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Permutation entropy contains the information about the temporal structure associated with the 
underlying dynamics of a time series. Its estimation is simple, and because it is based on the comparison 
of neighboring values, it becomes significantly robust to noise. It is also computationally efficient and 
invariant with respect to nonlinear monotonous transformations. For all these reasons, the permutation 
entropy seems to be particularly suitable as a discriminative measure for unveiling nonlinear dynamics 
in arbitrary real-world data. In this paper, we study the efficacy of a conventional surrogate method 
with a linear stochastic process as the null hypothesis but implementing the permutation entropy as a 
nonlinearity measure. Its discriminative power is tested by implementing several analyses on numerical 
signals whose dynamical properties are known a priori (linear discrete and continuous models, chaotic 
regimes of discrete and continuous systems). The performance of the proposed approach in real-world 
applications (chaotic laser data, monthly smoothed sunspot index and neuro-physiological recordings) is 
also demonstrated. The results obtained allow us to conclude that this symbolic tool is very useful for 
discriminating nonlinear characteristics in very short and noisy data.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Determining whether a given time series comes from a deter-
ministic chaotic or a stochastic system can be a big challenge [1–3]. 
It is well-known that nonlinearity is a necessary condition for 
chaos. Consequently, to determine if an arbitrary time series is 
compatible with chaotic dynamics for modeling and classification 
purposes, it is first necessary to demonstrate that the dynamics 
producing the time series is, in fact, nonlinear. Furthermore, the 
detection of nonlinearity is not a trivial task especially for exper-
imental records that are often contaminated with unknown noise 
sources. Motivated by these facts, in the last decade, several tech-
niques for identifying nonlinear processes in observational data 
have been introduced [4–8]. Despite the existing contributions, dis-
criminating the nonlinear dynamics of a complex system from time 
series is still a challenging problem of current research [9].

In this paper, we implement and test the efficacy of the permu-
tation entropy (PE) as a discriminating statistic in a standard surro-
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gate framework [10] in order to detect nonlinearities in short and 
noisy time series data. The PE is the Shannon entropic measure 
evaluated using the successful encoding introduced by Bandt and 
Pompe (BP) [11] to extract the probability distribution associated 
with an input signal. Taking into account the widely recognized 
practical advantages of this symbolic information-theory quantifier, 
namely, i) simplicity, ii) low computational cost, iii) noise robust-
ness, and iv) invariance with respect to nonlinear monotonous 
transformations, PE is demonstrated to be an alternative and/or 
complementary approach to more traditional techniques for un-
veiling nonlinear structures from complex systems. The proposed 
nonlinearity test relies on the well-established method of surro-
gate data [10] just as many other nonlinear discriminating ap-
proaches [4–6,12], and, obviously, the generation of proper surro-
gates is essential for the test’s success. As will be shown below, 
linear and nonlinear short noisy scalar time series can be effi-
ciently characterized supporting a remarkable reliability of PE as 
a discriminator in practical contexts.

Even though the permutation entropy has been used in count-
less applications, it has been rarely implemented within a sur-
rogate framework for unveiling the nonlinear dynamics of com-
plex systems from time series. The analysis developed by Tony et 
al. [13], to identify the deterministic nature of pressure measure-
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ments from a turbulent combustor, is one of these rare exceptions. 
Taking into account that, to the best of our knowledge, the per-
formance of both techniques (permutation entropy and surrogate 
testing) together, as an unified approach, has not been analyzed in 
depth before, in this work we try to fill this gap through several 
numerical and real-world data tests. As it will be shown below, 
this approach is able to unveil the presence of nonlinear dynamics 
even in very short and noisy time series.

The remainder of the paper is organized as follows. In the next 
section, PE and the surrogate data analysis are briefly presented. 
Numerical and experimental analyses for testing the performance 
of the proposed nonlinearity test are detailed in Sections 3 and 4, 
respectively. Finally, Section 5 summarizes the results and contains 
concluding remarks.

2. Methodology

2.1. Permutation entropy

The symbolic encoding scheme due to BP [11], based on the 
ordinal relation between the amplitude of neighboring values of 
a given data sequence, has been implemented for estimating sev-
eral information-theory quantifiers from time series. The BP ordi-
nal method of symbolization naturally arises from the time se-
ries, inherits the causal information that stems from the tempo-
ral structure of the system dynamics, and also, avoids amplitude 
threshold dependencies that affect other more conventional sym-
bolization recipes based on range partitioning [14,15]. These traits 
could be the main reasons behind notable success, as is evidenced 
by the enormous amount of applications in heterogeneous fields 
(see, e.g., [16–26]). Furthermore, the ordinal pattern distribution is 
invariant with respect to nonlinear monotonous transformations. 
Thus, nonlinear drifts or scalings artificially introduced by a mea-
surement device do not modify the quantifiers’ estimations. It 
appears to be better suited to cope with usual problems (non-
stationarities, nonlinearities, noise distortions) encountered when 
studying real time series compared to range-based encoding meth-
ods. Within this appealing encoding procedure, PE is undoubtedly 
the most widely-used descriptor. It should be stressed here that 
this entropic measure is applicable to noisy real time series from 
all class of systems, deterministic and stochastic, without the need 
to require any knowledge of the underlying mechanisms. As stated 
by Garland et al. [27], “It does not rely on generating partitions, 
and thus does not introduce bias into the results if one does not 
know the dynamics or cannot compute the partition. Permutation 
entropy makes no assumptions about, and requires no knowledge 
of, the underlying generating process: linear, nonlinear, the Lya-
punov spectrum, etc.” Furthermore, the relationship between the 
PE and the Kolmogorov–Sinai (KS) entropy has been discussed by 
several authors before. Basically, the growth rate of the PE is often 
used as a proxy for the KS entropy [28]. For more details, please 
see Refs. [29–31]. The KS entropy, probably the most appropriate 
indicator for distinguishing irregular deterministic from stochastic 
dynamics, requires specific knowledge of the generating process 
for its correct estimation. Finding the generating partition is not 
feasible for experimental data since they are inevitably contami-
nated with noise [32]. Consequently, the PE, which does not rely 
on generating partitions, emerges as a practical alternative to char-
acterize data sets generated by an unknown dynamic process with 
unknown levels of noise [9].

Here, we will illustrate how to create ordinal patterns from the 
time series data with a simple example. Let us assume that we 
start with the time series X = {3, 2, 5, 8, 9, 6, 1}. In order to sym-
bolize the series into ordinal patterns, first, two parameters, the or-
der of the permutation symbols D > 1 (D ∈N, number of elements 
that form the ordinal pattern) and the lag τ (τ ∈ N, time separa-
tion between elements) are chosen. Next, the time series is parti-
tioned into subsets of length D with lag τ similarly to phase space 
reconstruction by means of time-delay-embedding. The elements 
in each new partition (of length D) are replaced by their rank in 
the subset. For example, if we set D = 3 and τ = 1, there are five 
different three-dimensional vectors associated with X . The first 
one (x0, x1, x2) = (3, 2, 5) is mapped to the ordinal pattern (102). 
The second three-dimensional vector is (x0, x1, x2) = (2, 5, 8), and 
(012) will be its related permutation. The procedure continues so 
on until the last sequence, (9, 6, 1), is mapped to its correspond-
ing motif, (210). In the case of two elements in the vector having 
the same value, the elements are ranked by index, for example, a 
vector (7, 8, 7), which does not appear in X , would be mapped 
to (021). Afterward, an ordinal pattern probability distribution, 
P = {p(πi), i = 1, . . . , D!}, can be obtained from the time series 
by computing the relative frequencies of the D! possible permu-
tations πi . Continuing with the example: p(π1) = p(012) = 2/5, 
p(π2) = p(021) = 0, p(π3) = p(102) = 1/5, p(π4) = p(120) = 1/5, 
p(π5) = p(201) = 0, and p(π6) = p(210) = 1/5. PE is just the 
Shannon entropy estimated by using this ordinal pattern proba-
bility distribution, S[P ] = − 

∑D!
i=1 p(πi) log(p(πi)) (0 log(0) is set 

to zero in accordance with its mathematical limit). Coming back 
to the example, S[P (X)] = −(2/5) log(2/5) − 3(1/5) log(1/5) =
1.3322. PE quantifies the temporal structural diversity of a time 
series. Technically speaking, the ordinal pattern probability distri-
bution P is obtained once we fix the order D and the lag τ . The 
PE estimation does not require the optimal reconstruction of the 
phase space that is necessary for estimating other quantifiers of 
chaotic signals. Consequently, D and τ are not usually selected fol-
lowing the methodologies often employed in a conventional phase 
space reconstruction (e.g., the first zero of the autocorrelation func-
tion, the first minimum of the average mutual information, and the 
false nearest neighbor algorithm). Taking into account that there 
are D! potential permutations for a D-dimensional vector, the con-
dition N � D!, with N the length of the time series, must be satis-
fied in order to obtain a reliable estimation of P [33]. For practical 
purposes, BP suggest in their seminal paper to estimate the fre-
quency of ordinal patterns with 3 ≤ D ≤ 7 and τ = 1 (consecutive 
points). However, it has been demonstrated that the analysis with 
lagged data points, i.e. τ ≥ 2, can be useful for reaching a better 
comprehension of the underlying dynamics [34–36]. Essentially, by 
changing the value of the lag τ , different time scales are being 
considered because this parameter physically corresponds to mul-
tiples of the sampling time of the signal under analysis. For further 
details about the BP methodology, we recommend [34,37,38]. It is 
common to normalize the PE, and therefore in this paper, a nor-
malized PE is used and is given by

HS = S[P ]/Smax = S[P ]/ log(D!) (1)

with Smax = log(D!) the value obtained from an equiprobable or-
dinal pattern probability distribution, i.e. P = {p(πi) = 1/D!, i =
1, . . . , D!}.

2.2. Testing nonlinear dynamics in time series with surrogate methods

The method of surrogate data, introduced by Theiler et al. [10], 
represents a cornerstone in nonlinear time series analysis. Briefly, 
a statistic sensitive to nonlinearities is estimated for the original 
univariate time series {xi}N

i=1 and for an ensemble of M generated 
surrogate time series, {x̂ j

i }N
i=1 with j = 1, . . . , M . Each surrogate 

(indexed with j) is a constrained realization of the original data 
that mimics its linear properties (autocorrelation function/power 
spectrum) while potential higher order correlations are random-
ized. When a statistically significant difference is found between 
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the computed measure for the original time series and the distri-
bution of estimated values for the set of surrogates, a nonlinear 
dynamics can be concluded within a statistical confidence level. 
More specifically, to reach a significance level α, M = 2/α − 1 sur-
rogate realizations need to be generated in a two-sided test. The 
initial null hypothesis of a Gaussian linear stochastic process has 
been then generalized to cases where the data set is non-Gaussian 
in order to avoid spurious detection of nonlinearity. Consequently, 
surrogate realizations that preserve not only power spectrum but 
also amplitude probability distribution can be constructed through 
the iterative amplitude adjusted Fourier transform (IAAFT) scheme. 
We address the interested reader to [39] for further details about 
this method for generating surrogate data. Throughout this paper, 
we have implemented the IAAFT with its generalized null hypothe-
sis as the surrogate testing method. The null hypothesis is rejected 
or not based on a standard rank-based nonparametric statistical 
test. Let us denote as R(HS ) the rank assigned to the estimated 
normalized PE value for the original time series and R(Ĥ j

S ) those 
associated with surrogate realizations; the null hypothesis is re-
jected if R(HS ) <R(Ĥ j

S ) or R(HS) >R(Ĥ j
S ) for j = 1, . . . , M [6]. 

Summarizing, calculated values of a discriminating statistic, nor-
malized PE in our case, for the original record, {xi}N

i=1, and its 
IAAFT surrogates, {x̂ j

i }N
i=1, are compared through a two-sided rank 

order test of size α.
Taking into consideration that the analysis should be repeated 

on the collection of Monte Carlo realizations of the null hypoth-
esis, the computational efficiency is another point in favor of PE 
and in detriment of other approaches that are more time demand-
ing. It is also worth emphasizing here that, since our nonlinearity 
test depends directly on the appropriate generation of surrogate 
realizations, the Fourier phase correlations observed in IAAFT sur-
rogates [40] may potentially be the source of false negative detec-
tion of weak nonlinearities.

3. Numerical results

In this section, synthetic time series from several models are 
generated and tested, to demonstrate the performance of PE as a 
discriminating nonlinear measure in controlled scenarios. Since the 
underlying nature is known, we can estimate the probabilities of 
type-I errors (incorrect rejections of true null hypothesis) and type-
II errors (failures to reject a false null hypothesis). As mentioned 
previously, the null hypothesis here is that the series being studied 
is produced by a linear stochastic process. Therefore, in this case, a 
type-I error would occur if the test incorrectly rejects the null hy-
pothesis when the system is, in fact, linear. In the case of a type-I 
error, the null hypothesis (linearity) is true but the test produced 
an incorrect result (the series is nonlinear). Furthermore, a type-
II error would occur if the test fails to reject the null hypothesis 
when, in fact, the system is nonlinear. In this case, the null hy-
pothesis (linearity) is false for the series being tested, but the test 
incorrectly supported the null hypothesis. Through these analyses, 
the discriminatory power of the proposed test can be quantified.

3.1. Tests on linear processes

As a first toy example, we have studied first-order autoregres-
sive processes AR(1), i.e. xt = axt−1 + εt where εt are pseudoran-
dom values from the standard normal distribution, for different 
values of the parameter a (a ∈ {0.05, 0.1, ..., 0.95}). One hundred 
independent realizations of length N = 29 data points were simu-
lated for each value of the parameter a (potential transients were 
avoided by discarding the first 104 iterations). Each realization has 
been tested again M = 199 surrogate independent realizations gen-
erated from this realization, corresponding to a confidence level 
Fig. 1. Analysis of a first-order autoregressive processes AR(1) of length N = 29 data 
points with the PE as nonlinearity measure and the IAAFT as surrogate method. The 
fraction q of rejections of one hundred two-sided rank order tests of size α = 0.01
as a function of parameter a is shown. The PE is estimated for different orders 
(D = 3, D = 4 & D = 5) and lag τ = 1. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

of 99% (α = 0.01). Different surrogate data sets have been used 
for each one of the one hundred realizations. The fraction q of 
numerical realizations for which the null hypothesis can be re-
jected as a function of the parameter a is plotted in Fig. 1. For 
this discrete null model, the rate of incorrect rejections of the true 
null hypothesis is very low (q < 0.05). Results are similar for dif-
ferent orders (D = 3, D = 4 & D = 5) and the PE is estimated 
with lag τ = 1. We have also confirmed that similar probabilities 
of type-I errors are obtained for longer time series (N = 210 data 
points) generated for this model and for negative parameter values 
(a ∈ {−0.95, −0.9, ..., −0.05}).

As a second example, we have analyzed the following linear 
feedback system (second-order autoregressive process) proposed 
by Gunduz and Principe [4],

xt = 1.5xt−1 − 0.8xt−2 + εt , (2)

where εt follows a white Gaussian distribution with zero mean and 
unit variance. One hundred independent realizations were gen-
erated for different lengths N = 2k , k ∈ {8, 9, ..., 12} (first 5,000 
iterations are discarded to remove transients), and the null hy-
pothesis was again tested through a two-sided rank order test of 
size α = 0.01 (M = 199 surrogate time series). In this case, the 
fraction q of rejections has been analyzed as a function of the 
varying sample size N . Fig. 2a) shows results obtained for differ-
ent orders D = 3, D = 4 and D = 5, and τ = 1. A similar analysis 
has been developed with εt sampled from an exponential distri-
bution also with zero mean (after being normalized by subtracting 
its mean value) and unit variance. False alarm rates (type-I errors) 
as a function of length N for this non-Gaussian linear process 
are plotted in Fig. 2b) for different orders. Overall, we have con-
firmed a very low rejection (q ≤ 0.06) of the true null hypothesis 
in absence of nonlinearity for Gaussian white noise as well as for 
exponential noise for the different time series lengths and orders. 
Only in the non-Gaussian case and for N = 212 data points, was 
a false alarm rate around 0.1 found (for D = 4 and D = 5). This 
higher fraction of rejections of the true null hypothesis can be 
attributed to the presence of an exponential dynamical noise. Ac-
tually, much worse performances have been previously observed 
for non-Gaussian linear process with other discriminative statistics 
(bicorrelation [4], time reversibility [4], approximate entropy [41], 
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Fig. 2. a) Analysis of a Gaussian second-order autoregressive processes AR(2) (Eq. (2)
with εt a Gaussian white noise) of different lengths (N = 2k data points, k ∈
{8, 9, ..., 12}) with the PE as nonlinearity measure and the IAAFT as surrogate 
method. The fraction q of rejections of one hundred two-sided rank order tests of 
size α = 0.01 as a function of length N is depicted. b) Same analysis but for εt of 
Eq. (2) sampled from an exponential distribution with zero mean and unit variance. 
The PE is estimated for different orders (D = 3, D = 4 & D = 5) and lag τ = 1. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

and Lempel–Ziv complexity [42]). For example, in the case of bi-
correlation and time reversibility, false alarm rates higher than 0.3 
are obtained for a signal-to-noise ratio equal to 20 dB and vary-
ing data lengths (N ∈ {500, 1000, . . . , 5000}). Moreover, the type-I 
error increases with the data length, reaching a value near 0.9 for 
N = 5000 samples—please see Fig. 2 in Ref. [4].

Next, we addressed continuous null models. More precisely, 
colored noise with power-law spectra 1/ f β have been studied. Nu-
merical realizations of noise with β ranging from −0.9 to 0.9 in 0.1 
steps were generated with the widely implemented FFM algorithm. 
For more details about the FFM algorithm, we refer the interested 
reader to [43,44]. One hundred independent synthetic sequences 
of length N = 29 data points for each value of the β-exponent 
have been tested for nonlinearity using the proposed approach. 
The fraction q of (incorrect) rejections as a function of the power-
law exponent β is plotted in Fig. 3. It is worth emphasizing here 
that q < 0.05 independently of β and the order D used for es-
timating PE. A similar finding is obtained for longer simulations 
(N = 210 data points). We have confirmed once again a relatively 
low fraction of rejections of a true null hypothesis.
Fig. 3. The fraction q of rejections of true null hypothesis for colored noises of length 
N = 29 data points. Results are obtained from one hundred independent two-sided 
rank order tests of size α = 0.01 for each value of the power-law exponent β . The 
PE is estimated with different orders (D = 3, D = 4 & D = 5) and lag τ = 1. Surro-
gates were generated with the IAAFT algorithm. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

3.2. Tests on nonlinear processes

In order to quantify the discriminative power of PE as a nonlin-
earity measure in a noisy environment, chaotic data sets generated 
from the logistic map given by

xt = rxt−1(1 − xt−1) (3)

with r = 4, and from the x-component of the Hénon map

xt = 1 − Ax2
t−1 + yt−1, yt = Bxt−1 (4)

with A = 1.4 and B = 0.3, both contaminated with different 
amount of observational Gaussian white noise, have been analyzed 
for different lengths N . The noisy time series were produced from 
the logistic and Hénon maps in the following way. First, the initial 
104 iterations were discarded to remove transient behavior. Sec-
ond, a segment of the remaining series of length, N , was selected 
using the end-to-end mismatch criterion. This segment will be the 
series under study and will be used to produce surrogates. The 
end-to-end mismatch procedure is used because high frequency 
components are spuriously included in surrogate realizations when 
any mismatch between the beginning and the end of the original 
time series is present [5,45]. If the mismatch criterion is not sat-
isfied, the resulting surrogates can lead to erroneous rejections of 
the null hypothesis. A criterion, that minimizes the average of the 
end-point mismatch and the first-derivative mismatch, has been 
introduced to reduce this effect. The aforementioned segment of 
the chaotic sequences have been chosen according to this crite-
rion in order to minimize the chance of false rejections of the null 
hypothesis. Please see [45] for further details about the end-to-
end mismatch problem and its solution. Once a segment of the 
chaotic series of length N has been chosen (using the end-to-end 
mismatch criterion), the series is then normalized to a unit stan-
dard deviation in order to easily quantify the noise that will be 
added to the series. Next, observational Gaussian white noise with 
a standard deviation, η, is added to the series. Twenty noise levels 
η ∈ {0.05, 0.1, ..., 1} were used. The resulting noisy series is used 
to generate surrogates using the IAAFT method. For each noise 
level, one hundred independent realizations were tested for non-
linearity with the PE as a discriminative measure. Once again, a 
two-sided rank order test of size α = 0.01 (M = 199 surrogates) 
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Fig. 4. The fractions of rejections obtained for chaotic generated sequences from the logistic map (left column) and the x-component of the Hénon map (right column) 
contaminated with different levels η of additive Gaussian white noise. Results for different time series lengths are included: a)–b) N = 29 samples; c)–d) N = 210 samples; 
e)–f) N = 211 samples. One hundred independent noise realizations have been tested for each noise level and for each length, with the PE as nonlinearity measure and the 
IAAFT as surrogate method. A two-sided rank order test of size α = 0.01 (M = 199 surrogates) has been implemented for testing nonlinearity of each sequence. The PE is 
estimated for different orders (D = 3, D = 4 & D = 5) and lag τ = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
has been implemented. In Fig. 4, fractions q of (correct) rejections 
of the false null hypothesis for the logistic map (left column) and 
for the x-component of the Hénon map (right column) are plot-
ted as a function of the noise level η for three different lengths 
N = 2k with k ∈ {9, 10, 11}, and for different orders D = 3, D = 4
and D = 5, always with τ = 1. As it was expected in the case of 
nonlinear dynamics, the fraction of rejections q is equal to one 
for low levels of observational noise. Likewise, q decreases as the 
amount of noise contaminating the original chaotic sequences in-
creases. Since the practical usefulness of tests with fraction of (cor-
rect) rejections of false null hypothesis less than 0.7 is regarded as 
questionable [46], we conclude that suitable performances are ob-
tained for noise levels around 80% for the chaotic logistic map and 
95% for the chaotic Hénon map when considering the shortest se-
quences and order D = 4 (please see Figs. 4a–b). Obviously, better 
results are found for longer time series. Indeed, in the case of the 
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Fig. 5. Same as Fig. 4 but for the Lorenz system with parameters σ = 10, ρ = 28 and 
γ = 8/3. Results obtained for noisy chaotic sequences of lengths a) N = 29 samples, 
b) N = 210 samples and c) N = 211 samples are displayed. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Hénon map and for the largest considered time series (N = 211

samples), a discrimination power very close to one is achieved for 
the three orders even for 100% of noise level (please see Fig. 4f)).

We have also developed a similar analysis for a continuous 
chaotic system. Being more precise, time series of length N = 2k

data points with k ∈ {9, 10, 11} of the x-variable of the Lorenz 
system:

ẋ = σ(y − x), ẏ = x(ρ − z) − y, ż = xy − γ z , (5)
were generated with initial conditions (x0, y0, z0) = (1, 5, 10), and 
standard parameters σ = 10, ρ = 28 and γ = 8/3 for which the 
system exhibits chaotic behavior. Matlab’s ode45 function, that im-
plements fourth and fifth order Runge–Kutta numerical integration 
algorithms, has been used to solve the system of differential equa-
tions with sampling period δt = 0.15. The first 105 iterations were 
discarded to avoid possible transients. Again, observational Gaus-
sian white noises of different levels have been added to character-
ize the noise effect. Results obtained for this continuous chaotic 
dynamics are shown in Fig. 5. In order to reach a discrimina-
tory power of at least 0.7, the noise level can be as large as 50%, 
60%, and around 70% for sequences of length N = 29, N = 210 and 
N = 211 data points, respectively. Better results are obtained for 
the larger orders (D = 4 and D = 5), similarly to the Hénon map 
analysis. Worse performances have been confirmed for other sam-
pling periods (δt ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.65}). As will be 
mentioned in Section 5, the study of the effects of sampling rate 
on the test is an open question and a planned avenue of future 
research.

4. Real-world applications

When dealing with real applications, the measured signals re-
sult from very complex dynamics and/or from coupled dynamics of 
many dimensional systems. Furthermore, these records are often 
contaminated by noise and other artifacts. Thus, extracting rele-
vant features from them is usually a hard task to fulfill. Taking this 
into account, next we will test the performance of PE for detecting 
nonlinearity in these more challenging real-world situations.

4.1. Chaotic laser data

As a first nonlinear experimental example, we analyzed the 
chaotic intensity pulsations of a single-mode far-infrared NH3 laser 
recorded by a LeCroy oscilloscope. This experimental time se-
ries was included in the Santa Fe Time Series Competition and 
it has been often used to check the performance of nonlinearity 
tests [4–6,12]. Further details of the recording procedure of this 
data set can be found in [47]. The longer data set (N = 9, 093 data 
points) was considered. We have randomly selected one thousand 
subsequences from the original longer sequence of different sizes 
(N ∈ {50, 100, ..., 500} data points) and, then, we have tested for 
nonlinearity by applying the proposed PE surrogate approach. As 
before, M = 199 IAAFT surrogates have been generated for each 
subsequence and a two-sided rank order test has been imple-
mented for the rejection of the false null hypothesis. Fig. 6 shows 
the fraction q of successful rejections at significance level α = 0.01
of the one thousand subsequences for each length N . It can be 
concluded that a tolerable performance, i.e. fraction of correct re-
jections of at least 0.7, is achieved with very short time series. 
Actually, for D = 4 and D = 5, one hundred samples are enough 
while around two hundred are needed for D = 3. Moreover, with 
N = 200 data points, an almost perfect discriminatory power is 
obtained for D = 5. Better performance is obtained for the larger 
values of D even when the condition N � D! is not satisfied. We 
conjecture that this counter-intuitive result could be associated 
with the fact that, in order to detect nonlinearity, larger ordinal 
patterns provide more information about the underlying temporal 
structures, allowing an improved characterization of the intrinsic 
nonlinear dynamics.

4.2. Monthly smoothed total sunspot number

Following the analysis developed by De Domenico and La-
tora [6], we have tested the nonlinear dynamics for the monthly 
smoothed total sunspot number. These data were downloaded 
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Fig. 6. The fraction q of correct rejections of a linear stochastic null hypothesis 
for experimental chaotic laser data. One thousand subsequences for each length N
have been tested with the PE as nonlinearity measure and the IAAFT as surrogate 
method. A two-sided rank order test of size α = 0.01 (M = 199 surrogates) has been 
implemented for rejecting linearity of each subsequence. The PE is estimated with 
different orders (D = 3, D = 4 & D = 5) and lag τ = 1. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 7. Analysis of the monthly smoothed total sunspot number with the PE as non-
linear discriminators. M = 999 surrogates have been generated through the IAAFT 
algorithm. The PE has been estimated with different orders (D = 3, D = 4 & D = 5) 
and lag τ = 1. Black circles indicate the value estimated for the original time se-
ries while boxplots are used to display the distributions of estimated values for the 
surrogate realizations.

from the World Data Center SILSO, Royal Observatory of Belgium, 
Brussels. The 13-month smoothed monthly sunspot number from 
July 1749 to March 2016 (N = 3,201) has been considered. Fur-
ther details about this database can be found at website: http :
/ /www.sidc .be /SILSO/. In this case, we have carried out a two-sided 
rank order test of size α = 0.002 (M = 999 surrogates) for differ-
ent orders (D = 3, D = 4 & D = 5) and lag τ = 1. As can be seen in 
Fig. 7, strong evidence in favor of a nonlinear underlying dynamics 
is clearly concluded. Being more precise, we can reject the null hy-
pothesis of a linear stochastic process with 99.8% confidence level 
for the three orders. This finding is consistent with results obtained 
in [6], where rejection with 98% confidence level is achieved by 
applying the autoregressive-fit residuals kurtosis (ARK) as discrim-
inator. As it was stated and discussed by De Domenico and Latora, 
this finding is significant for a better comprehension of the still 
debated mechanisms that govern the solar cycle dynamics. It is 
worth remarking here the higher confidence interval for the rejec-
tion obtained by implementing PE as nonlinearity measure.

4.3. Electroencephalograms from healthy and epileptic patients

Looking for signatures of nonlinear dynamical behavior in 
neuro-physiological data, we analyze five different sets of elec-
troencephalogram (EEG) time series for different groups and 
recording regions: surface (scalp) EEG recordings from five healthy 
volunteers in an awake state with eyes open (Set A) and closed 
(Set B), intracranial EEG recordings from five epilepsy patients 
during the seizure free interval from outside (Set C) and from 
within (Set D) the seizure generating area, and intracranial EEG 
recordings of epileptic seizures (Set E). Each set contains one 
hundred single-channel EEG segments of 23.6 seconds of dura-
tion recorded at a sampling rate of 173.61 Hz (N = 4,097 data 
points). They were selected from continuous multichannel EEG 
recordings after visual inspection for artifacts. Additionally, only 
segments that satisfy a weak stationarity criterion were cho-
sen. These artifact-free records are available at www.meb.unibonn.
de/epileptologie/science/physik/eegdata.html. Further details about 
the recording technique of these EEG data can be found in the 
original paper by Andrzejak et al. [48]. We have tried to quan-
tify the presence of nonlinearity in these five sets of EEGs through 
the PE discriminator estimated with different orders (D = 3, D = 4
& D = 5) and lag τ = 1. For that purpose, M = 999 surrogates 
have been generated with the IAAFT algorithm for each one of 
these EEG original segments. Then, a two-sided rank order test 
was implemented for testing the null hypothesis of an underlying 
linear stochastic process. Fig. 8a) shows the fraction q of rejec-
tions for each set as a function of D . According to these results, 
a linear stochastic dynamics can be associated with EEG records 
of healthy subjects with eyes open (Set A) while nonlinear mech-
anisms are present during epileptic seizures (Set E). On the other 
hand, the number of rejections increases for the other data sets 
(B–D). This allows us to conjecture that the degree of nonlinearity 
is higher for the pathological cases. It should be stressed that these 
findings are in excellent accord with those obtained by Donges et 
al. [8] by implementing a complex network method on the same 
EEG database (please compare our results with those listed in Ta-
ble 1 from [8]). We have also developed a multiscale analysis by 
testing the fraction q of rejection for the five sets as a function 
of the lag τ . Results obtained for the order D = 5 are displayed 
in Fig. 8b). Qualitative similar behaviors have been confirmed for 
D = 3 and D = 4. For τ = 4 the fraction of rejections reaches a 
maximum for Sets E (q = 0.95) while Set A has a zero value. Like-
wise, at τ = 5, the fraction of rejections is maximum for Set D 
(q = 0.34). Consequently, we can conclude that the nonlinear na-
ture can be better discriminated at particular time scales. Finally, 
records from epilepsy patients during the seizure free interval from 
outside the seizure generating area (Set C) can not be distinguished 
from those obtained from healthy subjects (Sets A and B) through 
the proposed PE surrogate approach.

5. Conclusions

In this work, we have tested the permutation entropy as a non-
linear discriminative measure in a conventional surrogate frame-
work. Numerically controlled analyses indicate that the proposed 
approach is efficient in recognizing the presence of nonlinear dy-
namics in several discrete and continuous chaotic systems, even 
when contaminated with a considerable amount of observational 
Gaussian white noise. Moreover, this discrimination can be sig-
nificantly reached with time series of short length. The low frac-
tions of rejections for true null hypothesis (linear Gaussian and 
non-Gaussian discrete and continuous models) confirm robustness 

http://www.sidc.be/SILSO/
http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://www.sidc.be/SILSO/
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Fig. 8. a) The fraction q of rejections of a linear stochastic null hypothesis for the 
five different sets of EEGs as a function of the order D for lag τ = 1. b) Analysis 
of q as a function of the lag τ for the order D = 5. Similar behaviors are obtained 
for D = 3 and D = 4. One hundred two-sided rank order tests of size α = 0.002
(M = 999 surrogates) have been tested for each set. Set A (healthy, eyes open): blue 
circles; Set B (healthy, eyes closed): black squares; Set C (pathological, interictal, 
no epileptogenic zone): red diamonds; Set D (pathological, interictal, epileptogenic 
zone): cyan triangles; Set E (pathological, seizure activity): green stars. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

against type-I errors (false alarms). In addition, the high fractions 
of rejections obtained for false null hypothesis (chaotic regimes of 
discrete and continuous systems) evidence a significant discrim-
ination power and, consequently, reliability against type-II errors. 
Finally, the PE has been implemented for testing the nonlinear dy-
namics in observational data from several natural and laboratory 
systems. Results obtained are in accord with those published in lit-
erature, confirming once again the versatility of this symbolic tool 
as nonlinear discriminating statistic.

According to the evidence gathered from the several analyses 
performed, we conclude that the surrogate method with the PE 
as a discriminating nonlinear measure can help shed new light on 
the detection of nonlinearities in very short and noisy time series, 
and ultimately, in a more appropriate physical interpretation of the 
underlying complex dynamics of real data. Several open method-
ological issues, such as the characterization of sampling effects and 
the analysis of irregularly sampled data for which the construction 
of surrogate data deserves special attention, will be considered in 
future research. We are also planning to assess the discriminative 
power of some generalized and improved ordinal descriptors, such 
as forbidden ordinal patterns [18,19], modified permutation en-
tropy [49], weighted-permutation entropy [50], Tsallis permutation 
entropy [51], Rényi permutation entropy [52], and permutation 
min-entropy [53].
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