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Phase resonances have been investigated in the last few years, not only because of their striking features, such as
extremely high quality factor and huge enhancement of the electromagnetic field inside cavities/grooves, but also
for their promising applications. However, taking into account that these resonances are more efficiently excited in
highly conducting structures, most of the studies have been devoted to explore this phenomenon at wavelengths in
the infrared or larger, using different approaches for the boundary conditions. In this paper, we investigate the validity
of the perfect conductor approximation and the surface impedance boundary condition to appropriately represent the
electromagnetic response of a metallic surface comprising a finite number of subwavelength cavities of circular cross
sections. Far- and near-field plots are shown and analyzed in order to investigate the validity ranges and discuss to what
extent phase resonances can be excited at shorter wavelengths in these structures. © 2016 Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (160.3900) Metals; (290.0290) Scattering.
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1. INTRODUCTION

In the last two decades, phase resonances have been investigated
not only because of their extreme characteristics, but also for
their promising applications. Phase resonances are generated
by a particular arrangement of the field phases inside the
cavities or grooves of a metallic structure. In particular, when
the phases in adjacent grooves are opposite to each other, the
so-called π mode arises, which corresponds to an extremely
high Q resonance accompanied by a significant enhancement
of the electromagnetic field inside the cavities [1]. This phe-
nomenon was first reported by Veremey and Mittra in finite
arrays formed by cavity-backed apertures [2], and it was later
observed in metallic surfaces with a finite number of rectangu-
lar grooves [1,3–6] or slits [7,8]. The applications proposed in-
clude high-finesse optical filters, light trapping and guiding
structures [9–11], corrugated surface antennas [9], channel-se-
lecting devices, actively controlled nano-optic devices, subdif-
fraction focusing [12], and sensors [13–15].

In a previous paper, we investigated the generation of
phase resonances in a perfectly conducting surface with a finite

number of cavities of circular cross sections [16] and showed
that as the number of grooves is increased, more resonant peaks
are produced; these have an extremely high quality factor and
are accompanied by an intensification of the internal magnetic
field. More recently, the effect introduced by a subwavelength
particle located in the vicinity of the surface has also been ex-
plored [14], exhibiting the potential of these kinds of structures
for a variety of applications. However, by considering a per-
fectly conducting metal, the results derived are only valid for
long wavelengths, typically greater than a few tens of microns.

It is well known that the underlying physical mechanism is
the combination of morphological resonances of each individual
cavity or slit and the excitation of eigenmodes of multiple-cavity/
slit structures [1,4,8,17]. To efficiently excite shape resonances,
highly conducting boundaries of the cavities are required, and
then, the excitation of phase resonances has mostly been inves-
tigated in the millimeter and microwaves regimes under the per-
fect conductor assumption [4,10,17–19]. Nevertheless, several
authors employed different approximate boundary conditions,
such as surface impedance and other perturbative approaches
[3,5,8,9,20–22], and only a few of them considered a real metal
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with ohmic losses [23–25]. However, to the best of our knowl-
edge, none of the reported studies investigated the validity ranges
of these approaches.

The purpose of this paper is to explore to what extent phase
resonances can be excited at shorter wavelengths and also to
investigate the validity of the different approaches to accurately
represent the actual metallic structure in connection to phase
resonance excitation. For this study we employ the integral
method [26], in which we introduce three different boundary
conditions at the metallic surface: the perfect conductor (PC)
[16], the surface impedance boundary condition (SIBC) [27],
and the exact boundary condition (EBC) [28]. We compare the
results given by the three approaches for different wavelength
ranges and numbers of cavities and establish their validity ranges.

The paper is organized as follows. In Section 2, we present a
summary of the integral method, considering the three differ-
ent boundary conditions: PC, SIBC, and EBC. Comparative
results are shown in Section 3, where we present curves of
the reflected intensity (far field) as well as the magnitude
and phase of the magnetic field within the cavities (near field)
for resonant and non-resonant situations. The comparison of
the results obtained with the three approaches at different wave-
length ranges permits us to evaluate the validity range of each
model for the analysis of the phase resonance excitation. Finally,
concluding remarks are given in Section 4.

2. INTEGRAL METHOD

The scattering structure consists of M grooves of circular cross
sections practiced in an otherwise planar metallic surface
(which is invariant along the z direction), as shown in
Fig. 1. The cavities have radius R and aperture a, and the dis-
tance between centers of adjacent cavities is d . A p-polarized
incident beam (magnetic field along the z direction) of fre-
quency ω impinges from vacuum normally onto the structure.
Then, if we denote by ψ the z component of the magnetic field,
the incident magnetic field can be written in terms of its an-
gular spectrum A�α� as

ψ inc�x; y� �
1

2π

Z
k

−k
A�α� exp�i�αx − βy��dα; (1)

where

A�α� � ψ0ffiffiffiffiffi
2π

p
σ

exp�−α2∕2σ2�; (2)

where k � ω∕c � 2π∕λ, λ is the incident wavelength, σ is the
angular half-width of the beam, and ψ0 is a constant. The x and
y components of the incident wave vectors, α and β, are related
by β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α2

p
. In the limit of large k∕� ffiffiffi

2
p

σ�, Eq. (1) de-
fines an incident Gaussian beam of spatial half-width w �ffiffiffi
2

p
∕σ [26]. Due to the symmetry of the problem (invariance

along the z direction and normal incidence), the problem can
be reduced to a scalar one for the unknown complex amplitude
of the z component of the magnetic field ψ�r�, which satisfies a
homogeneous two-dimensional Helmholtz equation,�

∂2

∂x2
� ∂2

∂y2
� ϵ�ω�k2

�
ψ�r� � 0; (3)

where ϵ�ω� is the complex dielectric function at the corre-
sponding medium:

ϵ�ω� �
�
1 at vacuum
ϵm�ω� at the metal region

: (4)

The key point of the integral methods [26,28] is the
combination of Green’s second integral theorem and
Eq. (3). In a vacuum, ψ can be expressed in terms of an integral
equation as

ψ�r� � ψ inc�r� �
i
4

Z
Γ
�kn̂ · û�rjrs�H �1�

1 �kju�rjrs�j�ψ�rs�

−H �1�
0 �kju�rjrs�j�φ�rs��dl ; (5)

where rs is a vector-valued function that describes the curve Γ,
u�rjrs� � r − rs, û�rjrs� � u�rjrs�∕ju�rjrs�j, n̂ is a unit vector
normal to the profile, and dl is a differential of the arc of Γ. The
knowledge of the source function ψ�rs� and its normal deriva-
tive φ�rs� � ∂ψ�r�∕∂n̂jr�rs on the boundary permit us to
calculate the field at any point in the incidence medium.
H �1�

0 and H �1�
1 are the Hankel functions of the first kind

and orders zero and one, respectively. For the metal region,
we have

0 � i
4

Z
Γ
�kmn̂ · û�rjrs�H �1�

1 �kmju�rjrs�j�ψ �m��rs�

−H �1�
0 �kmju�rjrs�j�φ�m��rs��dl ; (6)

where km �
ffiffiffiffiffiffiffiffiffiffiffiffi
ϵm�ω�

p
k, and ψ �m��rs� and φ�m��rs� are the

source functions evaluated at the metal side. To calculate
the far- and near-field intensities in a vacuum from Eq. (5),
ψ�rs� and φ�rs� are required. These functions are obtained
by combining Eqs. (5) and (6) via the boundary conditions
on rs, which establish a relationship between ψ �m��rs� and
φ�m��rs� with ψ�rs� and φ�rs�, respectively.

In the following subsections, we summarize the procedures
for different boundary conditions.

A. Boundary Conditions
1. Approximate Boundary Conditions
When a perfectly conducting material is assumed, the electro-
magnetic fields vanish inside the metal. Then, Eq. (6) does not
provide additional information to solve the problem, and the
boundary condition for p-polarized waves becomes

φ�rs� � 0: (7)

Fig. 1. Scheme of the scattering problem under study. The structure
comprises several cavities of circular cross sections ruled on a metallic
surface. A p-polarized incident beam impinges from a vacuum nor-
mally onto the structure. The radii of the cavities R, their apertures a,
and the distance between cavities d are indicated.
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Therefore, the problem is reduced to obtain ψ�rs� from Eq. (5).
Details of the procedure and examples of far and near fields can
be found in Refs. [14,16]. From a qualitative point of view,
infinite conductivity is a good assumption for metals at wave-
lengths beyond the infrared. However, the computation of the
field values under the PC assumption might not give accurate
results even in this region of the spectrum.

In order to improve the metal representation, the surface
impedance boundary condition can be employed, which is a
more realistic approximation that takes into account the
dispersion of the material. This condition provides very good
results for metallic structures beyond the infrared zone, both
qualitatively and quantitatively. Analogously to the PC case,
the problem is reduced to obtain ψ�rs� from Eq. (5) [27].
The boundary condition in this case is

φ�rs� �
−ikffiffiffiffiffiffiffiffiffiffiffiffi
ϵm�ω�

p ψ�rs�: (8)

Using Eq. (8), the far and near fields can be calculated in the
same fashion as in the PC case [14,16].

2. Exact Boundary Condition
When the incident wavelength is below the infrared region, PC
and SIBC do not give accurate results for real metals. In this
case, exact boundary conditions are required, which can be
expressed as

ψ�rs� − ψ �m��rs� � 0; (9)

φ�rs� −
1

ϵm�ω�
φ�m��rs� � 0: (10)

The computation of the electromagnetic fields requires the
knowledge of both source functions, ψ�rs� and φ�rs�. Then,
by setting the observation point r to be on the profile Γ,
Eqs. (5) and (6) become

ψ�rs��ψ inc�rs��
i
4
lim
τ→0

Z
Γ
�kn̂ · û�r�jrs�H �1�

1 �kju�r�jrs�j�ψ�rs�

−H �1�
0 �kju�r�jrs�j�φ�rs��dl ; (11)

0 � i
4
lim
τ→0

Z
Γ
�kmn̂ · û�r�jrs�H �1�

1 ��kmju�r�jrs�j�ψ�rs�

−H �1�
0 ��kmju�r�jrs�j�φ�rs��dl ; (12)

where r� � rs � τn̂.

B. Field Computation
Once the boundary conditions are applied and the source func-
tions are obtained, the magnetic field can be computed at any
point in space using Eq. (5), where the second term corre-
sponds to the scattered field ψ sc�r�.

In the case of the PC boundary condition, Eq. (7) holds, and
then only ψ�rs� is required. For the SIBC case, the relationship
between ψ�rs� and φ�rs� given by Eq. (8) also results in the fact
that to compute the scattered field using Eq. (5), only the
values of ψ�rs� are needed. Finally, in the general case of
EBC, both source functions ψ�rs� and φ�rs� must be known
to calculate the scattered field.

In all three cases of boundary conditions, far from the struc-
ture the scattered field can be written in terms of outgoing
waves,

ψ sc�r; θ� � exp�iπ∕4� exp�ikr�
�8πkr�1∕2 R�θ�; (13)

where R�θ� is the scattering amplitude given by

R�θ��−i
Z
Γ
�k�θ� · n̂ψ�rs�− iφ�rs��expf−ik�θ� ·rsgdl ; (14)

and k�θ� � k�cos θx̂� sin θŷ�. In writing Eqs. (13) and (14),
we have used the expansion of the Hankel functions for large
arguments [29] and the approximation juj ≈ r − �k�θ� · rs�∕k
for the argument of the exponential.

The total normalized scattered power S�ω� is given by

S�ω� � Pscatt

Pinc

�
Z

I�θ�dθ; (15)

where I�θ� is the differential reflection coefficient, i.e., I�θ�dθ
is the fraction of the incident flux that is scattered into the an-
gular region of width dθ about the scattering direction θ [26].
For normal incidence, the explicit expression of I�θ� is

I�θ� � σjR�θ�j2
�4π�3∕2kψ2

0�1 − �σ∕2k�2�
: (16)

The integral method has been widely used by many authors
to solve a large variety of scattering problems. For instance, in
Ref. [30], the authors compared their results with previously
published data obtained for different structures, including re-
entrant surfaces. The implementation of the integral method
used in this work has been successfully employed by the authors
to solve the scattering problem of different structures, including
rough and multivalued surfaces [31], as those considered in
this paper.

In the following section, we show results of the differential
reflection coefficient evaluated at θ � 0 (I�0�) for the far field,
and for the near field we calculate jHj2 using Eq. (5). The
numerical solutions of Eqs. (11) and (12) require a discretiza-
tion procedure, which consists of replacing the continuous pro-
file Γ by a discrete set of N points [28].

3. RESULTS

As mentioned in Section 1, the main purpose of this paper is to
analyze the influence of the finite conductivity of a metal in the
excitation of phase resonances.

It is well known that metals are very good conductors for
millimeter waves and beyond. However, as the wavelength de-
creases, metals exhibit a remarkable dispersive response, which
is accompanied by a decrease in conductivity and an increment
of losses. This drastic change of their dielectric permittivity pre-
vents the scalability of certain electromagnetic phenomena,
and, at the same time, allows for new resonant mechanisms,
such as surface plasmon excitation. In particular, we are inter-
ested in the effect produced by the finite conductivity of a metal
in the excitation of phase resonances.

As an introductory example, in Fig. 2 we show curves of
reflected intensities as a function of the normalized frequency
kR � �2π∕λ�R for structures with different numbers of
grooves (N � 1, 3, 5). In all the examples of this paper, we
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choose a∕R � 0.5787634, d∕R � 2.1, and w∕R � 20.0. In
Fig. 2(a) we consider a PC surface, whereas in Fig. 2(b), the
grooves are ruled on an aluminum surface modeled as a real
metal with losses (the dielectric permittivity of Al has been
taken from Ref. [32]). For a single groove in the surface,
the specular intensity exhibits a broad minimum associated
with the H 00 mode, which appears due to the aperture prac-
ticed in the circular cavity [33]. The addition of closely placed
identical cavities produces peaks within the H 00 mode mini-
mum that arise from the coupling between the electromagnetic
fields within individual cavities. This phenomenon has been
successfully explained in terms of phase resonance excitation
[1,16]. For the three cavities, one resonant peak is obtained,
whereas for the five cavities, two peaks can be noticed. The
resonances observed for the 3- and 5-groove structures at kR ≈
0.44 in Fig. 2(a) are called π resonances, at which the magnetic
field phases within adjacent cavities are opposite each other [1].
These resonances appear in the PC as well as in the EBC case
[see Fig. 2(b) at kR ≈ 0.42], although with different character-
istics. For instance, notice that the π resonance in the 5-groove
case for the PC [Fig. 2(a)] is much higher and has a higher
quality than that for the EBC [Fig. 2(b)].

As explained by different authors [1–3,8,17], the generation
of phase resonances is based on the distribution of the magnetic
field phases within the cavities. The π mode is the highest Q
mode among the set of phase resonances that can be excited and
is characterized by opposite phases between the magnetic fields
of adjacent grooves. Besides, other (lowerQ) modes with differ-
ent phase configurations can also be excited. When the appro-
priate phase distribution is achieved, the field within the
cavities is intensified and, at the same time, a resonant feature
is found in the far field. Depending on the kind of structure
(reflecting or transmitting, as well as the geometry and distri-
bution of the cavities, etc.) and the incidence conditions, the
resonant peak/dip might have a symmetrical or a non-symmet-
rical shape. In perfectly conducting reflecting structures with
rectangular or circular grooves under normal incidence, it
was shown that the π mode peak exhibits a non-symmetrical
shape, which has been explained as a result of the coupling of
the eigenmodes of the structure, which produces a Fano reso-
nance [12], whereas the in-phase peak (the magnetic field
phases within the slits are all equal) is basically symmetric

(b)

(a)

Fig. 2. Specular intensity as a function of the normalized frequency
for a metallic surface with 1, 3, and 5 cavities. In panel (a), perfectly
conducting boundary conditions are imposed (PC case), and in (b), an
Al surface is considered (EBC). In the case of the Al surface, the wave-
length range considered is λ ∈ �5.35; 8.38� μm.

(b)

(a)

Fig. 3. Specular intensity as a function of the normalized frequency
for an Al surface with 3 cavities (a) and 5 cavities (b). The exact boun-
dary condition has been considered in the calculation. In each panel,
we show curves for different radii, which correspond to different wave-
length ranges, as shown in Table 1.
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[1,16]. In terms of the quality of these resonances, the perfectly
conducting surface exhibits the best performance and produces
the narrowest bandwidths.

In the following examples, we illustrate the influence of the
finite conductivity and compare the results obtained by the
three approaches explained in Section 2, PC, SIBC, and
EBC, for the far field (Section 3.A) and for the near field
(Section 3.B).

A. Far Field
In Fig. 3, we show the evolution of the specular response of the
structure as the wavelength decreases (with the corresponding
adequacy of ϵm�ω� ) for structures with 3 [Fig. 3(a)] and 5
cavities [Fig. 3(b)]. In order to maintain the resonances within
the same range of kR, the radii of the cavities are varied accord-
ingly, as shown in Table 1.

The effect of the finite conductivity of a metal as the wave-
lengths approach the visible range is manifested in all the as-
pects of the resonances: quality factor, intensity, and spectral
location. A significant decrease of the quality of the π resonance
is clearly noticed, so in the 3-groove structure, it can be barely
visualized for the wavelength range [1.1;1.8] μm (case I, see
Table 1). Besides, note that as the wavelengths (and the radius)
decrease, the peak shifts to the left side of the H 00 resonance,
i.e., to longer wavelengths relative to the spectral position of the
minimum. This is an expected behavior since the finite con-
ductivity allows the penetration of the field in the metal, which
enlarges the effective size of the cavities and shifts the resonance
to longer wavelengths.

In the case of 5 grooves [Fig. 2(a) for the PC and Fig. 3(b)
for the EBC], two peaks can be identified, which correspond to

Table 1. R Values and Wavelength Intervals �λmin;λmax�
Considered for the Results Shown

case R�μm� λmin�μm� λmax�μm�
A 1.43 19.12 29.94
B 1.2 16.04 25.13
C 1.0 13.37 20.94
D 0.7 9.36 14.66
E 0.40 5.35 8.38
F 0.25 3.34 5.24
G 0.135 1.80 2.83
H 0.1 1.34 2.09
I 0.085 1.14 1.78

three cavities five cavities
(a)

(c)

(b)

(d)

(f)

(e)

Fig. 4. Comparison of the specular intensity obtained by the SIBC and the EBC boundary conditions for Al surfaces with 3 and 5 cavities and
for different radii of the cavities (and their corresponding wavelength ranges). (a) 3 cavities, case C; (b) 3 cavities, case E; (c) 3 cavities, case H;
(d) 5 cavities, case C; (e) 5 cavities, case E; and (f ) 5 cavities, case H. The parameters corresponding to each case are listed in Table 1.
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different modes allowed by the symmetries of the structure and
the incidence conditions [1,8,16]. The high quality of the reso-
nance found at kR ≈ 0.44 for the PC [Fig. 2(a)], which corre-
sponds to the �� -� - ��mode, is significantly reduced when a
finite conductivity is taken into account, even for wavelengths of
the order of tens of microns. However, the lower-quality reso-
nance keeps similar characteristics. Also in this case, the resonant
peaks shift to longer wavelengths as the conductivity of the metal
decreases.

In view of the results shown above, it becomes evident that
the finite conductivity of the metal significantly affects the re-
flected response of the structure, in particular, the generation of
phase resonances. Also, the requirement of a very high conduc-
tivity restricts the wavelengths range at which phase resonances
can be excited to wavelengths larger than a few microns. For
shorter wavelengths, the high Q resonance corresponding to
the π mode is almost completely lost.

To get more insight into the physical origin of this behavior,
it is essential to explore the near field, particularly the evolution
of the magnitude and phase of the magnetic field within the
cavities as the conductivity of the metal decreases. Before
addressing this issue, in the following example, we analyze
to what extent the SIBC is valid to represent the metallic boun-
daries within the integral method, in connection to the gener-
ation of phase resonances. For this purpose, in Fig. 4 we
compare the results obtained by the exact approach (EBC)
and by the SIBC for different wavelength ranges. It can be no-
ticed that the SIBC and the exact curves almost fully overlap for
wavelengths larger than 5 μm [Figs. 4(a), 4(b), 4(d), and 4(e)].
However, for shorter wavelengths, the SIBC curves deviate
from the exact values for the 3- as well as for the 5-groove struc-
tures. Even though the SIBC curves still exhibit the resonant
behavior, neither the shape of the peaks nor their intensity and
spectral location are accurately reproduced.

It is important to remark that the relationship between the
skin depth (δ) and the minimum distance between cavities
(dmin � d − 2R) is critical when deciding which approach
should be applied for the computation of the electromagnetic
field. If δ is sufficiently smaller than dmin, it is safe to employ
the SIBC; on the other hand, if δ is of the order or larger than
dmin, then the EBC must be used. For instance, for the cases of
Figs. 4(a) and 4(d), δ ≈ 0.2dmin, and in these cases, the SIBC is
appropriate to compute the electromagnetic response. For
Figs. 4(b) and 4(e), δ ≈ 0.45dmin, and the SIBC curve starts
to deviate from the EBC calculation. Finally, for Figs. 4(c)
and 4(f ), δ ≈ 1.5dmin, and it is evident that the SIBC can
no longer be used to calculate the scattered fields.

B. Near Field
As mentioned above, as ohmic losses become relevant, the res-
onant peaks change their characteristics and may even disap-
pear. Since the generation of phase resonances is based on
the coupling of resonant modes of the structure, the magnitude
and phase distribution of the internal magnetic field is of rel-
evance to investigate this behavior.

In the following examples, we explore the evolution of the
electromagnetic field within the cavities as the wavelength ap-
proaches the visible range, i.e., as the metal losses become
larger. In Fig. 5, we consider a 3-groove structure and show

the curves of the magnetic field at the center of each cavity
for different wavelength ranges (and the corresponding radii
of the cavities, according to Table 1): in (a), we plot the phase
difference between the magnetic fields at the first and the cen-
tral cavities ΔΦ, in (b) the magnetic field intensity in the first
cavity, and in (c) the magnetic field intensity in the central cav-
ity. It can be observed that the condition of opposite phases
required for the excitation of the π mode is fulfilled for the
three wavelength ranges considered, as shown in Fig. 5(a).
However, the decrease of the overall jH j2 at the center of each
cavity when the metal losses increase is remarkable. But the key
point is that as the losses increase, at the frequency at which the
condition ΔΦ � π is achieved, the values of jH j2 at the central
cavity become nearly zero [see Fig. 5(c)]. This implies that in-
stead of having a high Q resonant mode of type �� - ��, we
effectively get a ��0�� configuration, which hardly generates
an in-phase mode with an extremely low Q [see Fig. 3(a)], not
only because the external cavities have the same phase, but also
because they have a larger separation from one another, which
reduces the coupling.

(a)

(b)

(c)

Fig. 5. Magnitude and phase of the magnetic field at the center of
each cavity as a function of kR for a 3-groove structure. (a) Phase dif-
ference ΔΦ between the magnetic fields at the central and the first
cavities; (b) jH j2 at the first cavity (which also corresponds to the third
cavity due to the symmetry of the incidence configuration); and
(c) jH j2 at the second cavity (central). The different curves in each
panel correspond to different radii and wavelength ranges, which
are listed in Table 1. The arrows indicate the condition ΔΦ � π.
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A structure comprising 5 cavities is considered in Fig. 6,
where we plot the phase differences ΔΦ13 [Fig. 6(a)] and ΔΦ23

[Fig. 6(d)], and the intensities in the centers of the first
[Fig. 6(b)], second [Fig. 6(e)] and third cavities [Figs. 6(c)
and 6(f )] for the same wavelength ranges considered in Fig. 3(b),
where two resonances have been identified in each curve. For
case C, these resonances are located at kR ≈ 0.44 and 0.39.
We first analyze the resonance at kR ≈ 0.44. According to
Figs. 6(a) and 6(d), at this resonance, ΔΦ13 ≈ 0 andΔΦ23 ≈ π,
and it corresponds to the πmode or ��-� -��mode. For the F
case, the opposite-phases condition is approximatelymaintained
at the resonance (which is now located at kR ≈ 0.42), but there is
a significant change in the internal field intensities: it decreases
significantly in all the cavities, and especially in the second (and
fourth) cavities, it becomes negligible. This transforms the phase
configuration in type ��0� 0��, as occurred for the 3-groove
case, producing a very low Q resonance due to the weak
coupling. If the losses are further increased (case G), not only
are the cavity intensities even more reduced, but also, the oppo-
site-phases configuration is almost completely lost, which results
in a hardly appreciable resonance [see Fig. 3(b)].

Taking into account the intensities and phases of the inter-
nal fields, the resonance located at kR ≈ 0.39 for case C can be
roughly identified with type ��0-0��, which is one of the al-
lowed modes of the ideal structure [12]. However, notice that
not only the intensities in cavities 2 and 4 are very small but
also the intensity in the central cavity (cavity 3) is low in com-
parison with the external ones (cavity 1), and this, in turn, con-
tributes to reducing the coupling. As the losses are increased
(cases F and G), the intensities at cavities 2 and 4 stay very
small, but the relative intensity between the central and the
external cavities is similar to case C, as can be noted from
Figs. 6(b), 6(c), and 6(e). Therefore, the peak observed in
Fig. 3(b) remains even for a wavelength range of a few microns,
which corresponds to the small radii of a cavities. As expected,
both resonances shift to longer wavelengths (smaller kR) as the
losses increase.

C. Spectral Location of the Resonance
It has been shown that the normalized resonant frequency kRres

depends on the radii of the cavities, which, in turn, are related
to the resonant wavelength and the dielectric permittivity of the

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Magnitude and phase of the magnetic field at the center of each cavity as a function of kR for a 5-groove structure. (a) Phase difference
ΔΦ13 between the central and the first cavities; (b) jH j2 at the first cavity (which also corresponds to the fifth cavity, due to the symmetry of the
incidence configuration); (c) jH j2 at the third cavity (central); (d) phase difference ΔΦ23 between the second and the central cavities; (e) jH j2 at the
second cavity (which also corresponds to the fourth cavity); and (f ) jH j2 at the third cavity (central). The different curves in each panel correspond to
different radii and wavelength ranges, which are listed in Table 1. The arrows indicate the condition ΔΦ � π.
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metal. If we take the maximum enhancement of the field
within the central cavity as a criterion for the location of
the resonance, we can follow its resonant position as the radii
of the cavities increase. In Fig. 7, we show this evolution for the
3- [Fig. 7(a)] and the 5-groove structures [Fig. 7(b)]. The data
points correspond to the cases listed in Table 1.

It is evident that as the radii of the cavities increase, the spec-
tral location of each resonance approaches that of the PC case,
and this occurs for both the 3- and the 5-cavity structures and,
in this case, for both resonant modes. The resonant frequency
kRres follows a behavior of the type kRres � kRPC

res − A∕R, where
the superscript PC denotes the perfect conductor case and A
depends on the number of cavities in the structure and on
the resonant mode. The fitted curves are also shown in
Fig. 7. For R in μm, in the case of 3 cavities, the fitting param-
eter is A � 0.0070951 μm, and for 5 cavities, A �
0.00701272 μm for mode 1 and A � 0.00553275 μm for
mode 2. However, notice that even for the largest radius con-
sidered (R � 1.4 μm), i.e., for the wavelength range at which
Al conductivity is the highest out of the ranges considered, it is
mandatory to use the EBC in order to get accurate results.

4. CONCLUSIONS

We have analyzed the influence of the finite conductivity on
the production of phase resonances for structures comprising

3 and 5 cavities of circular cross sections. For this purpose,
we implemented three different versions of the integral
method, in each of which different approaches for the boun-
dary conditions are considered: perfect conductor, surface
impedance boundary condition, and exact boundary condition.
In the case of aluminum, the results show that the perfect con-
ductor approximation could appropriately reproduce the field
characteristics of phase resonances only for wavelengths larger
than 50 μm. For smaller wavelengths up to ≈6 μm, the SIBC
can be safely employed. However, for wavelengths of the order
of a few microns or smaller, only the exact boundary condition,
which takes into account the actual dielectric permittivity of the
metal, can be employed to get an accurate representation of the
far and near fields at resonance.

Additionally, we have shown that as the conductivity of the
metal decreases, the characteristics of the resonances are modi-
fied, basically, their quality factor and spectral location.
According to the near-field distribution, we have explained this
behavior in terms of the excitation of the different eigenmodes of
the whole structure. It was shown that as losses increase, a par-
ticular mode can vanish, whereas another mode can be rein-
forced. This study contributes to understanding the influence
of the finite conductivity on the generation of phase resonances.
However, further research should be carried out in this topic, i.e.,
by considering different numbers of cavities, oblique incidence,
different cross sections, other metals, etc., in order to be able to
exploit phase resonances for concrete applications such as sensors
and filters in the near infrared and in the visible range.
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