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We evaluate quantum effects due to a two-component Dirac field in 2þ 1 spacetime dimensions,
coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial
contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the
divergences in the corresponding self-energy, and also consider the role of the massless zero mode—
corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field.
For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we
provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the
case for the Casimir interaction energy, the result is finite and unambiguous.
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I. INTRODUCTION

The study of effects due to fermionic fields in the
background of defects has been a subject of general interest
in rather different areas, from the behavior of textures in
superfluid phases of He3 [1] to cosmic strings [2]. A
representative of these phenomena is the Callan-Harvey
effect [3], where a Fermi field in an odd-dimensional
spacetime couples to a defect, the latter corresponding to a
mass term which changes sign along a domain wall. Under
these circumstances, the Dirac field spawns a localized zero
mode which may be capable of carrying currents when
coupled to a gauge field.
A similar phenomenon happens also in a nonrelativistic

two-dimensional electron gas in the presence of a magnetic
field in the regime of the quantum Hall effect, where the
zero modes become the so-called chiral edge states [4].
In this paper we evaluate yet another effect due to the

interplay between the fermionic field and domain walls,
this time involving not just the presence of the zero mode,
but also the quantum fluctuations of the fermionic field on
top of the domain walls. This effect amounts to the
emergence of nontrivial contributions to the vacuum energy
as a function of the geometry of the wall(s). One should
indeed expect this kind of effect, since the existence of the
walls produces a geometry-dependent distortion of the
vacuum fluctuation, a fertile setup for the induction of
Casimir-like effects. Indeed, the quantum vacuum inter-
action between kinks of the sine-Gordon equation has been
evaluated in Ref. [5] using the TGTG formula [6]. This
force is attractive, and it should be considered as a small
quantum correction to the well-known repulsive classical
force between kinks [7].
Having in mind its potential application to graphene [8],

where some effective continuum models correspond to
Dirac fields in 2þ 1 dimensions coupled to space-dependent

masses [9], we evaluate here some effects due to the vacuum
(i.e., zero-temperature) quantum fluctuations of a Dirac field
in the presence of domainwalls [10]. Since there is no reason
a priori to assume that just the zeromodes are relevant to this
effect, we will include all the modes.
Effective continuum models for graphene using Dirac

fields generally involve not just a single two-component
field, but an even number of them, which amounts to
putting the Dirac field in a reducible representation of the
Poincaré group in 2þ 1 dimensions. Nevertheless, since
these models can be constructed in terms of decoupled
two-component fields in a rather straightforward way, we
will consider just the latter, i.e., spinors in an irreducible
representation. Besides, the two-component case is relevant
to other applications in condensed matter physics, like the
above-mentioned quantum Hall effect case.
The domain wall energy is usually described by means of

an effective Landau-Ginzburg-like functional of its shape
(assumed to be smooth). That functional could, at least in
principle, be obtained from a detailed microscopic model
for the system. In this context, contributions depending on,
for example, the crystal structure, should be quite relevant.
In this work, we focus on contributions to the domain wall
energy, which should appear on top of the ones coming
from the lattice structure. Besides, we also obtain a result
corresponding to two domain walls, whereby the Dirac
field is shown to induce an attractive, Casimir-like force.
To the best of our knowledge, this force does not have an
analogue within the context of the phenomenological
model, since it is not a contact interaction which could
be incorporated by means of a local term into the energy.
For static-wall configurations, we shall see that the

effective action predicts the existence of an effective
interaction between domain-wall-like defects in the mass
(the “pseudogap”). We also study the dependence of this
interaction as a function of the geometry of the defects, at
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least under some simplifying assumptions and for
particular cases.
This paper is organized as follows. In Sec. II we describe

the kind of model that we consider in this article, introduce
our notation and conventions, and define its effective
action. As a warm-up exercise, in Sec. III we consider
the case of a single domain wall, namely, of a static mass
that changes sign along a single spatial curve, having
constant values (and the same module) everywhere else.
The corresponding self-energy is divergent, including the
contributions corresponding to small deformations of a
rectilinear wall. We also verify, by coupling the field to an
external gauge field, that the massless fermion mode is
properly taken into account in our approach.
Then, in Sec. IV we deal with the situation of a static

mass that changes sign on two spatial curves, also having
the same constant value elsewhere. We compute exactly the
interaction energy for the particular case of two straight
lines, showing that the force between defects is always
attractive. A perturbative expansion to treat cases when the
shape of one of the rectilinear walls is slightly perturbed
can be implemented. An Appendix contains the details
corresponding to the first- and second-order terms.
Section V contains our conclusions.

II. THE SYSTEM

The system that we consider in this work is defined in
terms of an Euclidean action S, given by

Sðψ ;ψ ;MÞ ¼
Z

d3xψðxÞDψðxÞ; ð1Þ

with D≡ ∂ þMðxÞ, for a Dirac field ψðxÞ, ψðxÞ in the
presence of a space-dependent mass MðxÞ, in 2þ 1
dimensions. We have adopted the convention that x denotes
the three Euclidean spacetime coordinates, x0, x1, x2, while
x corresponds to just x1 and x2.
In the representation we adopt for Dirac’s algebra, γμ,

μ ¼ 0, 1, 2, are Hermitian 2 × 2 matrices, satisfying
fγμ; γνg ¼ 2δμν. Indices from the middle of the greek
alphabet, like μ, ν;…; run from 0 to 2, while roman ones
can take the values 1 and 2. The Dirac field has two
spinorial components, and it can be used as a building
block for higher, reducible representations (this is indeed
the usual situation in graphene models).
Regarding the specific form of the mass MðxÞ, we shall

restrict ourselves in this work to configurations such that
jMðxÞj ¼ m ¼ constant almost everywhere, changing sign
along a two-dimensional spacetime region U which, for
static domain walls, has the form

U ¼ C ×R; ð2Þ

where C is a one-dimensional region contained on R2, the
x1, x2 plane. For static configurations, C is assumed, in this

paper, to correspond to either a single curve, or to two
disjoint regular curves. In the next sections, we discuss
these two cases separately.
We conclude this section by introducing the effective

action, ΓðMÞ:

e−ΓðMÞ ¼ ZðMÞ; ð3Þ

where

ZðMÞ ¼
Z

DψDψe−Sðψ ;ψ ;MÞ ð4Þ

is the Euclidean vacuum-to-vacuum transition amplitude.
From ΓðMÞ one can obtain the vacuum energy E:

E ¼ lim
T→∞

ΓðMÞ
T

; ð5Þ

where T denotes the extent of the time-like coordinate x0
(regarded temporarily as finite but tending to infinity to
extract the vacuum energy).
We also note that ZðMÞ can be formally written in terms

of a fermionic determinant; indeed,

ZðMÞ ¼ detD: ð6Þ

Note that the effective action is real; indeed, since we work
in the Euclidean formalism, any imaginary part of ΓðMÞ,
had it existed, should have been parity violating (since the
imaginary part of the action is parity violating). But no
parity-violating functional (either local or nonlocal) can be
constructed in terms of just a scalar function and its
derivatives. On the other hand, having in mind its appli-
cation to graphene, the reducible representations used in
that context for the fermions are such that the action is
explicitly real.
Thus, having the above discussion in mind, we can write

ZðMÞ ¼ detD ¼ detD† ¼ ½detD† detD�1=2
¼ ðdetHÞ1=2 ¼ ðdet H̆Þ1=2; ð7Þ

where

H≡D†D; H̆≡DD†: ð8Þ
Taking into account our assumptions about MðxÞ, we see
that

H ¼ −∂2 þm2 − ∂MðxÞ;
H̆ ¼ −∂2 þm2 þ ∂MðxÞ: ð9Þ

Since results that can be expressed in terms of Γ are
independent of the sign of M, one can work with either H
or H̆; in the remainder of this paper, we use the former.
Thus,
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ΓðMÞ ¼ −
1

2
log detH ¼ −

1

2
Tr logH: ð10Þ

III. A SINGLE DOMAIN WALL

We consider here a time-independent M, i.e.,
M ¼ MðxÞ, which has a domain wall defect along a single
closed curve C. In other words, MðxÞ jumps from −m to
þm when crossing C (physical observables, like the
vacuum energy, are independent of the sign of the jump).
In order to gain some insight into the nature of the

system, let us first define the domain wall implicitly, in
terms of a smooth function FðxÞ, assumed to vanish with a
nonzero gradient on C. Then we set MðxÞ ¼ mσðFðxÞÞ
(m ≥ 0), where σ denotes the sign function. Thus, we see
that the operator H introduced in Eq. (9) has the form

H ¼ H0 þHI; ð11Þ

with

H0 ¼ −∂2 þm2; HI ¼ −2mδ½FðxÞ�γj∂jFðxÞ; ð12Þ

where δ denotes Dirac’s δ function, and H0 is proportional
to the (omitted) 2 × 2 unit matrix. The appearance of a δ
function is a consequence of the assumption of zero width
for the domain wall.
By an application of the co-area formula, we note thatHI

can also be rendered in the form HIðxÞ ¼ γiAiðxÞ, where

AiðxÞ ¼ −2m
Z

dτ

���� dyðτÞdτ

����δ½x − yðτÞ�n̂iðτÞ; ð13Þ

where τ → yðτÞ is a parametrization of C, and n̂iðτÞ is the
ith component of n̂ðτÞ, the unit normal1 to C at the point
yðτÞ. Thus,

AiðxÞ ¼ ϵijχjðxÞ;

χiðxÞ ¼ −2m
Z

dτδ½x − yðτÞ� dyiðτÞ
dτ

: ð14Þ

A. Effective action and self-energy

As it should have been expected, it is far from trivial to
calculate the effective action (and therefore the self-energy)
exactly for an arbitrary closed curve C. Besides, one should
expect the existence of infinities, due to the assumption that
the defects have zero width. These infinities can never-
theless be regulated by the introduction of a UV cutoff
which, in coordinate space, may be regarded as a non-
vanishing width for the defect. In the next section, when
dealing with the interaction between two defects, no cutoff

dependence is expected in the interaction energy, since this
object is independent of the respective self-energies.
One can attempt to implement different approximation

schemes in order to calculate Γ; the choice is determined, in
the end, by the nature of the configuration being studied.
The case we consider here corresponds to small-amplitude
deviations with respect to a linear defect. More precisely,
we assume that FðxÞ ¼ x2 − φðx1Þ, expanding the effective
action in powers of φ, which is the deviation with respect to
the x2 ¼ 0 straight line.
We first note that, with this choice of F

HI ¼ −2mδðx2 − φðx1ÞÞð−φ0ðx1Þγ1 þ γ2Þ; ð15Þ

where a prime denotes a derivative with respect to the
argument. Denoting now by Γi the order-i term in the
expansion for Γ,

Γ ¼ Γ0 þ Γ1 þ Γ2 þ � � � ; ð16Þ

we also have the corresponding expansion for the
energy:

E ¼ E0 þ E1 þ E2 þ � � � ; ð17Þ

where E0 amounts to an uninteresting infinite constant
independent of φ, which can be interpreted as coming from
a linear energy density. The divergence is present already at
the level of the energy density, which is cutoff dependent.
Regarding the first- and second-order terms, we see that,

as a consequence of assuming that the functional expansion
exists, they can be written as follows:

E1 ¼
Z

dx1Eð1Þðx1Þφðx1Þ;

E2 ¼
1

2

Z
dx1

Z
dy1Eð2Þðx1; y1Þφðx1Þφðy1Þ: ð18Þ

Since the functional expansion coefficients Eð1Þ and Eð2Þ
are independent of φ, they must be translation-
invariant objects. Thus, Eð1Þ ¼ constant and Eð2Þðx1; y1Þ ¼
Eð2Þðx1 − y1Þ.
The first-order term then has the form

E1 ¼ Eð1Þ
Z

dx1φðx1Þ; ð19Þ

namely, it depends only on the average value of the
deformation φ. Since this average value could be changed
just by performing a rigid translation of the defect along the
x2 direction, and the energy cannot change under such a
shift, we conclude that Eð1Þ (and therefore E1) vanishes.
We have checked this explicitly by evaluating Γ1 which,
recalling Eq. (10), is given by

1Results for Γ are independent of the choice (inwards or
outwards) for the normal.
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Γ1 ¼ −
1

2
Tr½ðH0Þ−1H1�: ð20Þ

Here, Hl consistently denotes the order-l term in an
expansion of Hl. The ones appearing here are

H0 ¼ −∂2 þm2 − 2mγ2δðx2Þ;
H1 ¼ 2m½γ1δðx2Þφ0ðx1Þ þ γ2δ

0ðx2Þφðx1Þ�: ð21Þ

The inverse of H0 is given by

ðH0Þ−1ðx; yÞ ¼
Z

d2k∥
ð2πÞ2 e

ik∥·ðx∥−y∥ÞGðk∥; x2; y2Þ;

Gðk∥; x2; y2Þ ¼ Gþðk∥; x2; y2ÞPþ þ G−ðk∥; x2; y2ÞP−;

G�ðk∥; x2; y2Þ ¼
1

2Ωðk∥Þ
�
e−Ωðk∥Þjx2−y2j

� m
Ωðk∥Þ ∓ m

e−Ωðk∥Þðjx2jþjy2jÞ
�
; ð22Þ

with P� ¼ 1�γ2
2
, v∥ ≡ ðv0; v1Þ, and Ωðk∥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2∥ þm2

q
.

Then, after some algebra, we find

Eð1Þ ¼ −m
Z

dx2

Z
d2k∥
ð2πÞ2

× f½Gþðk∥; x2; y2Þ −G−ðk∥; x2; y2Þ�δ0ðy2Þgjy2→x2

¼ 0; ð23Þ

as expected.
We conclude this section by dealing with the second-

order term, which is made up of two contributions:

Γ2 ¼ Γ2;1 þ Γ2;2;

Γ2;1 ¼ −
1

2
Tr½ðH0Þ−1H2�;

Γ2;2 ¼
1

4
Tr½ðH0Þ−1H1ðH0Þ−1H1�: ð24Þ

The first contribution involves H2,

H2 ¼ −m½γ1δ0ðx2Þ∂1ðφðx1ÞÞ2 þ γ2δ
00ðx2Þðφðx1ÞÞ2�; ð25Þ

and yields an energy with the form

E2;1 ¼ Eð2;1Þ
Z

dx1ðφðx1ÞÞ2; ð26Þ

where

Eð2;1Þ ¼ m
2

Z
dx2

Z
d2k∥
ð2πÞ2

× f½Gþðk∥; x2; y2Þ −G−ðk∥; x2; y2Þ�δ00ðy2Þgjy2→x2 :

ð27Þ

An explicit evaluation shows that the object above is
quadratically divergent in the ultraviolet, namely, introduc-
ing a UV cutoff Λ,

Eð2;1Þ ¼ c
ðmΛÞ2

2
; ð28Þ

where c is a dimensionless constant, which depends upon
the regularization approach. Thus, we conclude that the role
of this term amounts to introducing a mass density propor-
tional to ðmΛÞ2 for the collective degree of freedom.
The remaining term, E2;2, can be evaluated and repre-

sented in Fourier space, with the result being a nonlocal
quadratic functional in φ:

E2;2 ¼
1

2

Z
dk1
2π

~Eð2;2Þðk1Þj ~φðk1Þj2: ð29Þ

From this expression, we can extract its local piece,
quadratic in derivatives, which is logarithmically divergent:

E2;2 ¼ m2

Z
d2k∥
k2∥

Z
dx1ðφ0ðx1ÞÞ2; ð30Þ

which may be thought of as generating a “tension” for the
domain wall. Note that the existence of an infrared
divergence in the momentum integral can only proceed
from the existence of a massless field, which we can readily
identify here as corresponding to the one predicted by the
Callan-Harvey mechanism.
The aim of the previous calculation was to illustrate that,

in an effective theory describing the dynamics of the wall,
vacuum fluctuations renormalize both the mass and the
tension of the defect. A complete calculation in the
framework of a renormalizable field theory should include
a quantum scalar field whose classical part is responsible
for a smooth domain wall. The limit of a sharp domain wall
for the self-energy could be ill defined [11].

B. Coupling to an external gauge field

When coupling the Dirac field to an external Abelian
gauge field Aμ, we have to perform the following change in
the operator D:

D → ∂ þ ieAðxÞ þMðxÞ: ð31Þ

Then, assuming a rectilinear defect, the term of second
order in Aμ, Γð2ÞðAÞ, will have the structure
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Γð2ÞðAÞ ¼ 1

2

Z
d3x

Z
d3yAμðxÞΠμνðx; yÞAνðyÞ: ð32Þ

It is convenient to perform a Fourier transform of the
objects above with respect to the x0 and x1 coordinates (the
defect breaks translation invariance along the x2 axis):

Γð2ÞðAÞ ¼ 1

2

Z
d2k∥
ð2πÞ2

Z
dx2

×
Z

dy2 ~Aμð−k∥; x2Þ ~Πμνðk∥; x2; y2Þ ~Aνðk∥; y2Þ:

ð33Þ
A straightforward calculation shows that the vacuum
polarization tensor ~Πμν is given by

~Πμνðk∥; x2; y2Þ ¼ −e2
Z

d2p∥

ð2πÞ2
× tr½Sðp∥; y2; x2ÞγμSðp∥ þ k∥; x2; y2Þγν�;

ð34Þ
with

Sðp∥; x2; y2Þ ¼ ð−γ2∂x2 − ip∥ þmσðx2ÞÞGðp∥; x2; y2Þ:
ð35Þ

Having in mind to study the response of the system to an
electric field along the direction and location of the defect,
we consider the components ~Παβ, with α, β in the 0,1 range,
and set x2 ¼ y2 ¼ 0. After a rather lengthy calculation, we
see that the only surviving contributions to the vacuum
polarization lead to

~Πμνðk∥; x2; x2Þ ¼
e2

4

Z
d2p∥

ð2πÞ2 ½pαðpþ kÞβ þ pβðpþ kÞα
− δαβp∥ · ðp∥ þ k∥Þ�

×

�
1

ðΩðp∥Þ −mÞðΩðp∥ þ k∥Þ −mÞ

þ 1

ðΩðp∥Þ þmÞðΩðp∥ þ k∥Þ þmÞ
�
:

ð36Þ
It can be seen that the leading contribution proceeds from
the first term on the second line above. In particular, for
large m

~Πμνðk∥; x2; x2Þ

∼
�
em
2

�
2
Z

d2p∥

ð2πÞ2

×
pαðpþ kÞβ þ pβðpþ kÞα − δαβp∥ · ðp∥ þ k∥Þ

p2
∥ðp∥ þ k∥Þ2

;

ð37Þ

which is the expression for the vacuum polarization in
1þ 1 dimensions, due to a massless fermion field. Thus we
have verified, in a concrete example, the presence of this
mode in our treatment of the problem.

IV. TWO DOMAIN WALLS

In this section, the mass is assumed to have a purely
spatial dependence, with two domain-wall like defects, i.e.,
zero-width regions of space where the mass passes through
zero. One of those regions will be assumed to correspond to
a straight line, hereafter denoted by L, defined by x2 ¼ 0.
The other defect, R, is assumed to correspond to a curve
which represents a small departure from a line which is
parallel to L. We assume that it can be defined in terms of a
single function φðx1Þ, which specifies the distance, along
x2, of each point in R to L. Thus,

MðxÞ ¼ mσðx2Þσðx2 − φðx1ÞÞ; ð38Þ

where, as before, σ denotes the sign function. m is a
positive constant which defines the constant value of the
absolute value of MðxÞ, as well as half the height of the
jump in the mass at each defect.
The assumption about R being a small departure from a

straight line parallel to L is made more precise by assuming
that the above introduced function φðx1Þ can be written as
φðx1Þ ¼ aþ ηðx1Þ, with a > 0 and jηðx1Þj ≪ a.
The effective action ΓðMÞ can then be expanded in

powers of η,

Γ ¼ Γ0 þ Γ1 þ Γ2 þ � � � ; ð39Þ

where the index denotes the order in η of the corresponding
term. We will evaluate here the zeroth order, and describe
the calculation of the first and second orders in the
Appendix.
The zeroth order corresponds to setting η ¼ 0, so that the

walls L and R will be located at x2 ¼ 0 and x2 ¼ a,
respectively. The system then has translation invariance
along x1, as well as time independence. The effective action
to this order will then diverge, since it will be proportional
to the extent of the time interval, T, and to L1, the length of
the system along x1, which should tend to infinity. As
usual, one can take care of this divergence by considering
the effective action per unit time and per unit length, a
quantity which we shall denote by E0ðaÞ and which has the
dimensions of energy per unit length. This quantity—a
function of a and m—contains the information about the
interaction energy between the two domain walls, in
particular on the part of that function which does depend
on a. Self-energy contributions are a independent and will
be discarded. In other words, since the force per unit length
between L and R is proportional to (minus) the derivative of
Γ0 with respect to a, we only keep the terms which
contribute to that observable.
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Γ0ðaÞ is formally given by a functional determinant:

e−Γ0ðaÞ ¼ det½∂ þmðx2Þ� ¼ det½−∂ þM0ðx2Þ�; ð40Þ

where the second equality is a consequence of the reality of
the energy.
Then,

e−Γ0ðaÞ ¼ fdet½ð−∂ þM0ðx2ÞÞð∂ þM0ðx2ÞÞ�g1
2: ð41Þ

Then we see, by Fourier transforming the dependence on
the x0 and x1 coordinates, that

E0ðaÞ ¼ lim
T;L1→∞

Γ0

TL1

¼ −
1

2

Z
d2k∥
ð2πÞ2 log detK; ð42Þ

where k∥ ≡ ðk0; k1Þ, and K denotes a functional matrix
operator acting on functions of x2:

K ¼ −∂2
2 þ k2∥ þm2 − γ2∂2M0ðx2Þ

¼ −∂2
2 þΩ2ðk∥Þ þ 2mγ2½δðx2Þ − δðx2 − aÞ�: ð43Þ

As expected, the problem has been reduced to the
calculation of a reduced fermionic determinant involving
a nontrivial dependence on x2 only. Besides, the 2 × 2
matrix structure can be straightforwardly dealt with,
decomposing the problem into two scalar ones:

E0ðaÞ ¼ −
1

2

Z
d2k∥
ð2πÞ2 flogð−∂

2
2 þ Ω2ðk∥Þ þ 2m½δðx2Þ

− δðx2 − aÞ�Þ þ logð−∂2
2 þΩ2ðk∥Þ

− 2m½δðx2Þ − δðx2 − aÞ�Þg: ð44Þ

Therefore, we reduced the calculation of the interaction
energy between domain walls mediated by a Dirac field, to
that of computing the Casimir energy for scalar fields in the
presence of two δ potentials of different strength. This
calculation has been previously considered elsewhere
[12,13]. Since it involves operators acting nontrivially on
only one coordinate, they can be evaluated using the
Gelfand-Yaglom theorem, in an identical fashion to the
one presented in Ref. [12]. Following the method applied in
that reference, we get the same contribution for each scalar
problem (each one is independent of the sign of m). The
expression for the energy density thus becomes

E0ðaÞ ¼ −
Z

d2k
ð2πÞ2 log

�
1þm2

k2∥
e−2Ωðk∥Þa

�
þ � � � ; ð45Þ

where the ellipsis means “modulo terms independent of a.”
Indeed (see Ref. [12]), the energy is obtained by integrating
the force, and therefore possibly infinite terms independent
of a are neglected.

From the interaction energy density we can compute the
force per unit length F 0 ¼ −∂E0=∂a, which is unambig-
uously defined and reads

F 0ðaÞ
m3

¼ −
1

2πx3

Z
∞

0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ x2

p

1þ u
x2 e

2
ffiffiffiffiffiffiffiffi
uþx2

p ; ð46Þ

where x ¼ ma. Dividing the force by m3, we obtain a
dimensionless function that depends on the dimensionless
variable ma. As the explicit form of the integral cannot be
given analytically, in Fig. 1 we present a plot of the force
per unit length. Note that it is a monotonous function of the
distance, and that it is always attractive.
The behaviors of the force both at short (ma ≪ 1) and

large (ma ≫ 1) distances can be studied analytically. At
short distances, one can expand the integrand in Eq. (46)
for x ≪ 1 and then perform the integral. The result is that
F 0ðaÞ=m3 diverges as −1=ð2πmaÞ in this limit. In the
opposite limit, the force vanishes exponentially as
−ma expð−2maÞ=π. This exponential behavior is typical
for the vacuum force associated to massive fields. It can be
obtained analytically by approximating

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ x2

p ≃ x in
Eq. (46), performing the integral up to a maximum value of
u of order one, and then expanding the result for x ≫ 1.
It is interesting to remark that the structure of the result

for the vacuum force between domain walls, Eq. (45), is
similar to those obtained for the Casimir effect for massive
fermions between planar boundaries [14] or in the presence
of δ potentials [15].
It is at first sight surprising that the force between

domain walls diverges as a → 0 since, naively, the δ
potential in Eq. (44) vanishes in this limit. Although this
would certainly be the case for smeared potentials, it is not
true in the presence of δ functions. A simple example
illustrates an analogous situation: when considering the
electrostatic interaction between point charges þq and −q

0.5 1.0 1.5 2.0 2.5 3.0
ma

0.4

0.3

0.2

0.1

F0

m3

FIG. 1. Dimensionless force per unit length F 0=m3 as a
function of the dimensionless distance ma between planar
domain walls.
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separated by a distance a, both the energy and the force
diverge as a → 0, even though there are no charges at all
when a strictly vanishes. Of course everything would be
smooth when considering spheres of nonvanishing radii
instead of point charges. In our case, the use of δ functions
to model the domain walls is a mere idealization of the
actual situation. From a physical point of view, the domain
walls will have a nonvanishing width σ. Therefore, at
distances a ∼ σ the use of smeared potentials is unavoid-
able, and the results presented here are valid only in the
limit a ≫ σ.

V. CONCLUSIONS

Wehave computed the effects of quantum fluctuations of a
Dirac scalar field in 2þ 1 dimensions on domain wall
defects. For a single defect, the vacuum energy is highly
divergent.We can understand the origin of the divergences as
follows. Had we considered a theory in which the fermion
field is coupled to a dynamical scalar field whose classical
part generates a smooth domain wall, the vacuum polariza-
tion of the fermion field would produce a renormalization of
themass of the scalar field alongwith a finite correction to the
mass of the domain wall. In the present paper, there is an
additional source of divergences, because we are assuming a
zero-width domainwall. For a nonplanarwall,wehave found
that the vacuum energy contains divergences that are propor-
tional to φ2 and to φ02. This indicates that in a dynamical
model for the wall, there would be a renormalization of the
mass and of the tension of the defect. We have seen that part
of this renormalization appears to bedue to the fluctuations of
the fermionic zero mode. We have verified this in an
independent fashion: by computing the vacuum polarization
tensor on the domain wall, we found that the virtual effects
due to this mode are, indeed, present.
For two domain walls, we have shown that vacuum

energy induces a Casimir-like force between defects. For
planar walls, the force could be computed using standard
techniques based on the Gelfand-Yaglom theorem; the
result shows that it is always attractive. At short distances,
it is inversely proportional to the distance, while it vanishes
exponentially at large distances. The divergences that occur
in the vacuum energy for a single defect are not present in
the force, which is moreover unambiguously defined.
We remark that in the graphene case one should multiply

our result corresponding to the attractive force by the
proper number of two-component fermions.
We have also obtained explicit expressions for the

interaction energy between a planar wall and a slightly
deformed wall (see the Appendix). As for the usual Casimir
effect, in this case the energy is a nonlocal functional of the
deformation.
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APPENDIX: SECOND ORDER EXPANSION OF
THE EFFECTIVE ACTION

In this appendix we compute the first- and second-order
terms in the expansion of the effective action given
in Eq. (39).

1. First order

The calculation of the first-order term does not give a
new result, but it can be used as a consistency check for
the previous calculation. Indeed, the contribution of first
order in η has the form

Γ1 ¼ −Tr½ð∂ þMðx2ÞÞ−1M1�; ðA1Þ
where M1ðxÞ ¼ −2mδðx2 − aÞηðx1Þ. By taking the func-
tional trace, after some algebra we see that the first-order
term in units of energy per unit length is

E1 ¼ lim
T;L→∞

Γ1

TL1

¼ 2mη0

Z
d2k∥
ð2πÞ2

× tr½hx2jðγ2∂2 þ ik∥ þM0ðx2ÞÞ−1jy2i�jx2¼y2¼a;

ðA2Þ
where “tr” denotes the trace over Dirac indices. On the
other hand, η0 ≡ 1

L1

R
dx1ηðx1Þ is the mean value of η.

Since the previous expression depends on η only through
the constant η0, it is not sensitive to the details of its local
space dependence. Therefore, it can be obtained from the
zeroth-order expression. Indeed, one should have the
relation

E1 ¼ E0ðaþ η0Þ − E0ðaÞ þOðη20Þ; ðA3Þ
so that the first-order term we are about to calculate should
be compared with the one obtained by evaluating the
derivative of the zeroth-order term with respect to a and
multiplying by η0.
One can show that

hx2jðγ2∂2 þ ik∥ þM0ðx2ÞÞ−1jy2i
¼ ½−γ2∂x2 − ik∥ þM0ðx2Þ�hx2jK−1jy2i; ðA4Þ

where K is the operator introduced in the calculation of the
zeroth-order term.
The inverse of the scalar operator above can be obtained

by using standard techniques, and the result obtained by
inserting it into the expression for the first-order term is
consistent with the relation obtained between it and the
derivative of the zeroth-order term.

2. Second order

The second order-term Γ2 receives two different
contributions:
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Γ2 ¼ Γa
2 þ Γb

2; ðA5Þ

where

Γa
2 ¼

1

2
Tr½ð∂ þM0ðx2ÞÞ−1M1ð∂ þM0ðx2ÞÞ−1M1� ðA6Þ

and

Γb
2 ¼ −Tr½ð∂ þM0ðx2ÞÞ−1M2�: ðA7Þ

It may be seen that Γb
2 can, like the first-order term, be

derived from the knowledge of the zeroth-order term. In
other words, it is only sensitive to the average value of η.
Thus, we shall concentrate on Γa

2 , since it is the only one
that contains new information to this order.
We see that

Γa
2 ¼

1

2
ð2mÞ2

Z
x∥y∥

tr½hxjð∂ þM0ðx2ÞÞ−1jyiηðy1Þ

× hyjð∂ þM0ðx2ÞÞ−1jxiηðx1Þ�jx2¼y2¼a: ðA8Þ

The system is now time independent but translation
invariance along x1 is not necessarily preserved. Thus,
Γa
2 will produce a contribution to the energy (total, not the

linear density) E2, which in Fourier space can be written as
follows:

E2 ¼
1

2

Z
dk1j~ηðk1Þj2f2ðk1Þ; ðA9Þ

with

f2ðkÞ ¼ 4m2

Z
d2p∥

ð2πÞ2 tr½
~Gðp∥; a; aÞ ~Gðp∥ þ k∥; a; aÞ�;

ðA10Þ

where we have introduced

~Gðp∥; x2; y2Þ

¼
Z

d2x∥e−ip∥·x∥hx∥; x2jð∂ þM0ðx2ÞÞ−1j0∥; y2i:

ðA11Þ

We can obtain a more explicit expression for
~Gðp∥; x2; y2Þ, as follows:

~Gðp∥; x2; y2Þ ¼ ½ð−∂x2 − ip∥ þM0ðx2ÞÞGþðp∥; x2; y2ÞPþ
þ ð∂x2 − ip∥ þM0ðx2ÞÞG−ðp∥; x2; y2ÞP−�;

ðA12Þ

where

G�ðp∥;x2;y2Þ
¼ hx2j½−∂2

x2 þp2
∥ ∓ ðδðx2Þ−δðx2−aÞÞ�−1jy2i; ðA13Þ

and P� ≡ 1�γ2
2
.

A rather lengthy but otherwise straightforward calcu-
lation shows that

~Gðp∥; x2; y2Þ ¼ −
ip∥

2Ωðp∥Þ
þ m
2p2

∥

1 − e−2Ωðp∥Þa

1þ m2

p2
∥
e−2Ωðp∥Þa

×

�
−ip∥

�
m

Ωðp∥Þ
− γ2

�

þΩðp∥Þ
e−2Ωa

1 − e−2Ωa

�
: ðA14Þ

Evaluating the Dirac trace, we see that the kernel f2 is
given by

f2ðk∥Þ ¼ 2m2

Z
d2p∥

ð2πÞ2
�
p∥ · ðp∥ þ k∥Þ

�
m2

p2
∥ðp∥ þ k∥Þ2

�
1 −

m2

Ωðp∥ÞΩðp∥ þ k∥Þ
�

×
�
1 −

�
1þm2

p2
∥

�
Bðp∥Þ

��
1 −

�
1þ m2

ðp∥ þ k∥Þ2
�
Bðp∥ þ k∥Þ

�

−
1

Ωðp∥ÞΩðp∥ þ k∥Þ
�
1þm2

p2
∥

�
1 −

�
1þm2

p2
∥

�
Bðp∥Þ

�

þ m2

ðp∥ þ k∥Þ2
�
1 −

�
1þ m2

ðp∥ þ k∥Þ2
�
Bðp∥ þ k∥Þ

���

þ m2

p2
∥ðp∥ þ k∥Þ2

Ωðp∥ÞΩðp∥ þ k∥ÞBðp∥ÞBðp∥ þ k∥Þ
	
; ðA15Þ

where we have introduced Bðp∥Þ ¼ ðe2Ωðp∥Þa þ m2

p2
∥
Þ−1. We have checked that this kernel is indeed finite, so that the

expansion is, at least up to this order, well defined.
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