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The Journal of Immunology

Pan-Specific Prediction of Peptide–MHC Class I Complex
Stability, a Correlate of T Cell Immunogenicity

Michael Rasmussen,*,1 Emilio Fenoy,†,1 Mikkel Harndahl,* Anne Bregnballe Kristensen,*

Ida Kallehauge Nielsen,* Morten Nielsen,†,‡ and Søren Buus*

Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL,

and insights into the mechanisms that govern peptide–MHC-I binding should facilitate our understanding of CTL biology.

Peptide–MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity,

yet it has been shown that the stability of the peptide–MHC-I complex is a better correlate of immunogenicity compared with

binding affinity. In this study, we have experimentally analyzed peptide–MHC-I complex stability of a large panel of human MHC-I

allotypes and generated a body of data sufficient to develop a neural network–based pan-specific predictor of peptide–MHC-I

complex stability. Integrating the neural network predictors of peptide–MHC-I complex stability with state-of-the-art predictors

of peptide–MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at

http://www.cbs.dtu.dk/services/NetMHCstabpan. The Journal of Immunology, 2016, 197: 000–000.

B
inding and presentation of antigenic peptides by MHC
molecules is a central event in the initiation of an adaptive

immune response. MHC class I (MHC-I) molecules bind

peptides derived from the intracellular protein metabolism and

present them at the cell surface for scrutiny by effector cells of the

immune system. The resulting presentation of peptides of patho-

genic origin (e.g., from virus or tumors) can trigger the activation of

immune effector cells such as CD8+ CTLs. Peptide binding to

MHC-I molecules is the single most selective of the many events

leading to Ag presentation, and considerable efforts have been

dedicated to unravel the rules of this event. For a peptide to induce

an immune response, it must bind with sufficient affinity and

stability to the restricting MHC-I element to allow translocation

of intact peptide–MHC-I complexes (pMHC) to the cell surface

where it should remain associated long enough for circulating

CD8+ CTLs of appropriate specificity to arrive and recognize it.

Although the law of mass action establishes a very close and direct

relationship between affinity and stability, the earlier logic would

suggest that stability might be the better immunogenicity corre-
late of the two parameters. As previously noted by us (1), several

others have suggested that the stability of a pMHC complex corre-

lates with immunogenicity (both for MHC-I [2–8] and for MHC-II

[9, 10]), and it has even been suggested that stability correlates

better with immunogenicity than affinity does (both for MHC-I

[11–14] and MHC-II [15]). Unfortunately, these claims have been

supported by limited and to some extent biased experimental data.

The former is due to the experimental challenges associated with

measuring complex stability, which effectively has meant that af-

finity has remained the most frequently established correlate of

immunogenicity. The latter is due to the frequent use of predicting

algorithms to select peptides of interest, which effectively precludes

the use of immunogenicity data obtained from such predictions to

compare the impact of affinity versus stability.
Using an HLA-A*02:01-transgenic mouse model and examin-

ing antivaccinia immune responses in an unbiased and compre-
hensive manner, Assarsson et al. (16) showed that as much as 90%
of the peptides that were found to bind with high affinity to HLA-
A*02:01 nonetheless were not recognized postinfection. Asking
whether lack of stability could be part of the explanation of this
high rate of false discovery, Assarsson et al. (16) examined a small
selection of 12 of these peptides spanning dominant, subdominant,
cryptic, and nonimmunogenic events and concluded that “a sug-
gestive, but not statistically significant, trend was noted for off-
rates and dominance.” In a follow-up study (1), we examined the
stability of a larger collection of the peptide-HLA-A*02:01 in-
teractions reported by Assarsson et al. (16), and in increasing the
sample size we indeed found that stability is a significantly better
correlate of immunogenicity than is affinity. We suggested that
30% of the peptides, which are nonimmunogenic even though they
experimentally can be verified as binders to HLA-A*02:01, lack
immunogenicity because they form MHC-I complexes of low
stability. Given this we concluded that pMHC-I complex stability
is important in the generation of T cell responses.
Over the last few decades, accurate and reliable in silico

methods capable of predicting the binding affinity of peptide
binding to MHC-I have been developed (17–22) and these have
been highly successful in narrowing down the search for T cell
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epitopes. However, the high false discovery rate in terms of im-
munogenicity (i.e., that only a few of the peptides, which are
predicted and subsequently shown to bind to MHC-I, are actually
recognized by T cells postinfection) remains a problem. Recently,
we have shown that accurate predictors of pMHC-I complex sta-
bility can be developed and that these predict immunogenic
peptides to form pMHC-I complexes of higher stability compared
with nonimmunogenic peptides (1, 23). These studies and cor-
responding predictors covered a limited set of human MHC-I
allotypes. In this study, we have generated a large body of
pMHC-I complex stability data using a large repository of human
MHC-I molecules and synthetic peptides with the aim of devel-
oping pan-specific predictors of MHC-I complex stability. Using
these data, we report the development of an artificial neural net-
work (ANN)–based pan-specific predictor of pMHC-I complex
stability and evaluate its accuracy in predicting pMHC-I complex
stability. By integrating this novel predictor with state-of-the-art
predictors of pMHC-I binding affinity, we find that constructing a
model with 80% weight on affinity and 20% weight on stability,
the prediction of MHC-I ligands and T cell epitopes is significantly
improved beyond that of any of the two models alone. Current
predictors of pMHC-I binding affinity are trained on a significantly
larger body of data compared with available pMHC-I complex
stability data. To access whether the relative low contribution of
stability predictions was influenced by this unbalance in data
volume, we evaluated the performance of predictors trained on
balanced pMHC-I binding affinity data and pMHC-I complex
stability data. Evaluating such predictors, we find that the inte-
grative model with similar weight on affinity and stability achieves
optimal performance, and that this significantly outperforms the
two individual models for prediction of both MHC ligands and
T cell epitopes.

Materials and Methods
Peptide–MHC-I complex stability

A total of 9023 in-house nonameric peptides were predicted for binding to
76 HLA-I molecules using the NetMHCpan 2.8 prediction server (17, 18).
Peptides with a predicted high-affinity binding (,500 nM or 2% rank) to
multiple of the available MHC-I molecules were grouped into 12 peptide
sets of 383 peptides each. Each peptide set was screened for pMHC-I
complex stability on multiple MHC-I allotypes according to Table I
using a scintillation proximity-based peptide–MHC-I dissociation as-
say (24). The reported half-life of pMHC-I complexes is the geometric
mean of the half-life from two independent experiments. This data set
was combined with an in-house small-scale data set from earlier studies
arriving at a data set of 28,939 measurements covering 80 HLA-A and
-B molecules.

Data sets

For the training of the stability predictor, only data from HLA molecules
characterized by at least one stable binding and two nonstable binding
measurements (using a half-life threshold at 37˚C of 2 h) were included.
This left a data set of pMHC-I complex half-lives with 28,166 measure-
ments covering 75 HLA molecules. The data were enriched with 1000
random natural 9mer peptides for each allele. These peptides were selected
to have predicted affinities (using NetMHCpan-2.8) weaker than 20,000
nM and were assigned a stability value of 0 h. For retraining of the
NetMHCpan method, the Immune Epitope database (IEDB) data set cor-
responding to version 2.8 was used. This data set consists of 136,153
peptide affinity measurements covering 152 distinct MHC molecules.

To generate balanced data sets where an equal number of HLA allotypes
were represented for both stability and affinity, and for each allotype an
equal number of peptide data points and peptide binders were represented,
we applied the following procedures: for stability, the peptides were
classified into binders and nonbinders using a threshold of a stability half-
life of 1 h. For affinity, the same classification was made using an affinity
threshold of 500 nM. Next, the subset of 58 allotypes covered by at least
one binder and two nonbinders for both affinity and stability was identified.
For each of these allotypes, the number of binders/nonbinders was

identified as the lowest number from the stability and affinity data set,
respectively, and this number of binders/nonbinders was selected from
each data set. This selection was done prioritizing peptides with measured
binding to few HLA alleles to ensure the highest degree of peptide di-
versity. After this procedure, a balanced data set was constructed for both
affinity and stability, each containing 17,998 data points covering 58 al-
leles. As for the complete data set, these data sets were enriched with 1000
random natural 9mer for each allotype. As before, these peptides were
selected to have predicted affinities (using NetMHCpan-2.8) weaker than
20,000 nM.

ANN training

ANNs were trained as a feed-forward ANN method (25) using either
Blosum50 encoding with a normalization factor of 5 or sparse encoded
with 1 of the 20 inputs being 0.9 and the remaining 19 being 0.05 with 40,
50, or 60 neurons in the hidden layer. In each case, the pool of unique
peptides was split into five sets in a typical 5-fold cross-validation scheme
with all peptide–HLA-I stability data for a given peptide placed in the
same group (26) (in this way, no peptide can belong to more than one
group); 4/5 of the data was used for training and the remaining 1/5 was left
for testing and early stop. Before ANN training, half-life values were
transformed to a value between 0 and 1. The transformation used was
s = 22t0/th, where s is the transformed value, th is the measured pMHC-I
complex half-life (in hours), and t0 is a threshold value that is fitted to
obtain a suitable distribution of the data points for training purpose. From
data shown in Table II, it is apparent that the HLA-I allotypes display
highly variable ability to form stable complexes; by way of example, the
95th percentile (the half-life for the top 5% most stable peptide) for HLA-
A*03:01 was 50 times greater than the corresponding value for HLA-
B*08:01 (see Table II). This large range in half-life values makes rescaling
of data before ANN training not trivial, yet essential. Given the data, it is
likely that an allotype-specific threshold for rescaling would result in the
best performing network, because information about the stability range of
each specific allotype would be encoded in the network. However, as
discussed later, this is not an applicable solution when developing a pan-
specific predictor, and as an alternative to allotype-specific rescaling, we
therefore probed different global rescaling thresholds in the range 0.5–2 h
to optimize the predictive performance of the networks.

For comparison with pan-specific ANNs, the Pearson’s correlation co-
efficient (PCC) was calculated for each allotype included in the training set
from the test set predictions. The PCC of each allotype was then compared
between networks using a binomial test counting the number of times a
network outperformed the other network excluding ties.

Prediction of T cell epitopes and MHC ligands

The predictive performance of the different prediction methods was
evaluated on a large set of 9mer T cell epitopes and MHC-I ligands. T cell
epitopes were extracted from both the IEDB (27) and the SYFPEITHI (28)
databases, whereas MHC-I ligands were obtained from the SYFPEITHI
database only. The evaluation data sets were filtered for predicted binding
affinity to the reported MHC restriction element, peptide length, and
presence in the training data set as described by Jørgensen et al. (23). In
brief, all T cell epitopes and ligands were filtered for predicted binding
affinity to the restricting MHC using NetMHCpan-2.8 with a rank
threshold for binding of #10% rank to exclude erroneously annotated
epitopes/ligands. The evaluation set was further restricted to exclude HLA-
peptide pairs present in the training data set. This filtered data set consisted
of 1268 ligands representing 35 allotypes and 1230 epitopes representing
28 allotypes, respectively. Because the data were unevenly distributed
among the allotypes, a balanced data set was extracted limiting the number
of ligands/epitope per allotype to 100 and filtering out those allotypes with
,10 data points. This final evaluation set consisted of 1058 ligands and
598 epitopes, covering 31 and 23 different allotypes, respectively. For
evaluation of methods trained on balanced binding data sets, the epitope
and ligand data set consisted, after filtering and size restriction, of 1085
MHC ligands and 856 T cell epitopes, covering 31 and 23 different allo-
types, respectively. The increase in size of the evaluation data are explained
by the dramatic reduction in the size of affinity data in the balanced training
data set (from 136,153 to 17,998 data points).

The performance of the ANN methods was evaluated as described
earlier (17, 29) using the area under the receiver operating characteristic
curve (AUC) performance measure: the source protein of each ligand/
epitope was fragmented into 9mers, the reported ligand/epitope was an-
notated as positive and every other 9mer as negative. In this way, one
AUC value is calculated for each HLA-ligand/epitope pair, and the per-
formance of a method is reported as the average of the AUC over all
HLA-ligand/epitope pairs.
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Results
Large-scale analysis of peptide–HLA-I stability

We have recently reported the generation of a predictor trained on
pMHC-I stability data and have shown that such a tool can ac-
curately predict immunogenic MHC-I ligands and that combin-
ing this tool with state-of-the-art predictors of pMHC-I binding
(NetMHCpan) can improve the predictive performance of T cell
epitopes and ligands (1, 23). These studies were conducted on a
representative set of human MHC-I allotypes, and the resulting
predictive tool has limited allotype coverage. In this study, we
have sought to reinforce these findings and generate sufficient
pMHC-I stability data to develop pan-specific predictors of
pMHC-I stability. Having 76 HLA-I allotypes and .9000 nona-
meric peptides at our disposal, we devised a strategy to allow rapid
screening of pMHC-I stability. All nonameric peptides were pre-
dicted for binding to each HLA-I allotype using NetMHCpan-2.8.
Next, peptides predicted to bind to multiple HLA-I allotypes were
grouped resulting in 12 peptide sets that could be used to screen
for stability on 4–12 different allotypes (Table I). This allowed us
to screen the same peptide set on multiple HLA-I allotypes, in-
creasing the throughput of stability assay. Each peptide group was
limited to contain 383 peptides to fit the experimental layout.
Having compiled the 12 peptide sets, each HLA-I allotype was
screened for pMHC-I stability to the representative peptide set
using a scintillation proximity assay-based pMHC-I dissociation
assay (24). For 69 of the 76 allotypes, we were able to obtain
conclusive data (data for 7 allotypes denoted in italics in Table I
were inconclusive). Combining this data set with a small-scale in-
house data set resulted in a data set of 28,939 individual pMHC-I
half-life data points covering 80 HLA-I allotypes. Peptides
forming stable pMHC-I complexes (t1/2 . 1 h) were found for
most HLA-I allotypes. Of these, only data from allotypes covered
by at least one binding and two nonbinding peptides (defined using
a half-life threshold of 2 h) were included in the training data for
the pan-specific predictor, arriving at the data set of 28,166 9mer
measurements covering 75 HLA molecules (Table II).

Development of ANN predictors of pHLA-I complex stability

ANNs constitute a powerful machine-learning framework for data
mining, andANNs have successfully been applied to develop highly
efficient predictors of peptide–MHC-I binding (17, 18). To obtain a
pan-specific predictor, we applied the NetMHCpan approach ear-
lier developed for pan-specific prediction of peptide-MHC binding
affinity. In this study, an MHC-I pseudosequence was extracted
from the polymorphic MHC-I residues in potential contact with the
bound peptide (17), and this pseudosequence was encoded together
with each peptide in the training. The data were partitioned and the
pan-specific stability predictor was trained as described in Mate-
rials and Methods. Before training, the half-life values were
rescaled as described in Materials and Methods. Both allotype-
specific and global rescaling thresholds ranging from 0.5 to 2 h
(here denoted t0) were used to identify the optimal rescaling. The
highest performance was obtained using allotype-specific rescaling
values (PCC = 0.693) (Fig. 1). However, using allotype-specific
rescaling is not a viable option because our current aim is to de-
velop a pan-specific prediction method, which by its very nature
should be applicable also to allotypes without experimental data;
that is, such a method cannot be made dependent on the availability
of specific allotype data. Moving forward, we therefore selected the
global rescaling threshold with the highest performance (t0 = 1 h,
PCC = 0.676). This performance is slightly lower than the per-
formance of the network using allotype-specific rescaling, yet sta-
tistically comparable (p = 0.901, binomial test excluding ties).T
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Integrating stability- and affinity-based predictions of pMHC-I
interaction

We have previously reported that combining predictors of pMHC-I
affinity with predictors of pMHC-I stability improves the prediction
of T cell epitopes and MHC-I ligands (23). However, this analysis
was limited to a small set of allotypes. In this study, we have ex-
panded this observation to a much larger set of MHC molecules.
For this purpose, we extracted T cell epitopes and MHC-I ligands
from the IEDB (27) and SYFPEITHI (28) to use as benchmark data
sets for evaluation of the combined predictors. We applied a simple
weighted average between affinity- and stability-based predictions
to identify the optimal contribution of each to the prediction of
T cell epitopes and ligands. In a 5-fold cross-validation, a ratio of
affinity-based and stability-based predictions of 0.9:0.1 and 0.8:0.2
was consistently found to be optimal with respect to the prediction
of MHC-I ligands and MHC-I epitopes, respectively (Fig. 2). These
combinations significantly outperformed each of the methods in

isolation (p = 0.0013, binomial test excluding ties for MHC-I li-
gands, and p = 0.0005, binomial test excluding ties for MHC-I
epitopes), thus consolidating our earlier findings (23).

Analysis of the predictive performance using balanced
networks

The earlier analysis shows that the affinity predictions currently
contribute more than the stability predictions to the predictive
power of the optimal method. However, the differences in the
amounts of data available for the training of the affinity- and
stability-based predictors are substantial, with ∼140,000 affinity
measurements covering .140 MHC-I allotypes compared with a
“mere” ∼28,000 stability measurements covering 75 HLA alleles.
To investigate the impact of this difference, we extracted balanced
data sets from the pMHC-I binding affinity and stability data sets
containing the same number of “positives” and “negatives” data
point (for details, see Materials and Methods). Next, predictors of

Table II. Summary of pHLA-I stability data

Group Allotype Data Points

t1/2 Percentile

Group Allotype Data Points

t1/2 Percentile

95th 5th 95th 5th

A1 HLA-A*01:01 220 40.3 0 B7 HLA-B*07:02 647 9.8 0
HLA-A*29:02 383 20.4 0.1 HLA-B*35:01 650 7.4 0
HLA-A*30:02 367 14.1 0 HLA-B*35:03 376 7.0 0.2
HLA-A*43:01 359 6.7 0 HLA-B*39:10 376 32.5 0
HLA-A*80:01 351 2.0 0 HLA-B*42:01 350 34.1 0.4

HLA-B*42:02 376 13.0 0
A2 HLA-A*02:01 1023 28.7 0.1 HLA-B*51:01 353 15.0 0

HLA-A*02:03 379 46.7 0.3 HLA-B*54:01 357 10.8 0
HLA-A*02:10 370 31.3 0.1 HLA-B*55:01 378 9.7 0
HLA-A*02:11 379 28.9 0.8 HLA-B*56:01 368 7.8 0
HLA-A*02:12 372 37.4 0.4 HLA-B*81:01 367 2.7 0
HLA-A*02:16 373 36.5 0.4
HLA-A*02:19 354 39.6 0.2 B8 HLA-B*08:01 465 1.2 0
HLA-A*02:50 375 23.2 0.7 HLA-B*08:03 350 1.9 0

HLA-B*14:01 (C67S) 374 0.6 0
A3 HLA-A*03:01 861 52.2 0 HLA-B*14:02 (C67S) 382 4.5 0

HLA-A*11:01 577 71.7 0.1
HLA-A*30:01 386 37.4 0 B27 HLA-B*27:02 359 34.9 0
HLA-A*31:01 382 77.3 0 HLA-B*27:03 368 25.1 0
HLA-A*33:03 371 56.0 0 HLA-B*27:05 366 25.3 0
HLA-A*68:01 387 56.0 0 HLA-B*27:20 368 8.3 0
HLA-A*74:01 361 94.5 0

B39 HLA-B*15:10 363 7.7 0
A24 HLA-A*23:01 372 37.3 0.4 HLA-B*39:01 680 9.3 0

HLA-A*24:02 573 30.2 0.2 HLA-B*39:02 375 14.9 0
HLA-A*24:03 512 37.6 0.2 HLA-B*39:06 (C67S) 379 0.5 0
HLA-A*24:07 352 24.4 0.2
HLA-A*24:19 378 2.7 0 B44 HLA-B*18:01 359 8.0 0
HLA-A*32:07 364 43.5 0 HLA-B*40:01 302 2.3 0

HLA-B*41:01 368 3.5 0
A26 HLA-A*25:01 363 21.7 0 HLA-B*44:05 352 12.1 0

HLA-A*26:01 272 23.8 0 HLA-B*45:01 368 5.3 0
HLA-A*26:02 343 35.6 0
HLA-A*26:03 341 15.3 0 B58 HLA-B*15:17 362 6.3 0
HLA-A*66:01 382 3.6 0 HLA-B*57:01 349 12.4 0
HLA-A*68:23 369 9.9 0 HLA-B*57:02 363 7.2 0

HLA-B*57:03 369 7.8 0.6
Others HLA-A*02:05 21 26.3 0.6 HLA-B*58:01 379 21.3 0

HLA-A*32:01 32 57.2 0
HLA-A*68:02 16 15.8 0.1 B62 HLA-B*15:01 1070 12.5 0
HLA-A*69:01 15 4.1 0 HLA-B*15:02 349 5.7 0
HLA-B*13:02 7 6.0 0 HLA-B*46:01 361 5.3 0
HLA-B*35:08 27 8.7 0
HLA-B*40:02 19 24.4 0.5

Seventy-five HLA-I allotypes were grouped into 12 supertype groups by predicted binding motif and screened for pMHC-I complex stability to peptide sets representing each
supertype binding preference. The extra group, Others, contains molecules with few binding data obtained from an in-house database. For each molecule the total number of
peptide binding measurements and 95th and 5th percentile half-life values are indicated. The 95th percentile value corresponds to the half-time of the top 5% most stable peptide
and 5th percentile value corresponds to the bottom 5% least stable peptide for each HLA molecule.
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pMHC-I binding affinity and stability were trained as described
earlier using a rescaling factor t0 = 1 h for the stability network.
Using the aforementioned weighted average scheme and the large
set of IEDB and SYFPEITHI T cell epitopes and MHC ligands,
we found that the combination of the two methods also in this
study significantly improved the prediction beyond each of the
individual methods, with an optimal ratio of 0.7:0.3 for MHC-I
ligands and 0.6:0.4 for MHC-I epitopes (p , 0.05, binomial test
excluding ties) (Fig. 3). Thus, using methods trained on size
balanced data sets, the relative importance of stability predictions
compared with that of affinity predictions is increased. Also, we
consistently found in both benchmarks that the relative importance
of stability is higher for the prediction of T cell epitopes than for
the prediction of MHC ligands.

Source of the performance gain

Having demonstrated that inclusion stability data led to an im-
proved predictive performance, we next asked ourselves what was
the source of this gain in performance. The two predictors for
binding affinity and stability are highly correlated (Supplemental
Fig. 1), and one could ask whether the gain in performance
demonstrated the earlier results from the different nature of data
(stability versus affinity) or simply because more data were in-
cluded in the method development. We addressed this question by
identifying the list peptides for which both binding affinity and
stability measurements existed. This set contained 7600 peptides
covering 58 allotypes. Given this data set, we retrained three new
pan-specific predictors: a pan-specific affinity predictor trained on
the affinity peptide data set excluding the peptide data set with
both affinity and stability measurements (termed A), a pan-specific
affinity predictor trained on affinity data from the peptides with
both affinity and stability measurements (termed B), and a pan-
stability predictor trained on stability data from the peptides with
both affinity and stability measurements (termed C). Both B and C
were trained as described earlier using the same peptide data,

identical data partitioning, and the same number of added artificial
random negatives. Predictor A was trained using the NetMHCpan
protocol described by Hoof et al. (18). Next, linear weighted
combinations of A+B and A+C were constructed (the optimal
weights were identified separately for each method), and the
performance of the optimal combined methods was compared on
the epitope benchmark data set. Doing this, we found that the
method combining affinity and stability (A+C) significantly out-
performed the method combining affinity with affinity (A+B)
(p , 0.001, binomial test excluding ties). This result thus dem-
onstrates that the observed increased performance is due to the
different nature of the data and not due to the simple fact that
more data were included.

The NetMHCstabpan server

The final pan-specific MHC-I peptide stability prediction method
trained on the complete data set of 28,166 9mer measurements
covering 75 HLA alleles was implemented as a Web server that is
publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan.
The server allows for prediction of pMHC-I binding stability to
any HLA molecule of known sequence. Predictions for non-9mer
peptides are made using the approximation method described
in the work of Lundegaard et al. (30). Submissions are accepted
in two formats: as a list of peptides, or as protein sequences in
FASTA format. If the submission is in FASTA format, the pre-
dictions are made for all overlapping peptides of the user-selected
length(s) in the sequence. MHC molecules can be selected from a
predefined list, or the user can upload a full-length MHC protein
sequence in FASTA format. The output is given as a table where
each row contains the peptide, the predicted stability score, con-
verted half-life in hours, and a percentile rank score. The predictor
also allows the user to include affinity predictions (calculated by
NetMHCpan-2.8). Selecting this adds the predicted affinity score,
the converted binding affinity (in nM), a combination of affinity
and stability scores using the previously described ratio of 0.8:0.2
(this ratio can be altered by the user), and a percentile rank score
of the combined prediction score estimated from the harmonic
mean of the stability and affinity rank values, respectively, to the
output.

Discussion
Binding of peptides to MHC-I molecules is the single most selective
step in Ag presentation to CD8+ T cells, and substantial experi-
mental and computational work has been dedicated to characterize
this event. For a peptide to be selected for Ag presentation and
trigger translocation to the cell surface in complex with a restricting
MHC-I molecule, it must bind with sufficient affinity and stability.
Moreover, once presented, it must remain in the complex with the
MHC on the cell surface for sufficient time to allow recognition of a
circulating CTL. Given this, it has been argued that both binding
stability and affinity are essential correlates to peptide immunoge-
nicity and immune dominance; furthermore, we have in a set of
recent publications suggested that of the two, stability is the better
predictor of CTL immunogenicity (1, 23).
In this study, we have extended those previous studies and

generated a large set of almost 30,000 peptide stability binding
measurements covering .75 HLA class I molecules. The data
were created using a cost-effective screening strategy, where
peptides were first screened for predicted binding affinity using
NetMHCpan v2.8, and second partitioned into 12 groups with
predicted shared binding characteristics, allowing screening
against multiple HLA allotypes leading to efficient identification
of stable binders. From these data, we have constructed a pan-
specific predictor of HLA-I peptide binding stability. To the best

FIGURE 1. Predictive performance of ANN predictors of pMHC-I

complex stability. Graphic shows the average PCC and SCC values for the

predictors trained with different t0 thresholds.
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of our knowledge, this is the first pan-specific predictor of HLA-I
stability.
This pan-specific predictor was constructed following the

pipeline defined earlier for the pan-specific predictor of HLA-I
affinity, NetMHCpan (17). The predictive performance was eval-
uated using data representing T cell epitopes or ligands, which
were downloaded from the SYFPEITHI and IEDB databases.

Comparing the predictive performance of the stability predictor
with that of the NetMHCpan-2.8 affinity predictor demonstrated
that the affinity-based predictor significantly outperformed the
stability prediction. However, integrating the two predictors with a
relative weight on affinity of 80% showed a significantly improved
prediction of CTL epitopes compared with any of the two methods
alone.

FIGURE 2. Performance of epitope/ligand predictions in terms of AUC. Predictive performance for the stability (w = 0) and affinity (w = 1) predictors

and their combinations for (A) MHC-I ligands and (B) T cell epitopes. Gray columns show combinations with significantly improved (p , 0.05) per-

formance compared with both affinity alone (w = 1) and stability alone (w = 0) and insignificant difference (p . 0.05) compared with the optimal model

(the value of w with highest AUC value). Statistical differences were evaluated using binomial test excluding ties.

FIGURE 3. Performance of epitope/ligand predictions in terms of AUC for methods trained using balanced data sets. Prediction performance for the

stability (w = 0) and affinity (w = 1) methods training on balanced data sets and their combinations for (A) MHC-I ligands and (B) T cell epitopes. Gray

columns show combinations with significantly improved (p , 0.05) performance compared with both affinity alone (w = 1) and stability alone (w = 0) and

insignificant difference (p . 0.05) compared with the optimal model (the value of w with highest AUC value). Statistical differences were evaluated using

binomial test excluding ties.
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At first glance the emphasis on the affinity predictor may appears
at odds with the notion that stability is the better correlate of CTL
immunogenicity. However, comparing the relative importance of
stability and affinity-based predictors is not a straightforward task
because there are twomain biases that lean in favor of generating an
accurate affinity-based method: a greater quantity and diversity of
data available for training of the method. The difference in the
amount of data available for the training of affinity- and stability-
based predictors is substantial, with ∼140,000 affinity measure-
ments covering .140 MHC-I allotypes compared with ∼28,000
stability measurements covering 70 HLA alleles. To level this
difference, we constructed a balanced set of binding data with the
same number of allotypes and data points (i.e., binders and non-
binders) for the affinity and stability data sets, and used these
balanced data to retrain pan-specific binding affinity and stability
predictors. When integrating the predictions of these two methods,
and evaluating the performance on the large set of HLA ligands
and T cell epitopes, we found that the relative weight on binding
affinity was decreased to ∼60%. Although the balanced data set
has leveled the difference in size and allele coverage, one im-
portant aspect remains very different between the two data sets.
From the ∼18,000 data points in the balanced data set, the stability
data set has 5581 unique peptides, whereas the affinity data set has
9161 unique peptides. This difference in peptide diversity is a
consequence of the strategy used to select the peptides for the
stability experiments. In retrospect, we made a suboptimal strat-
egy decision, which unfortunately cannot be resolved with the
existing stability data set. As more, and more diverse, stability
data will be generated in the future, we speculate that the relative
importance between the two methods will be shifted further in
favor of emphasizing binding stability.
Even though the present tool is trained on the hitherto largest set of

peptide MHC-I stability data, the volume of the data set remains
small compared with the data available for peptide MHC-I affinity.
Furthermore, the present tool has been trained on nonamer peptide
data only limited to the HLA-A and HLA-B isotypes. Given this and
experiences from earlier works (18, 21, 31, 32), we strongly expect
the performance of the tools will increase as more data covering
different peptide length, HLA isotypes/allotypes (potentially also
MHC allotypes covering other species) become available.
Notably, even though in this study we have demonstrated a high

performance for prediction of T cell epitopes driven by binding
affinity and stability, other factors including self- versus non–self-
peptides similarity (33, 34) and T cell propensity (35) are essential
to characterize and predict peptide immunogenicity.
In conclusion, in this study, we have developed, to our knowl-

edge, the first pan-specific predictor for binding stability of pep-
tide HLA-I complexes and have demonstrated how this tool can
significantly enhance the ability to predict T cell peptide immu-
nogenicity. A Web server implementing the method is available
publicly at http://www.cbs.dtu.dk/services/NetMHCstabpan.
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A. Sette, C. Keşmir, and B. Peters. 2013. Properties of MHC class I pre-
sented peptides that enhance immunogenicity. PLOS Comput. Biol. 9:
e1003266.

8 PAN-SPECIFIC PREDICTION OF PEPTIDE–MHC-I COMPLEX STABILITY

 at U
niv of Sussex L

ib/Periodicals Sec on July 10, 2016
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/

