärdenfors’s introduced rational postulates for
change operators (Gärdenfors, 1982). After that, the three authors produced a founda-
tional paper containing what became known as the AGM model (Alchourrón, Gärdenfors,
& Makinson, 1985). The core contribution of the AGM model is the presentation of a
new and more general formal framework for the study of belief change; today, this work is
considered as the cornerstone from which belief change theory evolved.

Since the introduction of the AGM model, different frameworks for belief dynamics and
their respective epistemic models have been proposed. The epistemic model corresponds to
the formalism in which beliefs are represented, providing the framework in which different
kinds of operators can be defined. The AGM model is conceived as an idealistic theory of
rational change in which epistemic states are represented by belief sets (sets of sentences
closed under logical consequence, commonly denoted in boldface), and the epistemic input
is represented by a sentence. In the AGM model, three basic change operators are defined:
expansion, contraction, and revision. In the rest of this section, whenever we use the term
consistent or inconsistent, we refer to the traditional notion of inconsistency of a knowledge
base that has no models. Let K be a belief set, the change operations are as follows:
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– Expansions: the result of expanding K by a sentence α is a possibly larger set which
infers α; intuitively, belief α, hopefully consistent with the given epistemic state, is
directly added to K.

– Contractions: the result of contracting K by α is a possibly smaller set which does
not infer α, unless α is a tautology;

– Revisions: the result of revising K by α is a set that neither extends nor is part of
the set K. In general, if α is not a fallacy then α is consistently inferred from the
revision of K by α.

The great importance of AGM comes from providing axiomatic characterizations of con-
traction and revision in terms of rationality postulates. Such rationality postulates regard
the operators as black boxes, characterizing what they do, but not explaining how they
do it. In other words, their behavior is constrained with regard to inputs in basic cases,
without describing the internal mechanisms used for achieving that behavior, so it is crucial
to say that contraction and revision operators can also be obtained via more constructive
approaches. AGM contractions can be realized by partial meet contractions, which are
based on a selection among (maximal) subsets of K that do not imply α. Via the Levi’s
identity (Gärdenfors, 1988), associated revision operations called partial meet revisions are
obtained. Another possible approach for contraction is based on a selection among the
(minimal) subsets of K that contribute to make K imply α, as in safe contraction (Al-
chourrón & Makinson, 1985). A more general variant of the same approach, known as
kernel contraction, was introduced later (Hansson, 1994). It has been shown that both safe
contractions and kernel contractions are equivalent to partial meet contractions, and hence
to the AGM approach to contraction (Hansson, 1994, 2001).

A particularly interesting characteristic of kernel contraction is that it may be concerned
with changes at the symbolic level since it is suitable of being applied to belief bases (set of
sentences not closed under a consequence relation) as well as belief sets. Thus, it matters
how the beliefs are actually represented. This does not happen in the AGM approach, as it
studies the changes at the knowledge level since it uses belief sets. The distinction between
knowledge and symbolic level was proposed by Allen Newell (1982). According to Newell,
the knowledge level lies above the symbolic level, and the latter is used to somehow represent
the former. Because of this, belief bases with different symbolic content may represent the
same knowledge. The importance of this is that, although they are statically equivalent
(they represent the same beliefs), equivalent belief bases could be dynamically different if
we choose to use an approach working directly with them, as with kernel contraction.

Besides the three basic operations mentioned, through the years additional operations
where developed in Belief Revision to achieve different behaviors. For instance, when a
belief base is inconsistent, the removal of enough sentences from it can lead to a consistent
state. This additional operation is called consolidation, and the consolidation of a belief base
K is denoted K ! (see Hansson, 1991, 2001). Here we will focus on this last operation, which
is inherently different from contraction and revision, since its ultimate goal is to obtain a
consistent belief base from a possibly inconsistent one (without being given any epistemic
input), rather than revising the knowledge base by a specific formula or by removing a
particular formula from it. The consolidation of K can be obtained in a natural way in belief
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bases by contracting them by falsum, i.e., K ! = K ÷ ⊥, where ÷ represents a contraction
operator; this process restores consistency attending every conflict in K (Hansson, 1991).

3. Incoherence and Inconsistency Problems Related to Datalog±

Ontology Consolidation

The problem of obtaining consistent knowledge from an inconsistent knowledge base is
natural in many computer science fields. As knowledge evolves, contradictions are likely to
appear, and these inconsistencies have to be handled in a way that they do not affect the
quality of the information obtained from the database.

In the setting of Consistent Query Answering (CQA), repairing of relational databases,
and inconsistency-tolerant query answering in ontological languages (Arenas, Bertossi, &
Chomicki, 1999; Lembo, Lenzerini, Rosati, Ruzzi, & Savo, 2010; Lukasiewicz, Martinez, &
Simari, 2012), often the assumption is made that the set Σ expresses the semantics of the
data in the component D, and as such there is no internal conflict on the set of constraints
and these constraints are not subject to changes over time. This means first, that the set Σ
is always satisfiable, in the sense that their application do not inevitably yield a consistency
problem. Second, as a result of this assumption, it must be the case that the conflicts come
from the data contained in the database instance, and that is the part of the ontology that
must be modified in order to restore consistency. Although this is a reasonable assumption
to make, specially in the case of a single ontology, in this work we will focus on a more
general setting, and consider that both data and constraints can change through time and
become conflicting. In this more general scenario, as knowledge evolves (and so the ontology
that represents it) not only data related issues can appear, but also constraint related ones.

We argue that it is also important to identify and separate the sources of conflicts
in Datalog± ontologies. In the previous section we defined inconsistency of a Datalog±

ontology based on the lack of models. From an operational point of view, conflicts appear
in a Datalog± ontology whenever a NC or an EGD is violated, that is, whenever the body
of one such constraint can be mapped to either atoms in D or atoms that can be obtained
from D by the application of the TGDs in ΣT ⊆ Σ. Beside these conflicts, we will also
focus on the relationship between the set of TGDs and the set of NCs and EGDs, as
it could happen that (a subset of) the TGDs in ΣT cannot be applied without leading
always to the violation of the NCs or EGDs. Note that in this case clearly the data in the
database instance is not the problem, as any database in which these TGDs are applicable
will inevitable produce an inconsistent ontology. This issue is related to the unsatisfiability
problem of a concept in an ontology, and it is known in the Description Logics community as
incoherence (Flouris, Huang, Pan, Plexousakis, & Wache, 2006; Schlobach & Cornet, 2003;
Borgida, 1995; Beneventano & Bergamaschi, 1997; Kalyanpur, Parsia, Sirin, & Hendler,
2005; Schlobach, Huang, Cornet, & van Harmelen, 2007; Qi & Hunter, 2007). Incoherence
can be particularly important when combining multiple ontologies since the constraints
imposed by each one of them over the data could (possibly) represent conflicting models of
the application at hand. Clearly, the notions of incoherence and inconsistency are highly
related; in fact, Flouris et al.’s (2006) work establish a relation between incoherence and
inconsistency, considering incoherence as a particular form of inconsistency.
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Later in this section we present a complete definition of incoherence in Datalog±, based
on the concept of unsatisfiability of sets of TGDs. Nevertheless, for now it is sufficient
to know that our proposed notion of incoherence states that given a set of unsatisfiable
constraints Σ it is not possible to find a set of atoms D such that KB = (D,Σ) is a consistent
ontology and at the same time all TGDs in ΣT ⊆ Σ are applicable in D. This means that
a Datalog± ontology can be consistent even if the set of constraints is incoherent, as long
as the database instance does not make those dependencies applicable. On the other hand,
a Datalog± ontology can be inconsistent even when the set of constraints is satisfiable,
e.g., KB = ({tall(peter), small(peter)}, {tall(X) ∧ small(X) → ⊥}), where the (empty)
set of dependencies is trivially satisfiable and thus the ontology coherent; the ontology is,
nevertheless, inconsistent.

Before formalizing the notion of incoherence that we use in our Datalog± setting we
need to identify the set of atoms relevant to a given set of TGDs. Intuitively, we say that
a set of atoms A is relevant to a set T of TGDs if the atoms in the set A are such that the
application of T over A generates the atoms that are needed to apply all TGDs in T , i.e.,
A triggers the application of every TGD in T .

Definition 3 (Relevant Set of Atoms for a Set of TGDs) Let R be a relational
schema, T be a set of TGDs, and A a (possibly existentially closed) non-empty set of
atoms, both over R. We say that A is relevant to T iff for all σ ∈ T of the form
∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) it holds that chase(A, T ) |= ∃X∃YΦ(X,Y).

When it is clear from the context, if a singleton set A = {a} is relevant to T ⊆ ΣT we
just say that atom a is relevant to T .

Example 3 (Relevant Set of Atoms) Consider the following constraints:

ΣT = {σ1 : supervises(X ,Y )→ supervisor(X ),
σ2 : supervisor(X ) ∧makes decisions(X )→ leads department(X ,D),
σ3 : employee(X )→ works in(X ,D)}

Consider set A1 = {supervises(walter , jesse),makes decisions(walter), employee(jesse)}.
This set is a relevant set of atoms to the set of constraints ΣT = {σ1, σ2, σ3}, since σ1

and σ3 are directly applicable to A1 and σ2 becomes applicable when we apply σ1 (i.e., the
chase entails the atom supervisor(walter), which together with makes decisions(walter)
triggers σ2).

However, the set A2 = {supervises(walter , jesse),makes decisions(gus)} is not relevant
to ΣT . Note that even though σ1 is applicable to A2, the TGDs σ2 and σ3 are never applied
in chase(A2,ΣT ), since the atoms in their bodies are never generated in chase(A2,ΣT ).
For instance, consider the TGD σ2 ∈ ΣT . In the chase of ΣT over D we create the atom
supervisor(walter), but nevertheless we still cannot trigger σ2 since we do not have and
cannot generate the atom makes decisions(walter), and the atom makes decisions(gus) that
is already in A2 does not match the constant value.

We now present the notion of coherence for Datalog±, which adapts efforts made for
DLs such as Schlobach and Cornet’s (2003) and Flouris et al.’s (2006). Our conception

621



Deagustini, Martinez, Falappa & Simari

of (in)coherence is based on the notion of satisfiability of a set of TGDs w.r.t. a set of
constraints. Intuitively, a set of dependencies is satisfiable when there is a relevant set of
atoms that triggers the application of all dependencies in the set and does not produce the
violation of any constraint in ΣNC ∪ΣE , i.e., the TGDs can be satisfied along with the NCs
and EGDs in the KB .

Definition 4 (Satisfiability of a Set of TGDs w.r.t. a Set of Constraints) Let R be
a relational schema, T ⊆ ΣT be a set of TGDs, and N ⊆ ΣNC ∪ ΣE , both over R. The set
T is satisfiable w.r.t. N iff there is a set A of (possibly existentially closed) atoms over R
such that A is relevant to T and mods(A, T ∪N) 6= ∅. We say that T is unsatisfiable w.r.t.
N iff T is not satisfiable w.r.t. N . Furthermore, ΣT is satisfiable w.r.t. ΣNC ∪ΣE iff there
is no T ⊆ ΣT such that T is unsatisfiable w.r.t. some N with N ⊆ ΣNC ∪ ΣE .

In the rest of the paper sometimes we write that a set of TGDs is (un)satisfiable omitting
the set of constraints, we do this in the context of a particular ontology where we have a
fixed set of constraints ΣNC ∪ΣE since any set of TGDs that is satisfiable w.r.t. ΣNC ∪ΣE is
satisfiable w.r.t. any subset of it and, on the other hand, any set of TGDs that is unsatisfiable
w.r.t. a subset of ΣNC ∪ ΣE is also unsatisfiable w.r.t. the whole set of constraints.

Example 4 (Unsatisfiable Sets of Dependencies) Consider the following constraints.

Σ1
NC

= {τ : risky job(P ) ∧ unstable(P )→ ⊥}
Σ1

T
= {σ1 : dangerous work(W ) ∧ works in(W,P )→ risky job(P ),

σ2 : in therapy(P )→ unstable(P )}

The set Σ1
T

is a satisfiable set of TGDs, and even though the simultaneous application of
σ1 and σ2 may violate some formula in Σ1

NC
∪ Σ1

E
, that does not hold for every relevant

set of atoms. Consider as an example the relevant set D1 = {dangerous work(police),
works in(police,marty), in therapy(rust)}; D1 is a relevant set for Σ1

T
, however, as we

have that mods(D1,Σ
1
T
∪ Σ1

NC
∪ Σ1

E
) 6= ∅ then Σ1

T
is satisfiable.

On the other hand, as an example of unsatisfiability consider the following constraints:

Σ2
NC

= {τ1 : sore throat(X) ∧ can sing(X)→ ⊥}

Σ2
T

= {σ1 : rock singer(X)→ sing loud(X), σ2 : sing loud(X)→ sore throat(X),
σ3 : rock singer(X)→ can sing(X)}

The set Σ2
T

is an unsatisfiable set of dependencies, as the application of TGDs {σ1, σ2, σ3}
on any relevant set of atoms will cause the violation of τ1. For instance, consider the
relevant atom rock singer(axl): we have that the application of Σ2

T
over {rock singer(axl)}

causes the violation of τ1 when considered together with Σ2
T

, and therefore we have that
mods({rock singer(axl)},Σ2

T
∪ Σ2

NC
∪ Σ2

E
) = ∅. Note that any set of relevant atoms will

cause the violation of τ1.

We are now ready to formally define coherence for a Datalog± ontology. Intuitively,
an ontology is coherent if there is no subset of their TGDs that is unsatisfiable w.r.t. the
constraints in the ontology.
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Definition 5 (Coherence) An ontology KB is coherent if and only if ΣT is satisfiable
w.r.t. ΣNC ∪ ΣE . Also, KB is said to be incoherent iff it is not coherent.

Example 5 (Coherence) Consider the sets of dependencies and constraints defined in Ex-
ample 4 and an arbitrary database instance D. We can see that the Datalog± ontology
KB1 = (D,Σ1

T
∪ Σ1

NC
∪ Σ1

E
) is coherent, while KB2 = (D,Σ2

T
∪ Σ2

NC
∪ Σ2

E
) is incoherent.

Considering incoherence of a set of TGDs is important in the consolidation process of
Datalog± ontologies, since if not treated appropriately within the consolidation process, an
incoherent set of TGDs may lead to the trivial solution of removing every single relevant
atom in D (in the worst case, the entire database instance). This may be adequate for some
particular domains, but does not seem to be a desirable outcome in the general case.

Looking into Definitions 4 and 5 we can see that there is a close relationship between the
concepts of incoherence and inconsistency. In fact, it can be inferred from those definitions
that an incoherent KB will induce an inconsistent KB when the database instance contains
any set of atoms that is relevant to the unsatisfiable sets of TGDs. This result is captured
in the following proposition (proofs of results are presented in Appendix A).

Proposition 1 If KB is incoherent and there exists A ⊆ D such that A is relevant to some
unsatisfiable set U ⊆ ΣT then KB = (D,Σ) is inconsistent.

As an instance of this relationship, consider the following representative example.

Example 6 (Relating Incoherence and Inconsistency) Consider the following ontology.

KB =



D : {a1 : can sing(simone), a2 : rock singer(axl), a3 : sing loud(ronnie),
a4 : has fans(ronnie), a5 : rock singer(ronnie), a6 : rock singer(roy),
a7 : manage(band1 , richard)}

Σ
NC

: {τ1 : sore throat(X) ∧ can sing(X)→ ⊥,
τ2 : has private life(X) ∧ famous(X)→ ⊥}

Σ
E

: {ν1 : manage(X,Y ) ∧manage(X,Z)→ Y = Z}

Σ
T

: {σ1 : rock singer(X)→ sing loud(X),
σ2 : sing loud(X)→ sore throat(X),
σ3 : has fans(X)→ famous(X),
σ4 : rock singer(X)→ can sing(X),
σ5 : has fans(X)→ has private life(X)}


As hinted previously in Example 4, there we have the set A ⊂ D = {rock singer(axl)}

and the unsatisfiable set of TGDs U ⊂ ΣT = {σ1 : rock singer(X) → sing loud(X), σ2 :
sing loud(X) → sore throat(X), σ4 : rock singer(X) → can sing(X)}. Since A is relevant
to U the conditions in Proposition 1 are fulfilled, and indeed the ontology KB = (D,Σ) is
inconsistent since τ1 ∈ ΣT is violated.

A set of constraints such as the one presented in Example 6 may appear when we con-
sider scenarios where both components of an ontology evolve (perhaps being collaboratively
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maintained by a pool of users). As long as new constraints are added, incoherence problems
may arise. In this particular scenario it would seem more sensible to identify and modify,
somehow, the set of incoherent constraints to make them satisfiable, instead of deleting all
the information from the ontology; and only then proceed to solve remaining inconsisten-
cies, if any. That is, it could be beneficial to define consolidation processes in which the
changes performed to achieve coherence are given higher priority than the changes needed
for consistency when possible. To address this we present a twofold proposal for consolida-
tion of Datalog± ontologies: that is, to obtain the new KB ′ we begin by addressing issues in
the component ΣT w.r.t. the components ΣE and ΣNC in the original ontology to obtain a
new coherent set of constraints, giving up some TGDs in ΣT if necessary. Then, we address
the problems arising from the component D, obtaining a new one D′ that is consistent with
Σ′

T
∪ ΣE ∪ ΣNC . In the next section we characterize, by means of a set of postulates, a

consolidation operator that takes into account these considerations.

4. Characterizing the Consolidation: Postulates for Datalog± Ontology
Consolidation Operators

Belief Revision is one of the main areas that deals with defined principled methods to solve
incoherences and inconsistencies; as explained in Section 2, it is common to characterize
change operators by means of postulates, which are properties that the operators must sat-
isfy. In this section we introduce a set of postulates with the objective of characterizing
consolidation operators for Datalog± ontologies. We start by briefly defining the scenario
underlying the consolidation process and introducing the characteristics of the sets of for-
mulas that we focus on (Friedman & Halpern, 2001).

4.1 Defining the Consolidation Environment

Depending on the type of knowledge base, we find two main streams of work in Belief
Revision. On one hand, some works are based on sets of formulas that are closed under
some consequence relation, called belief sets (Alchourrón et al., 1985). This is known in
the Belief Revision literature as the coherence model. On the other hand, the option is to
choose belief bases (Katsuno & Mendelzon, 1991, 1992; Fuhrmann, 1991; Hansson, 1994,
1997, 2001; Falappa, Kern-Isberner, & Simari, 2002), i.e., non-closed sets of formulas; this
is referred to as the foundational model.

Opposite to the traditional closed world assumption found in other established areas
like relational databases, one important characteristic of Datalog± is that of an open world
assumption, unknown data is represented by means of null values. As a consequence, the
generation of new information in the language by the application of rules is susceptible of
being infinite (Cal̀ı, Gottlob, & Kifer, 2008, 2013), which seems to make the foundational
model a more appealing choice when working in this setting. Therefore, for the consolidation
of Datalog± ontologies we have chosen to follow the foundational model. In this model, the
epistemic state is a (possibly incoherent and inconsistent) Datalog± ontology.
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4.2 Expected Properties for the Consolidation Operator: Postulates

We present now the set of properties that a consolidation operator for Datalog± ontologies
must satisfy. We use the following notation through the rest of the paper. Let KB = (D,Σ)
be the original Datalog± ontology being consolidated, where Σ = ΣT ∪ ΣE ∪ ΣNC . Also,
KB ! denotes the Datalog± ontology KB ! = (D!,Σ!) resulting from the consolidation of KB ,
with D! and Σ! being the consolidated components D and Σ in KB !, respectively. When
necessary we will differentiate KBs by using subscripts. In such cases, given KB i we denote
its consolidation by KB i! = (Di!,Σi!).

We are ready now to introduce the Ontology Consolidation Postulates (OCP) expected
to be satisfied by the consolidation operators. Let Θ be the set of all Datalog± ontologies.
Then, a Datalog± ontology consolidation operator ! : Θ −→ Θ is a function that must
satisfy the following properties:

OCP 1. (Inclusion) Σ! ⊆ Σ and D! ⊆ D.

The consolidation process only includes in the resulting ontology formulas be-
longing to the original ontology.

OCP 2. (Consistency) KB ! is consistent.

The ontology obtained by the consolidation process must be consistent, i.e.,
there are no negative constraints or equality-generating dependencies that are
violated when we apply all TGDs in Σ! to the atoms in D!, and therefore
mods({D!,Σ!}) 6= ∅.

OCP 3. (Coherence) KB ! is coherent.

The ontology obtained by the consolidation process must be coherent, i.e., ΣT

in Σ! must be satisfiable with respect to ΣNC ∪ ΣE in Σ!.

OCP 4. (Minimality): If KB′ ⊆ KB is coherent and consistent, then it holds that
KB ! 6⊂ KB′.

There is no coherent and consistent ontology obtained from the original ontol-
ogy that strictly contains the consolidated ontology.

Some of the postulates presented are inspired by the properties proposed by Hans-
son (1994) and by Konieczny and Pino-Pérez (2002). Nevertheless, they are adapted to
suit the particularities of the ontological setting of Datalog±; in particular, they take into
account the distinction between incoherence and inconsistency. For instance, Inclusion
is a direct adaptation of Hansson’s homonymous postulate (Hansson, 1994), which states
that the contraction of a knowledge base should be a (not necessarily proper) subset of the
original one. Consistency and Coherence, on the other hand, result from adapting to
our setting Konieczny and Pino-Pérez’s postulate IC1 (2002), which intuitively ask that
the resulting merging must be consistent; in here we ask that the resulting consolidation
is not only consistent but also coherent. Minimality is a postulate added to ensure the
quality of the consolidation (w.r.t. a loss of information aspect), and is not adapted from
any particular work, but rather as a general notion in Belief Revision, where as noted by
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Hansson (2001) it has been given many names such as conservatism (Harman, 2008), conser-
vativity (Gärdenfors, 1988), minimum mutilation (Quine, 1986) and minimal change (Rott,
1992).

The proposed postulates capture the notion that changes made with respect to the
original ontology are those that are necessary, and that the resulting ontology is, as expected,
both coherent and consistent. That is, given the original ontology the consolidation process
only removes constraints (TGDs) and atoms if they are somehow involved in making the
original ontology incoherent/inconsistent, and makes it in such a way that no unnecessary
removal is made.

5. A Datalog± Ontology Consolidation Operator

In previous sections we have presented examples of incoherences and inconsistencies that can
arise in Datalog± ontologies. Additionally, we stated the properties that the consolidation
operator should satisfy in order to make adequate changes in the original ontology regaining
coherence and consistency. Now, we propose a construction for the consolidation operator
that addresses such incoherence and inconsistency problems in Datalog± ontologies.

5.1 A Possible Construction for the Consolidation Operator

In the literature of Belief Revision several constructions for revision and contraction op-
erators have been studied. Hansson (1994) presents how a contraction operation on belief
bases can be modeled by means of the application of incision functions. These functions
contract a belief base by a formula α by taking minimal sets that entail α (called α-kernels)
and producing “incisions” on these sets so they no longer entail α. The resulting belief base
is then conformed by the union of all formulas that are not removed by any function. This
approach is known as kernel contraction; the task of restoring consistency is also known
in the belief revision literature as contraction by falsum (Hansson, 1991). In this work,
we define the consolidation process as the application of incision functions. Nevertheless,
instead of directly considering minimal inconsistent subsets of formulas from the different
components of the ontology (which are equivalent to ⊥-kernels), in this work we perform in-
cisions over structures called clusters (Martinez, Pugliese, Simari, Subrahmanian, & Prade,
2007; Lukasiewicz et al., 2012) that groups together related kernels. More specifically, to
solve incoherence we begin by establishing the dependency kernels; in an analogous way,
we define the data kernels to solve inconsistencies in D w.r.t. Σ, then, based on them, we
obtain the dependency clusters and data clusters by exploiting an overlapping relation.

5.1.1 Identifying the Relation among Conflicts

The first step towards conflict resolution in our framework is to calculate the minimal coher-
ence and consistency conflicts, and identify possible relations among such conflicts, if any.
Dependency kernels are sets of TGDs which are unsatisfiable w.r.t. the set of NCs and EGDs
in a Datalog± ontology and are minimal under set inclusion. These sets are known as Min-
imal unsatisfiability-preserving sub-TBoxes (MUPS) and Minimal incoherence-preserving
sub-TBoxes (MIPS) (Schlobach & Cornet, 2003) in the DL community.
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Definition 6 (Dependency Kernels) The set of dependency kernels of KB , denoted
with

∏
KB

, is the set of all X ⊆ ΣT such that X is an unsatisfiable set of dependencies
w.r.t. ΣNC ∪ ΣE and every proper subset X ′ of X (X ′ ( X) is satisfiable w.r.t. ΣNC ∪ ΣE .

Example 7 (Dependency Kernels) Consider the following sets of constraints in a
Datalog± ontology KB :

KB =



Σ
NC

: {τ1 : counselor(X ) ∧ regent(X )→ ⊥,
τ2 : cannot rule(X ) ∧ heir(X )→ ⊥}

Σ
E

: {ν1 : advise(X ,K ) ∧ advise(X ,K ′)→ K = K ′}

Σ
T

: {σ1 : advise(X ,K )→ counselor(X ),
σ2 : propose law(X ,K )→ regent(X ),
σ3 : prince(P)→ heir(P),
σ4 : son(P ,K ) ∧ king(K )→ prince(P),
σ5 : counselor(C )→ regent(C ),
σ6 : bastard son(X ,Y )→ son(X ,Y ),
σ7 : bastard son(X ,K ) ∧ king(K )→ cannot rule(X )}


For this KB there exist two dependency kernels, i.e.,

∏
KB

= {{σ3, σ4, σ6, σ7}, {σ5}}.

It is easy to show that the dependency kernels for a Datalog± ontology are independent
from the particular component D in the ontology, and thus they can be obtained by looking
only into the component Σ. That is, even if we replace the component D in an ontology with
an empty set of atoms, the dependency kernels for the ontology with the empty database
are the same than those in the original one.

Lemma 1 Let KB1 = (D1,Σ1) and KB2 = (∅,Σ2) be two Datalog± ontologies such that
Σ1 = Σ2. Then,

∏
KB1

=
∏

KB2
.

In addition to the removal of the TGDs that make a set Σ unsatisfiable (thus making
an ontology incoherent), to solve inconsistencies we may need to remove atoms from com-
ponents D in order to address data inconsistency as well. Analogously to the definition of
the dependency kernels, we define now data kernels as the minimal subset of atoms in D
that makes a KB = (D,Σ) inconsistent.

Definition 7 (Data Kernels) The set of data kernels of KB , denoted with
∐

KB
, is the set

of all X ⊆ D such that mods(X,Σ) = ∅ and for every X ′ ( X it holds that mods(X ′,Σ) 6= ∅.
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Example 8 (Data Kernels) Consider the following coherent but inconsistent KB , pro-
posed by Lukasiewicz et al. (2012).

KB =



D : {directs(john, d1), directs(tom, d1), directs(tom, d2),
supervises(tom, john),works in(john, d1),works in(tom, d1)}

Σ
NC

: {supervises(X ,Y ) ∧manager(Y )→ ⊥,
supervises(X ,Y ) ∧ works in(X ,D) ∧ directs(Y ,D)→ ⊥}

Σ
E

: {directs(X ,D) ∧ directs(X ,D ′)→ D = D ′}

Σ
T

: {σ1 : works in(X ,D)→ employee(X ),
σ2 : directs(X ,D)→ employee(X ),
σ3 : directs(X ,D) ∧ works in(X ,D)→ manager(X )}


For this KB , the set of data kernels is

∐
KB

=

 {supervises(tom, john), directs(john, d1),works in(john, d1)},
{supervises(tom, john), directs(john, d1),works in(tom, d1)},
{directs(tom, d1), directs(tom, d2)}


Once we know the minimal conflicts in the ontology we identify relations among them, if

such relation exists. To do this, we group related kernels together in a new structure called
cluster, which makes possible to achieve an optimal solution in related kernels. Clusters are
obtained through an overlapping relation defined as follows.

Definition 8 (Overlapping, Equivalence) Let L be a first order language, R ⊂ L be a
relational schema, and LR the sublanguage generated by R. Given A ⊂ LR and B ⊂ LR,
we say they overlap, denoted A θB, iff A

⋂
B 6= ∅. Furthermore, given a multi-set of first

order formulasM⊂ 2LR we denote as θ∗M the equivalence relation obtained overM through
the reflexive and transitive closure of θ.

By exploiting the overlapping among dependency kernels and data kernels we can define
dependency clusters and data clusters, respectively.

Definition 9 (Dependency Clusters) Let
∏

KB
be the set of Dependency Kernels for

KB . Let θ be the overlapping relation, and K =
∏

KB
/θ∗∏

KB

the quotient set for the equiv-

alence relation obtained over
∏

KB
. A Constraint Cluster is a set C =

⋃
κ∈[κ] κ, where

[κ] ∈ K. We denote by
∏∏

KB
the set of all Constraint Clusters for KB .

Definition 10 (Data Clusters) Let
∐

KB
be the set of Data Kernels for KB . Let θ be

the overlapping relation, and K =
∐

KB
/θ∗∐

KB

the quotient set for the equivalence relation

obtained over
∐

KB
. A Data Cluster is a set C =

⋃
κ∈[κ] κ, where [κ] ∈ K. We denote by∐∐

KB
the set of all Data Clusters for KB .

Intuitively, a dependency cluster groups dependency kernels that have some TGD in
common, in a transitive fashion; data clusters groups data kernels in an analogous way.
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Example 9 (Dependency Clusters and Data Clusters) Assume we have KB such that∏
KB

= {{σ1, σ2}, {σ1, σ3}, {σ4, σ5}} and
∐

KB
= {{a1, a2}, {a1, a3}, {a2, a4, a5}}. Then, we

have two dependency clusters based on those kernels, grouping the first two kernels (due to
σ1) and the remaining kernel in another cluster; i.e.,∏∏

KB
= {{σ1, σ2, σ3}, {σ4, σ5}}.

On the other hand, for the case of data clusters we have that∐∐
KB

= {{a1, a2, a3, a4, a5}}.

The following proposition states that, since clusters are based on equivalence classes, every
kernel is included in one and only one cluster.

Proposition 2 Y ∈
∏

KB
is such that Y ⊆ X for some X ∈

∏∏
KB

if and only if Y * X ′

for all X ′ ∈
∏∏

KB
such that X 6= X ′. Analogously, Y ∈

∐
KB

is such that Y ⊆ X for some
X ∈

∐∐
KB

if and only if Y * X ′ for all X ′ ∈
∐∐

KB
such that X 6= X ′.

As a corollary of Proposition 2 we have that a formula in a kernel is included in only
one cluster.

Corollary 1 (Corollary from Proposition 2) Let α ∈ Y for some Y ∈
∏

KB
and β ∈

Y ′ for some Y ′ ∈
∐

KB
. Then, α ∈ X for some X ∈

∏∏
KB

if and only if α /∈ X ′ for all
X ′ ∈

∏∏
KB

such that X 6= X ′. Analogously, β ∈ Y ′ is such that β ∈ X for some X ∈
∐∐

KB

if and only if β /∈ X ′ for all X ′ ∈
∐∐

KB
such that X 6= X ′.

The following lemma that we shall use further in the paper shows an example of how,
in the ontological setting of Datalog±, Leibniz’s indiscernibility of identicals (von Leibniz,
1976) holds w.r.t. the clusters in Datalog± ontologies, as when two KBs are equivalent they
have the same set of clusters.

Lemma 2 Let KB1 and KB2 be two Datalog± ontologies such that KB1 = KB2. Then,∐∐
KB1

=
∐∐

KB2
and

∏∏
KB1

=
∏∏

KB2
.

5.1.2 Solving Conflicts: Incision Functions

Once we have identified the clusters, we have to establish how the incoherences and incon-
sistencies are solved. An incision function selects which formulas should be deleted from
the data and dependency clusters.

Definition 11 (General Incision Function) A General Incision Function for KB is a
function δ : (2LR , 2LR) −→ 2LR such that all following conditions holds:

1. δ(KB ) ⊆
⋃

(
∏∏

KB
) ∪
⋃

(
∐∐

KB
).

2. For all X ∈
∏∏

KB
and Y ∈

∏
KB

such that Y ⊆ X it holds that (Y ∩ δ(KB)) 6= ∅.

3. For all X ∈
∐∐

KB
and Y ∈

∐
KB

such that Y ⊆ X it holds that (Y ∩ δ(KB)) 6= ∅.
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4. For all X ∈
∏∏

KB
it holds that T = (X ∩ δ(KB)) is such that there not exists R ⊂ X

where R satisfies conditions 1 and 2, and R ( T .

5. For all X ∈
∐∐

KB
it holds that T = (X ∩ δ(KB)) is such that there not exists R ⊂ X

where R satisfies conditions 1 and 3, and R ( T .

Definition 11 states that a general incision function selects from each dependency (data,
respectively) cluster TGDs (atoms, respectively) for deletion in order to restore coherence
(consistency). Any incision function that complies with Definition 11 can be used as a base
for a consolidation operator. However, note that such an operator may not differentiate
between restoring coherence and consistency. This is not a problem in the classic literature
of Belief Revision since there is no notion of incoherence, and there is no distinction between
rules and facts in languages like propositional logic; thus, only consistency conflicts can
appear, avoiding the need to treat incoherences. Nevertheless, in the ontological setting of
Datalog± we have the opportunity of exploiting the fact that we have two different although
related kinds of conflicts to address them separately with the goal of finding a solution that
better suits the needs of applications that rely on this kind of knowledge bases.

The point this paper is trying to make is that, for knowledge bases in the form of
Datalog± ontologies it is important to differentiate, and adequately handle, incoherence
from inconsistency as the quality of the consolidated ontology heavily depends on that —
assuming we strive for minimal loss in the process. This, more complex setting, needs a
careful definition of what constitutes a kernel. To see what could happen if this is not done
properly, consider the following example.

Example 10 (Influence of Incoherence on Consolidation) Consider KB from Exam-
ple 6. There we have Σ = Σ2

T
∪Σ2

E
∪Σ2

NC
such that Σ2

T
is unsatisfiable. As explained in Ex-

ample 6, for the singleton set {rock singer(axl)} we have that the NC τ1 : sore throat(X)∧
can sing(X) → ⊥ is violated, making {rock singer(axl)} inconsistent with Σ. Then,
{rock singer(axl)} is a data kernel (and a data cluster, since it cannot overlap with any
other kernel) and the same is verifiable for every singleton set in D relevant to some depen-
dency cluster. Thus, we have that

∐∐
KB

=


{rock singer(axl)},
{rock singer(ronnie)},
{rock singer(roy)},
{has fans(ronnie)}


Consider the cluster {rock singer(axl)}; for this cluster we have that

δ({rock singer(axl)}) = rock singer(axl).

This same situation holds for every cluster in
∐∐

KB
, and thus δ(

∐∐
KB

) =
⋃

(
∐∐

KB
).

The problem in this example is that the data kernels (and hence so the data clusters) are
computed w.r.t. the original Σ component, which, in this case, contain unsatisfiable sets
of constraints. As can be seen in Example 10, this becomes of utter importance when we
have atoms relevant to unsatisfiable sets: in that case, any general incision function (and
any inconsistency management technique based on deletion that does not treat incoherence
conflicts) will necessarily delete such atoms.
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Proposition 3 Let δ be a general incision function. If α ∈ D is relevant to some X ∈
∏

KB

then α ∈ δ(KB ).

Clearly, as a corollary of Proposition 3 we have that if every atom in D is relevant to
some unsatisfiable set then we have to remove every atom in D to restore consistency.

Corollary 2 (Corollary from Proposition 3) Let δ be a general incision function. If
for all α ∈ D it holds that α is relevant to some X ∈

∏
KB

then D ⊆ δ(KB ).

As seen, incoherence can have great influence in consolidation if not treated properly
(that is, previously to the consistency restoration). It would seem better to compute the
data clusters based only on the retained satisfiable part of the Σ components. In Lemma 1
we show that the dependency kernels can be obtained independently of the D component
from the original ontology, because unsatisfiable sets are such that they violate a negative
constraint or equality-generating dependency for any relevant set of atoms. Therefore, we
can first obtain

∏∏
KB

, and use the incision function on the dependency clusters to select
which TGDs will be deleted. Then, we calculate

∐∐
KB

based on the result of the application
of the incision function on

∏∏
KB

, in this way only paying attention to the constraints that
will prevail in the consolidation process.

Next, we define both constraint incision functions and data incision functions which
are used to select candidates for deletion (from the original ontology) to restore coherence
and consistency, respectively. First, we define an incision function on dependency clusters
that helps to solve incoherence on the constraints.

Definition 12 (Constraints Incision Function) A Constraint Incision Function for KB
is a function ρ : (2LR , 2LR) −→ 2LR such that all following conditions hold:

1. ρ(KB) ⊆
⋃

(
∏∏

KB
).

2. For all X ∈
∏∏

KB
and Y ∈

∏
KB

such that Y ⊆ X it holds that (Y ∩ ρ(KB)) 6= ∅.

3. For all X ∈
∏∏

KB
it holds that T = (X ∩ ρ(KB)) is such that there not exists R ⊂ X

where R satisfies conditions 1 and 2, and R ( T .

Intuitively, a constraint incision function takes dependency clusters and removes TGDs
from each of them in such a way that the resulting KB is coherent. Analogously to the
constraints incision functions, we define data incision functions that solve inconsistencies in∐∐

KB
.

Definition 13 (Data Incision Function) A Data Incision Function for D is a function
% : (2LR , 2LR) −→ 2LR such that all following conditions hold:

• %(KB) ⊆
⋃

(
∐∐

KB
).

• For all X ∈
∐∐

KB
and Y ∈

∐
KB

such that Y ⊆ X it holds that (Y ∩ %(KB)) 6= ∅.

• For all X ∈
∐∐

KB
it holds that T = (X ∩ %(KB)) is such that there not exists R ⊂ X

where R satisfies conditions 13 and 13, and R ( T .
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Finally, it is necessary to make a significant remark regarding our usage of incision
functions. For that, let us first consider the following excerpt quoted from Hansson’s (2001,
cf. p. 122) regarding the possible parameters passed to selection functions (which in our
case are incision functions) and how this choice affects the possible outcomes.

“[. . . ] the proof of uniformity makes essential use of the fact that selection func-
tions have been defined on remainder sets of the form A⊥α, not on pairs of the
form 〈A⊥α, α〉. If we had instead defined selection functions as follows:

• γ(A,α) is a non-empty subset of γ(A⊥α, α) if A⊥α is non-empty.

• γ(A,α) = {A} if A⊥α is empty.

then
⋂
γ(A,α) would have been an operation very similar to partial meet con-

traction in other respects, but it would have been possible for γ(A,α) 6= γ(A, β)
to hold if A⊥α = A⊥β, which the standard definition does not allow [. . . ]”

Thus, extending Hansson’s observation to incision functions and their use on consolidation,
we have that if we take only the sets of conflicts as arguments for incisions then the formulas
to be removed from two different ontologies having the same set of conflicts by an operator
using the incision function are identical. The reason for this is that the operator could not
tell the difference between the ontologies since its parameter is only the conflicts, which are
exactly the same. However, here we have chosen not to restrict our family of operators to
such behaviors; instead, we model operators whose behavior could select for removal the
same formula from equal conflicts, but that are not restricted to that choice. To achieve
this, we have chosen to take ontologies as parameters; so, if it fits the application domain
in which the operators are exploited, formulas that are not in any conflict could affect the
outcome of the consolidation.

In the approach presented here, an incision function not only should consider the TGD’s
effect over a cluster, but its global effect over the whole knowledge base. The reason for
this requirement is that unlike the classic models of belief revision, the language used has
greater expressivity and the fact that a TGD generates multiple inferences. For instance,
in our framework from a TGD of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) it is possible to
infer multiple instances of Ψ(X,Z).

To see the reason behind our choice more clearly consider the following example.

Example 11 Consider the following ontologies.

KB1 =


D : {p(a), q(a)}

Σ
NC

: {p(X ) ∧ r(X )→ ⊥}

Σ
T

: {σ1 : q(X )→ r(X )}

 KB2 =



D : {p(a), q(a)}

Σ
NC

: {p(X ) ∧ r(X )→ ⊥}

Σ
T

: {σ1 : q(X )→ r(X ),
σ2 : p(X )→ s(X ),
σ3 : p(X )→ t(X )}


For these KB , the set of data clusters are equal, as we have
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∐∐
KB1

=
∐∐

KB2
=
{
{p(a), q(a)}

}
If we use the standard approach and take clusters as arguments for incisions, then we must
remove the same formula in both ontologies, because as it was explained the incision is a
function and therefore it cannot choose differently for the same argument.

Nevertheless, suppose that in our particular scenario we want to remove the atoms based
on the information they help to infer. If that is the case, then from KB1 we should remove
p(a), but from KB2 we should take out q(a), since in KB2 the formula p(a) triggers more
TGDs, thus inferring more atoms. To achieve this type of behavior, it is necessary to pass
ontologies as parameters, since it is that what provides the adequate context.

5.1.3 Cluster Contraction-Based Consolidation Operator

Lastly, we define the consolidation operator for Datalog± ontologies that represents the two
different parts in the consolidation. First, the coherence restoration of the component Σ
is obtained based on the dependency clusters in the D component in the original ontology.
Second, the restoration of consistency in the D component is obtained based on the data
clusters w.r.t. the Σ! component obtained by applying a constraint incision function on the
original Σ. In this way we achieve the behavior stated earlier in the paper; in a sense, we
give the incoherence resolution higher priority, since if we can retain atoms by addressing
unsatisfiable sets of TGDs instead, we choose to follow that path. The cluster contraction-
based consolidation operator is formally defined as follows:

Definition 14 (Cluster Contraction-based Consolidation Operator)
Let KB be a Datalog± ontology, ρ be a Constraint Incision Function and % a Data Incision
Function. Also, let KB? = (D,Σ \ ρ(KB )) be the Datalog± ontology resulting from deleting
from KB the TGDs selected by ρ. The Cluster contraction-based consolidation operator
KB !, is defined as follows:

KB ! = (D \ %(KB?),Σ \ ρ(KB ))

The result of KB ! is the Datalog± ontology obtained by removing, first, the TGDs
(selected by ρ from

∏∏
KB

) and then atoms (selected by % from
∐∐

KB?) from the original
ontology KB . It is important to note that, on one hand only TGDs are removed from
Σ, as dependency clusters do not contain EGDs or NCs. On the other hand, as the Data
Incision Function uses KB? instead of KB then only atoms from D that are in conflicts with
Σ \ ρ(KB ) are removed; this is because data clusters are calculated based on the constrains
obtained after the consolidation of Σ.

5.2 Relation between Postulates and Construction: Representation Theorem

In Section 4 we have introduced the properties that a Datalog± consolidation operator
must satisfy. By means of the following representation theorem we can now establish the
relationship between the set of postulates for a Datalog± ontology consolidation operator
and the cluster contraction-based consolidation operator that we proposed in the previous
section. In what follows we denote with ! a consolidation operator defined as in Definition 14
where ρ and % correspond to arbitrary constraint and data incision functions, respectively.
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Theorem 1 (Representation Theorem) The operator consolidation ! is a Cluster
Contraction-based Datalog± Ontology Consolidation Operator for a Datalog± ontology KB
iff it satisfies Inclusion, Coherence, Consistency, and Minimality.

6. A Complete Example of Datalog± Ontologies Consolidation

We have introduced an operator that allows us to consolidate Datalog± ontologies that
satisfies the set of expected properties expressed by the postulates in Section 4. In this
section, the complete process for the consolidation of Datalog± ontologies is depicted in the
following example.

Example 12 (Consolidation of Datalog± Ontologies) Suppose that we have the (in-
coherent and inconsistent) ontology KB shown in Figure 1, which expresses the information
we have collected about certain company.

KB =



D : {a1 : boss(walter), a2 : supervises(walter , jesse),
a3 : makes decisions(walter),a4 : makes decisions(jesse),
a5 : supervises(skyler ,walter), a6 : employee(walter),
a7 : in charge of (jesse, distribution),
a8 : in charge of (walter , cooking),
a9 : on strike(mike)}

Σ
NC

: {τ1 : follows orders(X ) ∧makes decisions(X )→ ⊥,
τ2 : supervises(Y ,X ) ∧ supervisor(X )→ ⊥,
τ3 : absent(X ) ∧ on strike(X )→ ⊥}

Σ
E

: {ν1 : in charge of (X ,Y ) ∧ in charge of (X ,Y ′)→ Y = Y ′}

Σ
T

: {σ1 : employee(X )→ is supervised(X ),
σ2 : is supervised(X )→ follows orders(X ),
σ3 : boss(X )→ makes profit(X ),
σ4 : supervises(Y ,X )→ supervisor(Y ),
σ5 : supervises(Y ,X )→ employee(X ),
σ6 : is supervised(X )→ makes decisions(X ),
σ7 : is supervised(X )→ has work(X ),
σ8 : has work(X )→ get paid(X ),
σ9 : has work(X )→ ∃Y in charge of (X ,Y ),
σ10 : on strike(X )→ absent(X )}


Figure 1: The original ontology to be consolidated.

Now, to begin with the first part of the consolidation process (i.e., solving incoher-
ences by making the set ΣT satisfiable) we obtain, as the first step towards obtaining the
dependency clusters, the dependency kernels for KB :∏

KB
= {{σ2, σ6}, {σ10}},

and based on the kernels, we calculate the set of dependency clusters for KB∏∏
KB

= {{σ2, σ6}, {σ10}}.
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Note that, as there is no overlap among dependency kernels, we have
∏

KB
=
∏∏

KB
. Next,

we use a cluster incision function to solve incoherency problems. For the sake of the example
assume that we will guide the contraction process by means of a quantitative criterion, i.e.,
choosing among the possible incisions the ones that removes fewer formulas, and using
the plausibility among formulas when the cardinality of the incisions is the same. In the
following we show the possible incisions, i.e., those satisfying the conditions in Definition 12.
These sets are

• For cluster {σ2, σ6} we could either remove σ2 or σ6. Since the two incisions remove
the same number of atoms assume for this example that σ2 is more plausible than σ6,
and thus we prefer to retain the former.

• For cluster {σ10} we can only remove σ10.

Then, the particular incision in this example will be as follows:

ρ({σ2, σ6}) = {σ6}
ρ({σ10}) = {σ10}

Now, we move on to the next part in the consolidation process: the consistency recovery.
As explained before, for this part the operator only considers TGDs that will effectively be
included in the consolidation. In this particular example this is ΣT ! = ΣT \ {σ6, σ10}. From
now on then let KB? = (D,Σ!); based on KB? we calculate the data kernels.∏

KB? = {{a2, a4}, {a3, a5}, {a3, a6}, {a2, a5}}

Then, we obtain the data clusters, which are:∏∏
KB? = {{a2, a3, a4, a5, a6}}

Now, to solve inconsistencies we need to consider those sets such that the intersection
with all kernels included in the clusters is not empty, using ΣT ! instead of ΣT when doing
this. Once again, we analyze the possible incisions (the sets respecting all conditions in
Definition 13) in the light of the number of atoms deleted and the plausibility of the formulas
in them. The different possible incisions for the cluster are:

- To remove {a2, a3}.

- To remove {a2, a3, a6}.

- To remove {a2, a5, a6}.

- To remove {a4, a5, a6}.

Once again, each of the sets presented is such that its removal induce an operator that
satisfies the postulates, and thus is captured by our framework. Nonetheless, as explained
before for this example we will choose to remove as few atoms as possible. That is, we
choose to remove {a2, a3}), and so we have

%({{a2, a3, a4, a5, a6}}) = {a2, a3})

Then, using a Datalog± ontology consolidation operator based on the contraction of
clusters like the one introduced in Definition 14 we can obtain the coherent and consistent
ontology shown in Figure 2.
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KB ! =



D! : {boss(walter),makes decisions(jesse),
supervises(skyler ,walter), employee(walter),
in charge of (jesse, distribution),
in charge of (walter , cooking),
on strike(mike)}

Σ
NC

! : {follows orders(X ) ∧makes decisions(X )→ ⊥,
supervises(Y ,X ) ∧ supervisor(X )→ ⊥,
absent(X ) ∧ on strike(X )→ ⊥}

ΣE ! : {in charge of (X ,Y ) ∧ in charge of (X ,Y ′)→ Y = Y ′}

Σ
T

! : {employee(X )→ is supervised(X ),
is supervised(X )→ follows orders(X ),
boss(X )→ makes profit(X ),
supervises(Y ,X )→ supervisor(Y ),
supervises(Y ,X )→ employee(X ),
is supervised(X )→ has work(X ),
has work(X )→ get paid(X ),
has work(X )→ ∃Y in charge of (X ,Y )}


Figure 2: The ontology resulting from the consolidation.

7. Related Work

The most closely related work to ours is the work by Croitoru and Rodriguez (2015). In that
work the authors present consolidation operators that are used as the basis for the definition
of semantics for inconsistency tolerant ontology query answering for Datalog+ (a more
expressive language than Datalog±, Cal̀ı et al., 2012). As for the case with our work, the
work by Croitoru and Rodriguez (2015) is based on the use of Hansson’s incision functions
(Hansson, 1994) to solve conflicts. Nevertheless, there are some remarkable differences
between the works as well. Among the most important ones is that the operators presented
by Croitoru and Rodriguez only deal with inconsistent ontologies, but no acknowledgment
of the incoherence problem is made. As we have shown through this work, this can have a
significant impact in the quality of the consolidation when analysed with respect to minimal
loss of information. Moreover, this fact makes that, even though the set of postulates in
both works are similar in spirit, the family of operators characterized by Croitoru and
Rodriguez is a subset of the ones characterized here. This is due to the fact that the setting
that we consider here (i.e., both inconsistent and incoherent ontologies) is more general,
since for instance our operators remove not only facts but also TGDs, which Croitoru and
Rodriguez’s operators do not since they only focus on inconsistency.

Another closely related work is the one by Lukasiewicz et al. (2012). There, the au-
thors define a general framework for inconsistency-tolerant query answering in Datalog±

ontologies based on the notion of incision functions. Nevertheless, their work is focused on
enforcing consistency at query time obtaining (lazy) consistent answers from an inconsis-
tent ontology instead of consolidating one. Clearly, such process must be carried on for
every query posed to the system, while with our approach we obtain a new knowledge base
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in an offline manner, and such knowledge base can be queried without considering incon-
sistency issues; both approaches can prove useful, depending on the application domain.
Additionally, as only one KB is used the rational assumption that there are no conflicts
in the constraints in Σ is also made, and therefore there are no notions of unsatisfiability
and incoherence. As stated before, in order to gain generality we have chosen to drop that
assumption, and treat incoherence problems as well as inconsistency ones. In addition to
the works by Croitoru and Rodriguez and Lukasiewicz et al., there are several other works
that solve inconsistency or incoherence by means of adapting approaches based on Belief
Revision techniques in other knowledge representation formalism.

7.1 Propositional Knowledge Bases

There are numerous works in revision and merging of propositional knowledge bases (see, for
instance, Konieczny & Pérez, 2002; Katsuno & Mendelzon, 1992; Lin & Mendelzon, 1999;
Liberatore & Schaerf, 1998; Everaere, Konieczny, & Marquis, 2008; Konieczny & Pérez,
2011; Delgrande, Dubois, & Lang, 2006; Booth, Meyer, Varzinczak, & Wassermann, 2010;
Delgrande, 2011; Delgrande & Jin, 2012; Falappa, Kern-Isberner, Reis, & Simari, 2012),
which had provided the foundations to further work on (fragments of) first order logics.
As expected, those works have deep connections with ours, but also has some remarkable
differences, as we shall see.

As we have mentioned throughout the paper, the work by Sven Ove Hansson (1994)
provides the inspiration and foundations for our work: we follow an approach akin to Kernel
Contraction and several intuitions from it, adapted to an ontological language, Datalog±.
As a consequence, besides treating incoherence we also provide a complete inconsistency
resolution process which takes advantage of the ontological setting, exploiting the relation
between the components of the ontology to define how coherence and consistency should be
restored. Also, the classic incision functions introduced by Hansson produce their incision
over minimal conflicts. In our approach, however, we work over clusters, which are groupings
of kernels, and thus they are not always minimal. Then, we propose a particularization over
Hansson’s incision functions, focusing on those incision functions that successfully work over
clusters.

Konieczny and Pino-Pérez (2002) made one of the main contributions on the merging
of conflicting information. In our work we follow some of the intuitions proposed by them.
Nevertheless, the main difference between their approach and ours (besides the obvious one
on the aims of the works, merging vs. consolidation) is that they state that the final merging
will be consistent only in presence of a consistent (or, in our terminology, coherent) set of
integrity constraints, and they do not analyze the alternative case.

With respect to the work by Lin and Mendelzon (1999), besides the difference in the
focus (once again merging vs. consolidation), the main difference in the inconsistency
management strategy chosen with our work is that their conflict solving strategy relies on
the “votes” of the majority to establish which formulas is retained in the merging. Instead,
we have chosen not to introduce a particular strategy. Nevertheless, it is possible to adapt
our framework to the use of preference relations to choose between possible incisions (in a
similar way to what we have shown in Example 12). Such relations can indeed be designed
to comply with the majority intuition (providing that we have the votes, which does not
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apply to an ontology consolidation environment since there is only one ontology), thus
obtaining a similar strategy.

In the work by Katsuno and Mendelzon (1992) the problem of knowledge base revision
for the propositional case is addressed. As in our approach, the same language is used to
express both the facts about the world and the constraints imposed to them in some KB .
Nevertheless, once again the difference between the (in this case) update of a KB and the
consolidation of a KB arises in the treatment of the integrity constraints: in their work
integrity constraints are considered invariant and the updates to restore consistency are
restricted to facts.

In they works by Delgrande (2011), Delgrande and Jin (2012) the authors present an
approach for revising a propositional knowledge base by a set of sentences, where every
sentence in the set can be independently accepted but there can be inconsistencies when
considering the whole set. The main idea follows from the AGM theory, but differs in
that, it is necessary to alter the Success postulate so it suits the intuition that not every
sentence in the set have to be in the final revision (since this set can be inconsistent).
Guided by the principle of informational economy, they characterize the revision as the most
plausible worlds among the various maximally consistent subsets of the set of sentences. In
a parallel with our Datalog± ontology environment, this is as revising the D component in
the ontology to solve inconsistencies. Being the set of sentences inconsistent, the union of
it with the original KB will be inconsistent. Nonetheless, there is an important difference
between these works and ours. In those works the authors first solve inconsistencies in the
set of sentences, so they can decide which subset of it will characterize the revision. Our
approach is different, as we directly consider an inconsistent KB . Then, in order to solve
the same problem in our setting, it is necessary to consider the union of the KB with the
entire set of sentences, and then apply a consolidation operator.

7.2 Knowledge Expressed in Description Logics Ontologies, Logic Programs
and Relational Databases

We now focus on other knowledge representation formalisms that are more closely related
to Datalog±, mainly in the family of Description Logics (Baader, Calvanese, McGuinness,
Nardi, & Patel-Schneider, 2003) and Logic Programming (Lloyd, 1987; Nilsson & Maluszyn-
ski, 1995; Gelfond, 2008). A remarkable work using belief revision to solve conflicts in DLs
is the one by Qi, Liu, and Bell (2006), which is based on the AGM theory (Alchourrón
et al., 1985; Gärdenfors, 1988). What makes this work stand out is that they do not only
introduce the generalizations of the AGM postulates to the case of DLs, but also define two
operators on knowledge bases, based on formulas weakening, that satisfy such postulates.
The main difference with our approach is that they only take into account consistency prob-
lems in the ontologies, and no incoherence treatment is provided. As we pointed out earlier,
incoherence can lead to extreme a weakening of the information, where they may have to
take out every individual name from some general concept inclusion.

As we have previously mentioned, our notion of incoherence was inspired by Schlobach
and Cornet’s work (2003), among others. In that paper the authors focus on the definition
of processes capable of detecting unsatisfiabilities and incoherences in DLs ontologies, intro-
ducing complete algorithms along with an empirical analysis of the approach. Nevertheless,
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as it is not in the main focus of their work, the authors set aside the issue of how to recover
coherence once a conflict has been detected, and also do not consider inconsistencies. In our
work we presented a consolidation process that treats both incoherence and inconsistency,
based on the use of Belief Revision techniques. Thus, the approach presented by Schlobach
and Cornet could potentially be useful regarding the implementation of the operators pre-
sented in this work, providing an effective way of obtaining the set of kernels in which the
set of clusters will be based.

Black et al. (2009) propose an approach that is capable of using information coming from
several DL ontologies in order to answer queries, taking care in the process of both incoher-
ence and inconsistency. Their approach is based on agents with argumentative capabilities,
each one with a personal knowledge base in the form of a DL ontology. These agents use
dialogue games to interchange arguments until they reach an agreement about the answer
to a certain query. Thus, the agents can use the (possible incoherent/inconsistent) union
of the ontologies without merging them, and still obtain an answer influenced by every
ontology in play. Moreover, this approach has the advantage that no information is lost,
as no formula is deleted from the ontologies, and as a result the inferences obtained by
this approach are a superset of those that can be obtained in the ontology resulting from
the consolidation of the union of DL ontologies. Even though the authors argue that one
advantage of the proposed approach is that they do not need to waste time and effort in
performing the consolidation of the KB , one disadvantage is the computational complexity
associated with argumentative reasoning (Parsons, Wooldridge, & Amgoud, 2003; Dunne &
Wooldridge, 2009; Cecchi, Fillottrani, & Simari, 2006) as this process has to be conducted
for each query issued and in an online manner. Even though a consolidation process can
also be computationally expensive, it is only necessary to perform it once and it can be
done offline before the query answering system becomes available. The choice of one ap-
proach over the other depends highly on the environment in which they will be used, i.e.,
on the size of the ontologies that will be used, how often updates are issued over the KB
or how critical time consumption is for the system, among other considerations; of course
the set of inferences that can be obtained from every approach may differ and this should
also be taken into account. A consolidation-based approach could be more suitable for
time-dependant systems like real-time systems or query intensive systems where the data
tractability associated with (a consolidated) Datalog± ontology may be proven handy.

Another work worth mentioning is that by Kalyanpur, Parsia, Horridge, and Sirin’s
(2007). This work verses on how to find all justifications of entailments over a Description
Logics ontology. A justification is simply the precise set of axioms in an ontology responsible
for a particular entailment (Kalyanpur et al., 2007). In other words, it is a minimal set of
axioms sufficient to produce an entailment, which is related to our use of kernels as a mean to
obtain clusters as part of the consolidation strategy used. Moreover, Horridge, Parsia, and
Sattler (2009) state that justifications are important for repairing inconsistent ontologies.
Thus, they could be important for the definition of consolidation processes similar to our
cluster-based consolidation, as “If at least one of the axioms in each of the justifications for
an entailment is removed from the ontology, then the corresponding entailment no longer
holds.”(Kalyanpur et al., 2007, p. 269). One of the main contributions of that work is the
definition of practical black-box (i.e.,, reasoner independent) techniques that allows us to
find justifications for entailments in the ontology in an efficient way. As such, is evident
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that while our work verses in a different direction we still can benefit from those findings. In
particular, it may be possible to use the developed algorithms as part of our implementation
strategy for our consolidation operators, adapting them to be used in Datalog± and our
dual incoherence/inconsistency setting.

Regarding Logic Programming, there are also several works that address the problem
of merging knowledge bases expressed as logic programs, solving inconsistency issues in
the process. For instance, Hué, Papini, and Würbel (2009) introduce a merging process
based on stable model semantics, using the logic of Here-and-There (Turner, 2003). Hué
et al. consider the merging strategy based on pre-orders among deletion candidates called
potential removed sets and they do not establish any particular way to obtain these pre-
orders. Instead, they assume that for any strategy P there is a given pre-order that defines
P . As for the case with Lin and Mendelzon’s work (1999), although it falls out of the scope
of the present work we certainly can adapt our framework to use similar techniques when
choosing which incision prevails.

Another notorious work in the Logic Programming field is the one by Delgrande, Schaub,
Tompits, and Woltran (2009). In that work two different approaches are proposed. The first
one follows an arbitration approach, selecting the models of a program that differs the least
w.r.t. the models of the other programs. In this work the case of unsatisfiable programs is
studied, similar to the way we consider incoherence leaded by unsatisfiable sets of TGDs.
Nevertheless, they consider unsatisfiability of a certain program, and not of some concept
in the union of the programs. Furthermore, the strategy to solve unsatisfiability is simply
leaving the unsatisfiable program out of consideration for the merging, instead of trying to
solve the conflict somehow. The second approach is based on the selection of the models of
a special program P0, which can be thought as the constraints guiding the merging process,
that has the least variations w.r.t. the programs for the merging. This approach can be
seen as a particular instance of the approach proposed by Konieczny and Pérez (2002).

In the area of databases, one of the most influential works is the one by Arenas et al.
(1999) on Consistent Query Answering, there the authors propose a model theoretic defini-
tion of consistent answers to a query in a relational database potentially inconsistent with a
set of integrity constraints. Intuitively, the consistent answers to a query is the set of atoms
that are (classical) answers to the query in every repair of the inconsistent database; a
repair is a set of atoms that satisfy the set of constraints and is “as close as possible” to the
original database. Different notions of repairs have been studied in the literature, as well as
different notions of what it means for a set of atoms to be as close as possible to the original
database. Most of the proposals are based on repairing by inserting and/or deleting tuples
to/from the database (actually, the possible actions depend on the form of the integrity
constraints and their expressiveness) and the notion of closeness is defined via set inclusion
or cardinality. The work by Arieli, Denecker, and Bruynooghe (2007), however, proposes
a uniform framework for representing and implementing different approaches to database
repairing based on minimizing domain dependent distances. The main idea of that work is
to show how thinking in terms of (different) distances to express preferences among repairs
leads to different preferences that can be applied in different scenarios. The authors show
that the set of repairs obtained using the proposed distance functions deviate from those
that can be obtained using set-inclusion. Furthermore, besides insertion and deletion of en-
tire tuples there are other several domain independent approaches, e.g., based on cardinality
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or more complex objective functions. In the approach proposed by Wijsen (2005) updates
are considered a primitive in the theoretical framework; Bohannon et al. (2005) present a
cost-based framework that allows finding “good” repairs for databases that exhibit incon-
sistencies in the form of violations to either functional or inclusion dependencies, allowing
also updates to attribute values. In that work, two heuristics are defining for construct-
ing repairs both based on equivalence classes of attribute values; the algorithms presented
are based on greedy selection of least repair cost, and a number of performance optimiza-
tions are also explored. A quite different semantics for repairing is proposed by Caroprese,
Greco, and Zumpano (2009), Caroprese and Truszczynski (2011) through Active Integrity
Constraints (AICs for short); an AIC is a production rule where the body is a conjunction
of literals, which should be false for the database to be consistent, whereas the head is a
disjunction of update atoms that have to be performed if the body is true (that is the con-
straint is violated). Repairs are then defined as minimal sets (under set inclusion) of update
actions (tuple deletions/insertions) and AICs specify the set of update actions that are used
to restore data consistency. Hence, among the set of all possible repairs, only the subset
of founded repairs consisting of update actions supported by AICs is considered. Other
works in this area propose different semantics for repairing by either explicitly or implicitly
considering a preference relation among the set of repairs (cf. Andritsos, Fuxman, & Miller,
2006; Staworko, Chomicki, & Marcinkowski, 2012; Greco & Molinaro, 2012).

More recently, in the area of ontology-based data access (OBDA), Lembo et al. (2010)
study the adaptation of CQA for DL-Lite ontologies, called AR (ABox semantics). In that
work, also the intersection (IAR) semantics is presented as a sound approximation of consis-
tent answers; this semantics consists of computing the intersection of all repairs and answers
are obtained from there, though (possibly many) AR answers cannot be obtained from un-
der the IAR semantics, the latter are computationally easy to obtain for the DL-Lite family,
i.e., it is not necessary to compute the whole set of repairs in order to compute their intersec-
tion. The data and combined complexity of these and other semantics were studied (Rosati,
2011) for a wider spectrum of DLs. Also, Rosati (2011) presents intractability results for
query answering for EL⊥ under the intersection semantics, and a non-recursive segment of
that language was proved to be computable in polynomial time. More recently, Bienvenu
and Rosati (2013) propose another family of approximations to CQA, also for the DL-Lite
family. The k-support semantics allows to (soundly) approximate the set of queries entailed
under the CQA semantics, based on k subsets of the database that consistently entail q;
on the other hand, the k-defeater semantics approximates complete approximations seeking
sets that contradict the supporters for q. Both semantics are FO-rewritable for any onto-
logical language for which standard CQ answering is FO-rewritable as well, and can be used
in conjunction to over- and under-approximate consistent answers.

Much like Black et al. (2009), the treatment of inconsistencies proposed by all these
semantics is related to particular queries instead of the inconsistency of the whole database.
Thus, they do not attempt to obtain a final consistent database that can be queried without
considering restrictions. Furthermore, they do not address the issues of incoherence and
inconsistency together; instead most of the approaches either assume that the set of integrity
constraint correctly defines the semantics of the database instance, so there is no room for
incoherence, or they treat constraints and data alike at the moment of removing or ignoring
information, which leads to the type of problems that we discuss in Example 10. While
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these techniques may be suitable for the case of one single database, in the presence of
incoherence in the set of ICs, as can be the case when we consider several databases together,
this approach would lead to meaningless empty answers, since no subset of the database
could satisfy the constraints— as would also be the case for the approach by Lukasiewicz
et al. (2012).

Also related to the databases field is the work by Lin and Mendelzon (1998). There,
a database is viewed as a first-order theory without rules, and ICs are used to ensure
consistency in the final result as in the work by Konieczny and Pérez (2002), presenting ways
to solve known database merging problems like synonyms and homonyms. Nonetheless, like
Konieczny and Pino-Pérez’s work, they do not consider problems related to the set of ICs.
Instead, the set of ICs used in the merging process is unique, and the choice of such set is
expected to be performed by a merge designer. Unlike Lin and Mendelzon, we do not made
an assumption for our consolidation environment on the set of ICs being conflict-free.

Cholvy (1998) introduces another approach that can be used to reason with contra-
dictory information. The framework is represented through a set of axioms and inference
rules. Additionally, in the paper several applications for the framework are introduced,
e.g., the solving of conflicts among beliefs represented by first order databases, where facts
are ground literals and there are rules that can be integrity constraints or deduction rules.
In that scenario, contradiction is obtained by the application of the constraints when con-
sidering several databases together. This establishes a certain parallel with the case of
inconsistency in a Datalog± ontology. However, the main difference with our work lies in
how the strategy for the inconsistency management process is defined. In that work, a
preference order between databases is assumed. Instead, we have chosen not to restrict how
to achieve the consolidation, thus presenting a general approach. Nevertheless, as stated
before we can adapt incision functions to suit the intuition that no every formula is equally
desirable, choosing for instance preferences between ontologies as a guideline (if we are using
the approach for other tasks rather than consolidation of a single ontology), obtaining an
inconsistency management strategy akin to the one introduced by Cholvy.

Finally, Meyer, Lee, and Booth (2005) use two well-known techniques for knowledge
integration for the propositional case, adapted and refined to the expressiveness of DLs.
The proposed approach takes the knowledge bases and produces a disjunctive knowledge
base (DKB) as the result of the integration. One disadvantage of DKBs is that they state the
possible options we can take when the conflicting knowledge is expected to be exploited by a
reasoning process rather than choosing one of them. Thus, contrary to our approach where
a final consolidated ontology is given, in theirs there is no definitive final merging; moreover,
they set aside for further research problems related to incoherence in the integration process.

8. Conclusions and Future Work

Collaborative work and information exchange are becoming key aspects of almost any sys-
tem; thus, it is of the uttermost importance to have automatic and adequate ways to solve
conflicts: as knowledge evolves in a collaborative environment incoherence and inconsis-
tency are prone to arise. This knowledge is often represented by ontologies that can be
collaboratively built, and often shared among entities that use and modify them. One par-
ticular way to deal with the conflicts that can appear in such application environments is
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to try to modify the information contained in the ontology in order to regain coherence and
consistency. In this paper we have shown how to achieve the consolidation of Datalog±

ontologies. We introduced the concept of incoherence in Datalog± ontologies in terms of
unsatisfiability of sets of TGDs, and showed the relationship with the classical notion of
inconsistency of a logical theory that lacks models.

We also proposed a construction for consolidation operators. The construction is in-
spired by kernel contraction, and uses incision functions on groupings of minimal unsatis-
fiable/inconsistent sets called clusters to solve conflicts. Finally, we stated the properties
that the Datalog± ontology consolidation operator is expected to satisfy. We showed that
our operators satisfy the respective properties, obtaining as the result of the consolidation a
new Datalog± ontology that is always coherent and consistent while minimizing the changes
that are made in the conflict resolution.

As a final remark, notice that these operators take care of all incoherences in the ontol-
ogy. However, there are rare cases when the ontology designer introduce some unsatisfiable
concepts in an ontology on purpose, to model some particular feature of the application do-
main. If that is the case then we should not remove the incoherence, and rather we have to
delete the atoms triggering it, if any. Clearly, since they were not defined with that setting
in mind this behavior cannot be achieved by the operators presented here. Nevertheless, to
modify our present approach to suit such setting is almost straightforward, provide that we
can identify whether or not some unsatisfiable set of TGDs is made on purpose or not.

As for future work, we intend to study new constructions for Datalog± consolidation
operators. To do this, first we plan to change the general approach, i.e., operators based
on formalisms other than kernel contraction, mainly from the AGM theory (Alchourrón
& Makinson, 1985; Alchourrón et al., 1985); and then, while the proposed framework for
cluster contraction based consolidation operators is fully constructive, depending on the
application domain it may certainly be difficult to asses how to effect the incisions, i.e., it
may be hard to decide among the family of possible incisions which one to select. From
a design point of view, it may be easier to select how to perform the consolidation if we
have some additional information about the formulas in the knowledge base, such as a
preference relation that can, for example, be elicited from domain experts. In general, it
could be easier for an expert to provide guidelines and information about the application
domain at hand that could be then modeled into a preference relation on the formulas in
an ontology rather than trying to single out the desired incisions. In this direction we want
to explore constructions based on exploiting preference relations among the formulas in the
ontologies to define different strategies to choose which formulas to delete, possibly tailored
for particular scenarios. Mainly, we plan to analyze two different aspects: the relation
between these operators based on preference relations with respect to the ones presented in
this work, and how different strategies affect their behavior.

Also, in this work we make a point in differentiating the concept of inconsistency from
that of incoherence; therefore, we need to focus on languages that separate extensional
from intensional knowledge, otherwise the two notions are indistinguishable (as it is the
case in propositional logic). In that sense, the choice of Datalog± is due to its desirable
property of generalizing several popular languages such as classical Datalog, DL-Lite, ELH,
F-Logic-Lite, etc. Even though in this paper we do not perform a particular analysis of the
effects of nulls in the proposed solutions to consolidation, the Datalog± family of languages
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was chosen because it offers a wide variety of languages with high computational tractability
(some are FO rewritable and others have PTIME inference algorithms). The results in this
work pave the way to continue the research line into the next natural step, which is to show
how (or whether) the different syntactic and semantic properties that yield tractability for
query answering allow us to obtain tractability results also for the consolidation problem,
much in the same way as it has happened already in the area of consistent query answering
(where only repairs over the extensional part of the KB are considered). It is, for example, in
the rewriting algorithms where the capability of value invention plays an important role: the
value invention process should be controlled (in general with syntactic restrictions) in order
to keep a low complexity for the reasoning tasks. With this in mind, in the future we will
further look into the role of processes like value invention in the consolidation of Datalog±

ontologies, and their impact both on how conflicts should be solved and computational
efficiency.

We are currently working on the implementation of our operators; we plan to study dif-
ferent techniques that can be used in order to produce an efficient implementation, possibly
tailored for specific fragments of Datalog±. As explained before, the algorithms introduced
by Schlobach and Cornet (2003) can be proven useful regarding this aspect since they may
provide a way to calculate the kernels in a Datalog± ontology, thus providing the first step
towards incoherence resolution. Another important work regarding the implementation of
our consolidation operators is the one by Wassermann (2000), where the author shows that
the minimal incision functions of a knowledge base can be obtained from the kernels of a KB
by using any algorithm for finding minimal hitting sets (Reiter, 1987). Several works in the
area of ontology debugging and repairs, (e.g., Halaschek-Wiener & Katz, 2006, or Horridge
et al., 2009 as a way to find the justifications for an inconsistency) have exploited Reiter’s
algorithms in order to implement their frameworks. Among others, we plan to study how
adequate this techniques are for our operators, as there is an almost direct relation between
minimal incision functions and Reiter’s minimal hitting sets; in this way, it may be possi-
ble to adapt Reiter techniques to attend incoherences and inconsistencies, moreover, as we
already discussed, we plan to analyze the relation between cluster incision functions and
preference relations. Regarding implementation, we hold the conjecture that such relations
can be exploited to further refine the implementation of the operators: Reiter’s algorithm
is based on the expansion of a directed acyclic graph, and such expansion is made in a
breadth first fashion, which in the end generates all possible values for minimal incision
functions. As acknowledged by Wassermann, if some kind of ordering among the formulas
is present, this ordering can be used to choose which branch to expand; in other words, not
only it may be possible to implement the construction for operators proposed in this work
by means of exploiting Reiter’s hitting sets algorithm, but also we can use the preference
relation equivalent to the incision (if any) to guide the consolidation process. That is, it
may be possible to adapt the algorithm so it chooses to expand the branch that has the less
preferred set of formulas, thus guiding the graph expansion process.

Appendix A. Proofs

Proof for Proposition 1
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Proof Consider some U ⊆ ΣT such that U is an unsatisfiable set of dependencies w.r.t.
ΣNC ∪ ΣE , and A ⊆ D a set of atoms relevant to U .

It follows from the definition of satisfiability of a set of dependencies w.r.t. a set of
constraints that if U is unsatisfiable then there does not exist a relevant set of atoms A′

that makes mods(A′, U ∪ ΣE ∪ ΣNC ) 6= ∅, because otherwise U is satisfiable.

Then, mods(A,U ∪ ΣE ∪ ΣNC ) = ∅. Moreover, since A ⊆ D and U ⊆ ΣT we have that
chase(A,U) ⊆ chase(D,ΣT ), and thus any NC or EGD that is violated in chase(A,U) is
also violated in chase(D,ΣT ). Thus, mods(D,ΣT ∪ΣE ∪ΣNC ) = ∅, i.e., KB is inconsistent.

Proof for Lemma 1

Proof Let KB1 = (D1,Σ1) with Σ1 = Σ1T ∪ Σ1E ∪ Σ1NC , and KB2 = (∅,Σ2) with
Σ2 = Σ2T ∪ Σ2E ∪ Σ2NC be two Datalog± ontologies such that Σ1 = Σ2,

∏
KB1

be the
dependency kernels of KB1, and

∏
KB2

be the dependency kernels of KB2, respectively.

Consider any X ∈
∏

KB1
. Then, by Definition 6 we have that X ⊂ Σ1T is an unsatisfiable

set of dependencies w.r.t. Σ1E ∪ Σ1NC and every X ′ ( X is satisfiable w.r.t. Σ1E ∪ Σ1NC .
Since Σ1 = Σ2, then Σ1T = Σ2T , Σ1E = Σ2E and Σ1NC = Σ2NC , and thus it holds that
X ⊂ Σ2T is an unsatisfiable set of dependencies w.r.t. Σ2E ∪ Σ2NC and every X ′ ( X is
satisfiable w.r.t. Σ2E ∪ Σ2NC .

Then, by Definition 6 we have that X ∈
∏

KB2
, and since this holds for any arbitrary

kernel in
∏

KB1
we have that

∏
KB1

=
∏

KB2
.

Proof for Proposition 2

Proof We will focus on the case of dependency clusters, omitting the proof for data
clusters, as they are analogous to each other. Consider any arbitrary Y ∈

∏
KB

.

⇒) We begin by showing that if a kernel is part of a cluster then it is not part of any
other cluster, i.e., if Y ⊆ X for some X ∈

∏∏
KB

then Y * X ′ for all X ′ ∈
∏∏

KB
such that

X 6= X ′.

This is obtained directly from the definition of clusters: we have that X =
⋃
Y ∈[κ] Y

where [κ] is an equivalence class in the equivalence relation θ∗ obtained from
∏

KB
. Then,

clearly for Y we have that if Y ⊆ X then Y ∈ [κ]. Therefore, since by definition two
equivalence classes are either equal or disjoint then it holds that Y /∈ [κ′] for all [κ′]. Let
X ′ =

⋃
Y ′∈[κ′] Y

′. Then it holds that X 6= X ′ and that Y * X ′. Since this holds for any

arbitrary equivalence class [κ′] then it holds that if Y ⊆ X for some X ∈
∏∏

KB
then Y * X ′

for all X ′ ∈
∏∏

KB
such that X 6= X ′.

⇐) Now we show that there not exist any kernel that does not belong to a cluster, i.e.,
if Y * X ′ for all X ∈

∏∏
KB

such that X 6= X ′ then Y ⊆ X for X ∈
∏∏

KB
. Again, this arise

from the use of equivalence classes in Definitions 9 and 10. If Y * X ′ for all X ′ ∈
∏∏

KB
such

that X 6= X ′, then it holds that Y /∈ [κ′] for all [κ′] 6= [κ]. So, since equivalence classes form
a partition it must holds that Y ∈ [κ]. Therefore, as X =

⋃
Y ∈[κ] Y we have that Y * X ′

for all X ′ ∈
∏∏

KB
such that X 6= X ′ then Y ⊆ X.

Proof for Corollary 1
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Proof Consider α ∈ Y for some Y ∈
∏

KB
. By Proposition 2 we have that Y ⊆ X for

some X ∈
∏∏

KB
if and only if Y * X ′ for all X ′ ∈

∏∏
KB

such that X 6= X ′. Thus, we have
that α ∈ X for some X ∈

∏∏
KB

if and only if α /∈ X ′ for all X ′ ∈
∏∏

KB
such that X 6= X ′.

Analogously, we can show that β ∈ Y ′ for some Y ′ ∈
∐

KB
is such that β ∈ X for some

X ∈
∐∐

KB
if and only if β /∈ X ′ for all X ′ ∈

∐∐
KB

such that X 6= X ′.

Proof for Lemma 2

Proof Consider any X ∈
∏

KB1
. Then, X is a minimal unsatisfiable set of TGDs w.r.t.

Σ1NC ∪Σ1E . Since KB1 = KB2, then it holds that X ⊂ KB2, Σ1E = Σ2E , Σ1NC = Σ2NC and
X is an unsatisfiable set of TGDs w.r.t. Σ2NC ∪Σ2E . Also, there does not exist X ′ ( X such
thatX ′ is an unsatisfiable set of TGDs w.r.t. Σ2NC∪Σ2E , since otherwise we would contradict
our hypothesis that X ∈

∏
KB1

, as Σ1NC = Σ2NC and Σ1E = Σ2E . Then, X ∈
∏

KB2
; and

since this holds for any arbitrary X ∈
∏

KB1
, then we have that

∏
KB1

=
∏

KB2
.

Consider any arbitrary X,Y ∈
∏

KB1
such that XθY . Since

∏
KB1

=
∏

KB2
, then

X,Y ∈
∏

KB2
. Thus, θ∗∏

KB1

is equivalent to θ∗∏
KB2

, and then
∏∏

KB1
=
∏∏

KB2
.

Likewise, consider any arbitrary X ′, Y ′ ∈
∐

KB1
such that X ′θY ′. Since

∐
KB1

=
∐

KB2
,

then X ′, Y ′ ∈
∐

KB2
. Therefore, θ∗∐

KB1

is equivalent to θ∗∐
KB2

, and thus
∐∐

KB1
=
∐∐

KB2
.

Proof for Proposition 3

Proof Consider α ∈ D and X ∈
∏

KB
such that α is relevant to X. From Definition 6

we have that X is unsatisfiable w.r.t. N ⊆ ΣE ∪ ΣNC , and then from Definition 4 and the
fact that α is relevant to X we have that mods({α}, X ∪ N) = ∅ (1). Also, since {α} is
singleton then the only A ( {α} is A = ∅, and clearly mods(∅, X ∪N) 6= ∅ (2). Then, from
(1), (2) and Definition 7 it follows that {α} ∈

∐
KB

. Also, from Definition 9 we have that
{α} ∈

∐∐
KB

, since {α} cannot overlap with any other kernel, being singleton.

Consider the incision over {α}. From Definition 11 it follows that δ(KB ) ∩ {α} 6= ∅.
Then, we have that δ(KB ) ∩ {α} = α, and thus α ∈ δ(KB ).

Proof for Corollary 2

Proof Consider any arbitrary α ∈ D. Since α is relevant to some X ∈
∏

KB
, then by

Proposition 3 it holds that α ∈ δ(KB ). Thus, since this holds for any arbitrary α ∈ D we
have that D ⊆ δ(KB ).

Proof for Theorem 1

Proof Let KB1 = (D1,Σ1) and KB2 = (D2,Σ2) be two Datalog± ontologies such that
KB1 = KB2.

⇒) Construction to postulates

Consider an operator ! defined as in Definition 14; we have to prove that ! satisfies every
postulate in Theorem 1. Let KB1! = (D1!,Σ1!) and KB2! = (D2!,Σ2!) be the two Datalog±

ontologies resulting from the consolidation of KB1 and KB2 by means of !, respectively.
Furthermore, let KB?

1 = (D1,Σ1 \ ρ(KB1)) and KB?
2 = (D2,Σ2 \ ρ(KB2)) be the ontology

resulting from removing the TGDs selected by ρ from KB1 and KB2. Let
∏

KB1
and

∐
KB?

1
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be the set of dependency and data kernels for KB1 and KB?
1 respectively,

∏
KB2

and
∐

KB?
2

be the sets of dependency and data kernels for KB2 and KB?
2. Finally, let

∏∏
KB1

and
∐∐

KB?
1

be the set of dependency and data clusters for KB1 and KB?
1 respectively,

∏∏
KB2

and
∐∐

KB?
2

be the sets of dependency and data clusters for KB2 and KB?
2.

• Inclusion: Σ1! ⊆ Σ1 and D1! ⊆ D1.

By definition of KB1! we have that D1! = D1 \ %(KB?
1), and thus D1! ⊆ D1.

In a similar way, by definition of KB1! we have that Σ1! = Σ1 \ ρ(KB1), and thus
Σ1! ⊆ Σ1.

• Coherence: KB1! is coherent.

To prove that KB1! is coherent we have to show that ΣT ∈ Σ1! is satisfiable for
ΣE ∪ ΣNC ∈ Σ1!. To do this it is sufficient to show that all minimal conflicts are
attended to by the operator, i.e., that no dependency kernel is included in Σ1!,

Consider any arbitrary X ∈
∏

KB1
. From Proposition 2 we have that there exists

Y ∈
∏∏

KB1
such that X ⊆ Y . By definition of ρ it holds that for all Y ∈

∏∏
KB1

and X ∈
∏

KB1
where X ⊆ Y it holds that (ρ(KB1) ∩ X) 6= ∅. Then, there exists

some α ∈ X such that α ∈ (ρ(KB1) ∩ X), and thus α /∈ Σ1!. Therefore, X * Σ1!,
i.e., the conflict was solved. Since this holds for any arbitrary X ∈

∏
KB1

then every
unsatisfiable set in Σ1 is not included in Σ1!, and thus ΣT ∈ Σ1! is satisfiable for
ΣE ∪ ΣNC ∈ Σ1!, i.e., KB1! is coherent.

• Consistency: Proof is analogous to that for Coherence.

• Minimality: If KB′ ⊆ KB1 is coherent and consistent, then it holds that KB1! 6⊂
KB′.

Let KB ′ ⊆ KB1 be such that KB ′ is coherent and consistent, and let CFΣ1 = Σ1 \⋃
(
∏∏

KB
) and CFD1 = D1 \

⋃
(
∐∐

KB
) be the set of formulas that do not belong to any

kernel in Σ1 and D1, respectively.

Suppose by reductio that KB1! ⊂ KB′. By definition of KB1! we have that ρ(KB1) ⊆⋃
(
∏∏

KB
) , and that %(KB1) ⊆

⋃
(
∐∐

KB
). Then, CFΣ1 ⊆ KB1! and CFD1 ⊆ KB1!.

Therefore, we have that CFΣ1 ⊂ KB ′ and that CFD1 ⊂ KB ′.

Then, since KB1! ⊂ KB′ there must exist α ∈
∏∏

KB
∪
∐∐

KB
such that α ∈ KB ′ but

α /∈ KB1!, while KB ′ is coherent and consistent all the same. That is, there exists a
dependency cluster or a data cluster where the removal is not optimal, since α could
be included in the consolidation. For the rest of the proof and for simplicity reasons,
we consider the case where α belongs to a dependency cluster. This is made without
loss of generality, since the proof for the case where α is included in a data cluster is
analogous to the one presented here.

Let us consider then α ∈
∏∏

KB
such that α ∈ KB ′. By Corollary 1 we have that

α ∈ X where X ∈
∏∏

KB
. Let T = (X ∩ ρ(KB)) be the incision performed over the

cluster, and let R = (X ∩ {KB \ KB ′}) be those formulas removed from X when
obtaining KB ′. Clearly, since KB ′ is coherent then for all Y ⊆ X where Y ∈

∏
KB

it
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holds that R ∩ Y 6= ∅, because otherwise Y ⊂ KB ′, which will make KB ′ incoherent.
Besides, since R ⊆ Y then R ⊆

∏∏
KB

, and thus R satisfies the first two conditions in
Definition 12.

By Definition 12 we have that T is such that there not exists a set of TGDs that
satisfies the first two conditions in the definition and at the same time it holds that
(1) T ⊂ R.

Since α /∈ KB1! and α ∈ X then α ∈ ρ(KB), and thus α ∈ T . However, we know that
α ∈ X and α ∈ KB ′, and thus α /∈ R. Therefore we have that (2) T 6⊂ R.

From (1) and (2) we have that T ⊂ R and that T 6⊂ R, an absurd coming from our
original assumption that KB1! ⊂ KB′, and it holds that if KB′ ⊆ KB1 is coherent
and consistent then KB1! 6⊂ KB′.

⇐) Postulates to Construction

For the second part of the proof, consider an operator ! that satisfies all postulates in
Theorem 1. Let ρ(!)Σ

be a function based on ! defined as follows:

ρ(!)Σ
(KB1) = {x |x ∈ X for some X ∈

∏∏
KB1

and x /∈ {Σ1 ∩KB1!}}

Let KB?
1 = (D1,Σ1 \ ρ(!)Σ

(KB1)) be the ontology resulting of removing from KB1 the
TGDs selected by ρ(!)Σ

. Then, let %(!)D be another function based on ! defined as follows:

%(!)D(KB?
1) = {x |x ∈ X for some X ∈

∐∐
KB?

1
and x /∈ {D1 ∩KB1!}}

Based on %(!)D and ρ(!)Σ
we define a new operator as follows:

KB1!′ = (D1 \ %(!)D(KB?
1),Σ1 \ ρ(!)Σ

(KB1))

We have to show that !′ is a Datalog± ontology consolidation operator based on Cluster
Contraction. To do this, we first prove that %(!)D is a well-defined data incision function
and that ρ(!)Σ

is a well-defined constraint incision function. That is, given ρ(!)Σ
we have to

prove that:

- ρ(!)Σ
is well-defined, i.e., if KB1 = KB2, then ρ(!)Σ

(KB1) = ρ(!)Σ
(KB2).

By definition of ρ(!)Σ
we have that ρ(!)Σ

(KB1) = {x |x ∈ X for some X ∈
∏∏

KB1

and x /∈ Σ1 ∩KB1!}.

Consider any arbitrary x ∈ ρ(!)Σ
(KB1). Since KB1 = KB2, then by Lemma 2 we have

that
∏∏

KB1
=
∏∏

KB2
. Since x ∈ ρ(!)Σ

(KB1), then x ∈ X ∈
∏∏

KB1
, and thus it holds that

x ∈ X ∈
∏∏

KB2
(1).

Besides, since x ∈ X ∈
∏∏

KB1
then x ∈ Σ1. Thus, since x /∈ Σ1 ∩KB1!, then x /∈ KB1!.

Since KB1 = KB2, from the fact that ! is a function we have that KB1! = KB2!, and
then it also holds that x /∈ KB2!. Thus, x /∈ Σ2 ∩KB2!(2).

From (1) and (2) it follows that for any x ∈ ρ(!)Σ
(KB1) it holds that x ∈ {y | y ∈

Y for some Y ∈
∏∏

KB2
and y /∈ Σ2 ∩ KB2!}. By definition of ρ(!)Σ

this is ρ(!)Σ
(KB2),

and thus we have that if KB1 = KB2, then ρ(!)Σ
(KB1) = ρ(!)Σ

(KB2).

648



Datalog± Ontology Consolidation

- ρ(!)Σ
(KB1) ⊆

⋃
(
∏∏

KB1
).

This follows directly from the definition of ρ(!)Σ
, since for every x ∈ ρ(!)Σ

(KB1) it holds
that x ∈ X for some X ∈

∏∏
KB1

because of the first condition in the definition.

- If X ∈
∏∏

KB1
e Y ∈

∏
KB1

are such that Y 6= ∅ and Y ⊆ X, then (Y ∩ ρ(!)Σ
(KB1)) 6= ∅.

Suppose by reductio that there exists some X ∈
∏∏

KB1
and Y ∈

∏
KB1

such that Y 6= ∅,
Y ⊆ X and (Y

⋂
ρ(!)Σ

(KB1)) = ∅.

Then, for all α ∈ Y it holds that α /∈ ρ(!)Σ
(KB1), i.e., α /∈ X ∈

∏∏
KB1

or α ∈ {Σ1∩KB1!}.
By our hypothesis we have that α ∈ Y ∈

∏
KB1

and Y ⊆ X. Thus α ∈ X, and therefore
it must hold that α ∈ {Σ1 ∩KB1!}, and by extension α ∈ KB1!.

Since this holds for any arbitrary α ∈ Y then we have that Y ⊂ Σ1!. From Definition 6
it holds that Y is a minimal unsatisfiable set of TGDs w.r.t. ΣE ∪ ΣNC ⊂ Σ1. Then,
for any relevant set of atoms A it holds that mods(A, Y ∪ ΣE ∪ ΣNC ) = ∅. Then, since
Y ⊂ Σ1! then for any relevant set A′ it holds that mods(A′,Σ1!∪ΣE ∪ΣNC ) = ∅, because
the TGDs in Y are triggered by A′. Then, Σ1! is an unsatisfiable set of TGDs w.r.t.
ΣE ∪ ΣNC ⊂ Σ1.

However, from Coherence we have that KB1! is coherent, and thus Σ1! is satisfiable
w.r.t. ΣE ∪ ΣNC ⊂ Σ1.

Then we have that Σ1! is satisfiable w.r.t. ΣE ∪ ΣNC ⊂ Σ1 and Σ1! is unsatisfiable
w.r.t. ΣE ∪ ΣNC ⊂ Σ1, an absurd coming from our initial supposition that there exists
some X ∈

∏∏
KB1

and Y ∈
∏

KB1
such that Y 6= ∅, Y ⊆ X and (Y

⋂
ρ(!)Σ

(KB1)) = ∅,
and it holds that for all X ∈

∏∏
KB1

and Y ∈
∏

KB1
such that Y ⊆ X, if Y 6= ∅ then

(Y
⋂
ρ(!)Σ

(KB1)) 6= ∅.

- For all X ∈
∏∏

KB1
it holds that T = (X ∩ ρ(!)Σ

(KB1)) is such that there not exists
R ⊂ X where R satisfies the two previous conditions and R ( T .

To prove this is sufficient to show that, being clusters disjoint sets, the election in each
cluster is optimal, because otherwise if should exists any cluster where the incision
function does not choose in an optimal way then Minimality would not be satisfied.
So, suppose by reductio that there exists X ∈

∏∏
KB1

where T = (X ∩ρ(!)Σ
(KB1)) is such

that there does exist R ⊂ X where R satisfies the two previous conditions and R ( T .

Let us consider KB ′ = (Σ′, D′) such that for all Y ∈
∏∏

KB1
such that Y 6= X it holds

that T ′ = (Y ∩ ρ(!)Σ
(KB1)) and R′ = (Y ∩ {KB \KB ′}) (those formulas removed from

Y when obtaining KB ′) are such that T ′ = R′. Since T ′ = R′ then R′ is such that
the two conditions in Definition 12 are satisfied. Besides, let CFΣ1 = Σ1 \

∏∏
KB

and
CFD1 = D1 \

∐∐
KB

be the set of formulas that do not belong to any kernel in Σ1 and
D1, respectively; and let KB ′ be such that CFΣ1 ⊂ Σ′ and CFD1 ⊂ D′.

The fact that every formula that is not in any conflict belongs to KB ′ and that KB ′ is
built in such a way that the election in each cluster different than X is the same both
in KB ′ and ρ(!)Σ

(KB1) makes that KB ′ \ (X ∩ {KB \KB ′}) = KB1! \ (X ∩ ρ(!)Σ
(KB1)).

This is, if there is any difference between KB ′ and KB1! that difference arise from the
election on which formulas to remove from X.
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Finally, from our supposition we have that there exists R ⊂ X where R satisfies the two
previous conditions and R ( T . Let KB ′ and R ( T be such that R = (X∩{KB \KB ′})
is the set of formulas removed from X when obtaining KB ′. Then, we have that KB ′ is
coherent and consistent, since every conflict in clusters in KB1 where solved, whether by
removing R (for cluster X) or the sets R′ (for every cluster different than X). Besides,
since we have that KB ′ \ (X ∩{KB \KB ′}) = KB1! \ (X ∩ ρ(!)Σ

(KB1)) and that R ( T ,
then for KB1! = KB1 \ ρ(!)Σ

(KB1) and KB ′ = KB1 \ {
⋃
Y ∈{
∏∏

KB1
\X}R

′ ∪ R} where

(R′ = Y ∩ {KB \ KB ′}) and R = (X ∩ {KB \ KB ′}) it holds that KB1! ⊂ KB′ (1).
That is, if all formulas that are not involved in conflicts belong to both KB1! and KB ′,
in each cluster different than X the same formulas are removed, and the set of formulas
removed from X to obtain KB ′ are an strict subset of those removed by ρ(!)Σ

(KB1) to
obtain KB1!, then KB1! is an strict subset of KB ′, i.e., we have removed more formulas
by deleting T than by deleting R.

On the other hand, since KB ′ is coherent and consistent, then by Minimality we have
that KB1! 6⊂ KB′ (2).

Therefore, from (1) and (2) we have that KB1! ⊂ KB′ and KB1! 6⊂ KB′, and absurd
coming from our initial supposition that there exists X ∈

∏∏
KB1

where T = (X ∩
ρ(!)Σ

(KB1)) is such that there exists R ⊂ X where R satisfies the two previous conditions
and R ( T , and we have that for all X ∈

∏∏
KB1

it holds that T = (X ∩ ρ(!)Σ
(KB1))

is such that there not exists R ⊂ X where R satisfies the two previous conditions and
R ( T .

We omit the proof that %(!)D is a well-defined data incision function using Consistency
and Minimality since it is analogous to the proof that ρ(!)Σ

is a well-defined constraint
incision function using Coherence and Minimality.

Now that we have shown that %(!)D and ρ(!)Σ
are well-defined data incision functions

and constraint incision functions, respectively, to conclude this second part of the proof
we have to show that !′ coincides with !. From Inclusion it follows that D1! ⊆ D1 and
Σ1! ⊆ Σ1 (1). Also, from our definition of %(!)D it follows that %(!)D(KB?

1) = D1 \ D1!,
and from our definition of ρ(!)Σ

it follows that ρ(!)Σ
(KB1) = Σ1 \ Σ1! (2). Then, from

(1) and (2) we have that D1! = D1 \ %(!)D(KB?
1) and Σ1! = Σ1 \ ρ(!)Σ

(KB1). Thus, ! =
(D1 \ %(!)D(KB?

1),Σ1 \ ρ(!)Σ
(KB1)), and therefore !′ coincides with !.
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