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Dual behavior of caustic optical beams facing obstacles
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A full propagation analysis on both fold-type and cusp-type caustic optical beams under various setups of
obstructions is theoretically and experimentally performed. It is demonstrated that the self-healing property of
caustic optical beams that include the famous Airy beam is a quite relative property. In fact, fold-type and
cusp-type beams cannot only behave as self-healing beams by blocking the main intensity peak, but also behave
as self-breaking ones in a nonintuitive manner: by blocking a lateral side of the beam without touching the
central intensity peak. The regeneration and rupture processes of caustic beams follow a nonlocal propagation
dynamic unlike the other conventional beams. Moreover, deep differences between fold and cusp caustic beams
are pointed out once facing certain obstructions. The cusp-caustic beam can be broken down by the obstacle
placed in a dark zone outside the caustic region, while the fold-type one remains unaltered. This beam rupture
confirms the key role of a hidden propagating field in the shadow region for cusp beams that coexist with the
evanescent one. The obtained results cast down the established idea that the Airy beam is a robust self-healing
beam since any caustic beam can behave in a dual manner depending on the obstruction location. These facts
open up different perspectives for the applications in which the self-healing properties of the beam are relevant.
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I. INTRODUCTION

An optical beam is self-healing if its transverse intensity
profile is barely affected, after propagation, by a small
blocking in amplitude and/or phase placed in its trajectory.
One of the reasons for a wide and growing interest in
the famous accelerating Airy Beams (AiB) [1,2] and other
curved caustic beams [3] is their reported ability to self-heal
during propagation [3–8]. The applications of this feature in
optical micromanipulation and correlated branches [9] and
in beam propagation through inhomogeneous and turbulent
media [10,11] encouraged the crescent study of this class
of beams. The self-healing property of Airy beams basically
consists in the “regeneration” of the main curved lobe when it
is obstructed. To give a physical interpretation of this feature,
several viewpoints were considered such as, for instance, the
evolution of the Poynting vector [4], the evolution of the beam
phase [8], and an analysis based on exact solutions of the wave
equation [5,12]. The analysis done in Ref. [13] states that the
main features of Airy beams, i.e., weak diffraction, curved
trajectories, and self-healing, are a consequence of a nonlocal
wave dynamics produced by a sideways ray contribution to
the field. There is no explicit analysis of the beam behavior
facing real obstacles in that work such that the predictions for
this effect were indirectly induced from the analysis on the
other properties of the Airy beam. There is, besides, another
key matter related to the caustic structure of a curved beam
that should affect its self-healing behavior: the symmetry of the
spectral phase [14]. The odd symmetry gives rise to a fold-type
caustic optical beam, while the even symmetry gives rise to
a cusp-type one. The more studied fold caustic beam is the
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AiB [1,2] while the Pearcey beam [3] and the symmetric Airy
beam (SAB) [15–17] are examples of cusp-caustic beams.
In fact, both caustic structures comprise an infinite number
of beams with different curvatures depending on the value
of the phase power that can be any real value [14]. Surely,
the beams belonging to each caustic structure should behave
in a different fashion facing identical setups of obstructions.
However, there does not exist an overall analysis that spans
caustic beams facing different setups of obstructions pointing
out, in addition, the role of the spectral phase symmetry.

From the above-mentioned facts, this paper is devoted to
perform a robust propagation analysis on fold-type and cusp-
type caustic beams facing different setups of obstructions. The
theoretical analysis is performed by using two complementary
approaches: the geometric one arising from the catastrophe
theory on caustic structures and the wave-field analysis
based on integral representations of the propagation field.
Moreover, an experimental analysis is carried out in order
to support the theoretical predictions. The findings of this
work can be extended to other reported caustic beams with
arbitrary complex trajectories [18–20] and other types of self-
bending and self-healing beams such as Mathieu and Weber
beams [21].

II. THEORETICAL FOUNDATION

A. Geometric approach from catastrophe theory

The Caustic-Catastrophe theory [22–24] gives a geometri-
cal description of the ray scheme responsible for the caustic
curve formation. Assume a two-dimensional (2D) curved beam
propagating in free space in the z direction that is partially
blocked by one obstacle placed along the transverse direction
x. The starting point is the full phase of the beam angular
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spectrum of power n and symmetry q [14],

�(q)
n (K; s,ξ ) = Cn sgnq(K) |K|n + ξ

(
k2 − K2

2

)
+ sK,

(1)

with K the dimensionless spatial frequency that is the
conjugate variable of the normalized transverse spatial co-
ordinate s = x/x0, where x0 is a transverse scale character-
izing the beam. The normalized propagation coordinate is
ξ = zλ/(2πx2

0 ), and k = (2π/λ)x0 is the normalized free-
space wave number with λ being the free-space wavelength.
The normalization constant Cn guarantees the same range of
phase variation for a given range of K . Here, sgn(·) is the sign
function and | · | is the absolute value. Under the catastrophe
theory framework, �

(q)
n is called the generating function in

which the spatial frequency K plays the role of internal or
state variable and the spatial variables (s,ξ ) act as external or
control parameters [22,23]. The generating function is linear in
terms of the control parameters and composed of three terms.
The first one, Cn sgnq(K) |K|n, is the germ of the generating
function and does not depend on the control parameters. This
term plays a key role since it governs the dynamics of the
caustic structure of the beam. The other two unfolding terms,
depending on control variables, are the paraxial propagator
term and the Fourier transform term. The ray pattern associated
to the beam, and thereby its caustic structure, can be obtained
by differentiating the generating function with respect to the
internal variable and setting the derivative to zero [22,23],

∂�
(q)
n

∂K
= n Cn sgnq+1(K) |K|n−1 − ξK + s = 0. (2)

Equation (2) evaluates the stationary points, say Kst, so that
each one represents a particular family of rays with linear
trajectory in the sξ plane. The number of solutions Kst of (2)
then coincides with the number of rays intersecting at a given
point (s,ξ ). The watermark of catastrophe optics lies in that
several rays can pass through the same point, which allows one
to have an “envelope,” which is precisely the caustic curve.
On a caustic, two or more rays acquire the same direction,
becoming parallel [23]. In practice, a “ray annihilation” occurs
on the caustics with a jumpwise variation of the number of rays
passing through the caustic curve giving rise to a catastrophe.
The equations representing the caustic curves are obtained by
setting to zero the second-order partial derivatives of �

(q)
n ,

∂2�
(q)
n

∂K2
= n(n − 1) Cn sgnq(K) |K|n−2 − ξ = 0. (3)

From a geometric viewpoint, Eq. (3) indicates that the
projection of the ray surface onto the sξ space gives rise to
singularities or catastrophes identified as caustics. Thereby, in
order to obtain the equation of the caustic curve, the value of
K obtained from (3) must be replaced into (2). Explicitly, this
caustic curve equation can be written as [14]

sgnq(s) |s| + An sgnq+1(ξ ) |ξ | n−1
n−2 = 0, (4)

where

An = C1/(2−n)
n (2 − n) n1/(2−n)

/
(n − 1)

n−1
n−2 .

The blockade of a subset of rays by an obstacle breaks down a
part of the caustic curve. The caustic rupture extends between
the spatial region limited by the rays touching the edges of the
obstacle, say the “blocking limit rays.” If the obstacle is placed
at the plane ξ = ξ0 in the interval s0a < s < s0b, the blocking
limit rays are determined from the fixed values K0a,K0b that
are given by the algebraic equations

n Cn sgnq+1(Ki) |Ki |n−1 − ξ0Ki + si = 0, (5)

with i = 0a,0b. This picture fully predicts the region and
spatial extension of the caustic curve rupture as a function
of the position and length of the obstacle.

B. Wave field from an integral representation

The undulatory description of the wave field up to the
obstacle plane, say ξ = ξ0, is performed from the angular
spectrum formalism [25,26]. The dimensionless wave field u,
solution of paraxial equation 2i∂ξu + ∂ssu = 0, is calculated
by means of the integral equation,

u(q)
n (s,ξ ) = 1

2π

∫ +∞

−∞
Uq

n (K)ei[ξ (k2− K2

2 )+sK]dK, (6)

where

Uq
n (K) = V (K) ei Cnsgnq (K)|K|n (7)

is the complex amplitude of the angular spectrum with V

being the real amplitude. U can be viewed as the “beam’s
signature” since it defines the beam structure and dynamics
in propagation [15]. The wave field at ξ = ξ0, say u = u0, is
established from Eq. (6). Notice that the indices n and q in
the wave field are omitted for simplicity. The obstruction is
mathematically accounted at the plane ξ = ξ0 as

u
†
0(s0) = u0(s0) h(s0), (8)

with s0 the transverse coordinate on this plane and

h(s0) =
{

0 if s0a � s0 � s0b,

1 otherwise.

The obstacle cancels out the field in the interval [s0a,s0b]. The
wave field u

†
0(s0) is the input field of the Huygens-Fresnel

integral [27],

uF (s,ξ ) = ei(2πx0/λ)2ξ

i
√

2πξx0/λ

∫ +∞

−∞
u
†
0(s0)e−i(s−s0)2/(2ξ )ds0, (9)

from which the output field uF is calculated at any output plane
ξ > ξ0. Equations (1)–(9) provide the theoretical foundation to
quantitatively determinate both the ray pattern and the intensity
distribution of the wave field in the ξs space facing arbitrary
obstructions. Thereby, a rigorous analysis can be done by
considering several setups of obstacles in addition to the phase
symmetry of the beam angular spectrum that characterizes
fold-type and cusp-type caustic beams.

III. THEORETICAL RESULTS

In the following, we perform the simulations for the partic-
ular value n = 3. The value q = 1 leads to an antisymmetric
spectral phase and q = 0 leads to a symmetric one. Thereby,
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FIG. 1. (a1) Intensity distribution normalized to its maximum
value, I/Imax, vs spatial coordinates s and ξ for AB. The intensity
scale [0,1] corresponds to [0,I/Imax]. (a2) Spatial ray distribution for
AB [orange rays (those coming from the left) for K > 0 and green
rays (those coming from the right) for K < 0]. (b1),(b2) Same, but
for SAB. White and black curves in the undulatory and geometric
representations, respectively, are the caustic curves that are tangent
to each of the rays in one point.

the values n = 3 and q = 1 determine the accelerating Airy
beam [1] that is, undoubtedly, the more famous fold-type
caustic beam, while the values n = 3 and q = 0 determine
the recently generated SAB [15]. All the theoretical and
experimental results obtained for these particular beams can be
extended for any real value of n such that they are valid for the
overall fold-type and cusp-type beams as demonstrated in [14].
Figure 1 shows the spatial distribution of the light intensity
from Eqs. (6)–(9) and the ray pattern from Eqs. (2)–(5) for
(a) AB (fold-type caustic) and (b) SAB (cusp-type caustic)
without obstructions. A fold-type caustic arises from the
intersection of two rays inside the caustic region generating a
fringe-type interference (the secondary lobes), and zero rays
outside this region. Only evanescent waves exist beyond the
caustic curve. In return, cusp-type caustic arises from the
intersection of three rays inside the caustic region generating
a dot-type interference, and one ray outside this region. This
indicates the coexistence between evanescent and propagating
waves beyond the caustic curve. The quite different ray
morphology for both types of beams must yield a different
propagation dynamics in the presence of identical obstacles.

We first begin by blocking the main intensity lobe of the
AB and SAB with an obstacle placed at the beam center on
ξ = 0. The wave-field simulations are visualized in Fig. 2(a1)
for AB and Fig. 2(b1) for SAB. It is observed that the curved
main lobe of AB is not broken by the obstacle, except at
its neighborhood, confirming its self-healing feature. Our
simulations provide evidence that the SAB also presents
a self-healing characteristic supporting preliminary results
obtained in [28].

FIG. 2. I/Imax and ray distribution vs (s,ξ ) in the presence of
an obstacle placed at the Fourier plane (ξ = 0) partially blocking
the main lobe in the interval −1 � s � 1, (a) for AB and (b) for
SAB. Notice that the blocking limit rays [(a1),(b1) (orange and green)
thin lines and (a2),(b2) (orange and green) thick lines] delimit the
caustic curve cut off by the obstacle [(white and black) curved lines
in undulatory and geometric configurations, respectively].

In fact, notice that the main symmetric specular lobes are
not affected by the perturbation except at its neighborhood.
A robust explanation of this phenomenon is tackled from the
full ray map taken into account for the rays blocked by the
obstacle. The results are visualized in Fig. 2(a2) for AB and
Fig. 2(b2) for SAB. Notice that the blocked rays are those that
would form the caustic curve at the neighborhood to ξ = 0.
Hence, the caustic breaking is then only produced in this region
that is delimited by the “blocking limit rays.” The rest of
the caustic curve remains unaltered. The geometric setup in
Figs. 2(a2) and 2(b2) exemplifies the self-healing effect in
fold-type and cusp-type beams. It is clear that the curved main
lobes do not follow a local self-dynamics in the sense that this
central lobe builds itself during propagation. On the contrary,
one could assert, strictly speaking, that the main curved lobes
are formed by a nonlocal contribution of rays coming from
sideways regions far away from it that are not blocked by
the obstacle. In summary, the obstacle placed at the beam
center affects neither the structure of the fold-type caustic
beam nor the structure of the cusp-type caustic beam except at
the obstacle neighborhood.

In the above case, the nonlocal dynamics plays a “con-
structive role” in the beam regeneration process. However, the
nonlocal dynamics can also play a “negative role” in the sense
that the central lobe can be broken down by blocking a lateral
side of the beam. This peculiar effect has not been tackled
in the literature. Figure 3 illustrates this framework in which
the obstacle is located at the left side of the beam center. The
spatial distribution of the light intensity is shown in Fig. 3(a1)
for AB and Fig. 3(b1) for SAB. Clearly, the obstacle blocks
the main intensity lobe on ξ = 0 neither for AB nor for SAB.
In spite of this, it is observed that the beam main lobe bending
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FIG. 3. I/Imax and ray distribution vs (s,ξ ) in the presence of an
obstacle placed at the Fourier plane (ξ = 0) blocking the left lateral
sideways of the beam in the interval −10 � s � −2, (a) for AB and
(b) for SAB. Unlike Fig. 2, only the blocking limit rays for K > 0
delimit the caustic curves cut off by the obstacle [those coming from
the left side going to the right side represented by (a1),(b1) (orange)
thin lines and (a2),(b2) (orange) thick lines].

to the opposite sideways to the obstacle breaks down during
propagation. For AB [Fig. 3(a1)], the blockade of secondary
lobes to the left sideways of the main one results in a full
destruction, almost immediately behind the obstacle plane,
of the unique main lobe curved to the right side. For SAB
[Fig. 3(b1)], the lateral obstruction breaks down the right-side
lobe after the obstacle plane, leaving the left one invariant.

How does this peculiar phenomenon occur? Again, the
ray scheme in the presence of the obstruction explains this
feature. Notice from Figs. 3(a2) and 3(b2) how the nonlocal
dynamics in propagation is responsible for such a peculiar
behavior for both type of beams. For AB [Fig. 3(a2)], the
rays proceeding from the left side contribute to the formation
of the right side of the fold caustic curve. By blocking a part
of them, as Fig. 3(a2) shows, it inhibits the making of a part of
the caustic curve. Notice that the blocking limit rays delimit
the “caustic hole” and therefore determine the length of this.
The rays proceeding from the right side (green straight lines)
form the caustic curve for ξ > 0. The rays proceeding from
the right side do not participate in the caustic rupture. They
only break down a part of the secondary lobes delimited by
the blocking limit rays. After the caustic hole, the caustic
curve reemerges from the unblocked rays and thereby the
beam should re-self-heal. This is visualized from Figs. 3(a1)
and 3(a2) where the reemerging of the caustic curve from
ξ � 6 is clear. However, at this propagation stage, the beam
already presents a strong spreading such that the main intensity
lobe accompanying the caustics is not appreciated due to its
negligible energy. For practical effects, the main lobe is fully
broken down. For the SAB [Fig. 3(b2)], the process of the
caustic rupture by the obstacle is equivalent. The equivalent
behavior is because the left ray pattern has identical structure

for both caustic beams. Hence, the caustic hole is equivalent for
both structures, as shown in Figs. 3(a2) and 3(b2). For SAB,
like AB, the rays arising from the right side (green straight
lines) neither participate in the caustic breaking, nor are even
blocked by the obstacle. In spite of this similarity, there is an
essential difference related to the fact that the obstacle was
placed inside the caustic region for AB and outside this for
SAB.

Notice from Figs. 3(a1) and 3(b1) that the obstacle in the
SAB case lies in a dark region, unlike the AB where secondary
curved lobes exist. The outside region to the cusp-caustic
curve possessing one ray in each point in the region indicates
the existence of a propagation wave field, coexisting with
the evanescent one. This imperceptible propagating field is
directly responsible for the building of the opposite main lobe.
This is a clear manifestation of the nonlocal nature in the
propagation dynamics of a cusp-type caustic beam. Figures 2
and 3 clearly exemplify that the self-healing phenomenon in
caustic beams is a relative property. These beams then possess
a dual behavior: they can behave as either a self-healing beam
or a self-breaking one.

On the other hand, what happens if the obstacle is symmet-
rically placed at the right lateral side instead of the left one? As
a cusp-type beam is a beam that is symmetric in its intensity
distribution, the beam has identical propagation dynamics but
specularly inverted, i.e., the caustic hole takes place on the
left caustic curve. In return, a fold-type beam is asymmetric in
intensity distribution such that opposite obstruction will induce
different propagation dynamics. The obstacle is now located
in the dark region of the fold-type beam. It was verified (not
depicted) that the AB remains unaltered in this framework
following the dynamics depicted in Fig. 1(a1). No ray exists
in this region for fold-type beams since the shadow region is
only constituted by an evanescent field that does not contribute
to the wave-field formation. The above matters open a way to
experimentally distinguish between fold-type and cusp-type
optical beams: putting an obstacle in a shadow region. If a
breaking in the intensity distribution of the beam occurs, the
beam is a cusp-type one. Otherwise, the beam is a fold-type
one.

IV. EXPERIMENTAL RESULTS

We carry out the experimental realization of the propagation
schemes analyzed above in order to support the theoretical
predictions. The beam complex field amplitude U given by
Eq. (7) was encoded as a phase-only computer-generated
hologram (CGH) following the approach reported in [15,29].
In our case, the CGH was addressed into a programmable
reflective LCoS-SLM (Holoeye LETO, 8-bit 256 gray-levels,
pixel pitch of 6.4 μm and 1920×1080 pixels) calibrated
for a 2π phase shift at the wavelength λ = 532 nm and
corrected from static aberrations, as reported in [30]. In order
to generate the one-dimensional AB and SAB, the hologram
was illuminated by a collimated laser beam (λ = 532 nm)
and then focused by a converging cylindrical lens (N-BK7
glass, f = 80 cm) that was placed at a distance f in front
of the spatial light modulator (SLM) phase array. The origin
z = 0 coincides with the focal plane position of the focusing
lens. The obstacle was made by depositing an ink line on
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z

x

FIG. 4. Experimental normalized intensity distribution (I/Imax), in terms of the transverse and longitudinal spatial coordinates, x and z, from
the Fourier plane (z = 0) for (a) AB representing a fold-caustic beam and (b) SAB representing a cusp-caustic beam. (a1),(b1) Obstacle-free
propagation. (a2),(b2) Propagation in the presence of an obstacle situated at the beam center. (a3),(b3) Propagation in the presence of an obstacle
blocking the left lateral side of the beams. The red (thick) segment on the Fourier plane indicates the location and size of the obstacle.

a glass cover slide placed at the Fourier plane (length of
0.2 mm for the central obstacle and 0.7 mm for the lateral
obstacle). The propagation dynamics of these beams were
then recorded as a function of propagation distance for z > 0
by translating the imaging apparatus, i.e., an sCMOS camera
(Hamamatsu, Orca Flash 4.0, 16-bit gray-level, pixel size of
6.5 μm). Specifically, 200 intensity patterns were measured in
the range z ∈ [0, 40] cm beginning from the Fourier plane. The
resulting intensity patterns for AB and for SAB are displayed
in Figs. 4(a) and 4(b), respectively. Figures 4(a1) and 4(b1)
show the results for the obstacle-free propagation that agree
with the simulations in Figs. 1(a1) and 1(b1). Figures 4(a2)
and 4(b2) show the beam propagation when the obstacle is
located at the beam center on the optical axis. For the fold-type
beam [Fig. 4(a2)], it is observed that the main lobe is not
broken. There only exists a marked depletion of the secondary
lobes about the optical axis. For the cusp-type beam case, an
appreciable interference is observed around the central lobe
immediately behind the obstruction, although no breaking of
the specular curved lobes is produced during propagation.
These results demonstrate a clear self-healing process for both
types of caustic beams, in full accordance with the intensity
patterns presented in Figs. 2(a1) and 2(b2). Finally, Figs. 4(a3)
and 4(b3) show the beam propagation when the obstruction is
placed at the left sideways of the beams. For the fold-type
beam [Fig. 4(a3)], a rupture on the main curved lobe is
observed in the opposite sideways, such that the beam has no
resemblance to the original obstacle-free beam beyond z = 0.
For the cusp-type beam, a rupture on the right lobe is also
observed while the left lobe remains unaltered. The resultant

beam has no likeness with the original obstacle-free beam
of Fig. 1(b1). These results demonstrate a clear self-breaking
process for both types of caustic beams, in full agreement with
the theoretical intensity patterns presented in Figs. 3(a1) and
3(b2). Besides, we have also performed the experiments by
changing the obstruction to the right sideways. The obtained
results (not shown in Fig. 4) confirm the full immutability
for the AB with the obstruction located in the absolute dark
region. In return, for the SAB, the specular symmetric behavior
is confirmed. The left lobe is depleted on account of the
obstruction placed at the right side, which is the specular
counterpart of the process shown in Fig. 4(b3). In summary, it
was demonstrated that fold-type and cusp-type optical beams
present a dual behavior depending on the obstruction location.

V. FINAL REMARKS AND CONCLUSIONS

A full analysis of both fold-type and cusp-type caustic
beams under different setups of obstructions was theoretically
and experimentally performed. In order to establish the overall
features, we have used two complementary approaches: first,
the caustic curve formation from rays and caustic rupture due
to obstruction under the framework of catastrophe theory;
second, the wave-field analysis using the angular spectrum
and Huygens-Fresnel representations. The theoretical results
were supported by means of experiments. It was confirmed
that the self-healing property of caustic optical beams is a
quite relative property. In fact, fold-type and cusp-type beams
behave as self-healing beams by blocking the main intensity
peak. In parallel, these beams can also behave as self-breaking
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ones. In fact, a counterintuitive phenomenon is revealed: By
blocking a sideways of the beam without touching the main
intensity peak, the curved lobe at the opposite side breaks
down. The regeneration process as well as the rupture one are
due to a strong nonlocal propagation dynamics that caustic
beams follow, which is distinguishable from the conventional
beams. The process of formation of the caustic curve for
both kinds of beams is due to side ray contributions. The
main intensity lobe cannot be viewed as a local generation
of itself, as was clearly demonstrated by the ray scheme.
In spite of the above-mentioned similar behaviors between
fold-type and cusp-type facing obstructions, deep differences
were confirmed among both beams too. The fold-caustic beam
remains unaltered facing the obstacle located in the dark
region outside the caustic region, while the cusp-caustic beam
is broken under the same conditions. This fact points out
the presence of a propagating wave field in addition to the
evanescent one in the outside region to the caustic curve. The
breaking of the cusp beam makes evident the key role of this
propagating field.

This study provides an insight into the knowledge of the
unusual dynamics mechanisms in fold-type and cusp-type
caustic optical beams. The results obtained here cast down the
established idea that the Airy beam is necessarily a self-healing
one since any caustic beam behaves in a dual manner, i.e.,
they can self-break by blocking a dark region. These facts
open up different perspectives for the applications in which
the self-healing properties of the beam are relevant.
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