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ABSTRACT

Objetive: Arsenic (As) and fluoride (F) are found in groundwater and soils around the world,
causing different problems to crops. Because these elements compete against phosphorus
(P) in soils and plants, their relationship is complex. The aim of this work was to study the
oxidative stress of soybean plants subjected to different concentrations of As and F, and the
effect of P.

Methods: The following 10 treatments were carried out in each of two soils with different P
content: three As levels (low 10 mg As kg', medium 50 mg Askg™' and high 100 mg As
kg™"), three F levels (low 160 mgF kg™', medium 250 mg F kg™' and high 500 mg F kg™")
and three As+F levels (same concentrations), and the control treatment (soil with the
background As and F concentrations) Lipid peroxidation, chlorophyll, gluthatione contents
and antioxidant enzymes activities were determination.

Results: Increased lipid peroxidation and alterations in glutathione content, catalase,
superoxide dismutase and peroxidase activities as well as in chlorophyll content revealed
that As causes higher oxidative stress in plants grown in soils with low P content.
Conclusion: Stress parameters in F treatments were less affected. Plants grown in soils enriched
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with P revealed a decrease in the toxic effects caused by As and F.

Introduction

Soybean (Glycine max L. Merrill) is a highly demanded
crop due to its nutritive value, for both humans and
domestic animals. Thus, it has emerged as the main
protein and oil seed crop in the world trade. This
crop has the ability to grow under a wide range of
environmental conditions and management systems,
and the expansion of the cropped area has led to its
introduction in marginal lands. Like other crop plants,
it is frequently exposed to various environmental stres-
ses, which generally result in decreased yield. Among
the abiotic environmental stresses, drought, radiation,
temperature, heavy metal toxicity and soil salinity are
regarded as major factors that pose a great threat to
agricultural yield [1-4]. The presence of arsenic (As)
and fluoride (F) in water and soils is an emerging
abiotic stress in several areas of the world, and
should thus be taken into account [5,6].

Toxic elements like cadmium, lead, mercury, As and
aluminum (for simplicity, ‘metals’ henceforth) are hazar-
dous pollutants of the environment worldwide. Their
actions on plants cause typical symptoms of toxicity,
such as chlorosis, leaf rolling, wilting and stunted
growth, limited seed numbers or even death. In turn,
plants defend themselves against metal toxicity by acti-
vating enzymes that eliminate reactive oxygen

compounds and by accumulating compounds that
enhance chelation or sequestration of metals (e.g.
organic acids, phytochelatins or metallothioneins) [7]. It
is widely known that, under normal growth conditions,
plants maintain an equilibrium between production
and scavenging of reactive oxygen species (ROS), avoid-
ing the damage caused by their accumulation.

To scavenge ROS and protect against oxidative
stress, plants have evolved an efficient antioxidant
defense system composed of both antioxidant
enzymes, such as superoxide dismutase (SOD), catalase
(CAT), peroxidases, glutathione (GSH) reductase and
ascorbate peroxidase, and antioxidants such as ascor-
bate, GSH, flavonoids, and lipid-soluble compounds
such as carotenoids and tocopherols [8]. Among the
mentioned enzymes, SOD is involved in 0%~ scaven-
ging, whereas CAT, ascorbate peroxidase and GSH
reductase are involved in H,O, decomposition [9].

Phosphorus (P) is an essential element required for
plant growth and a chemical analog of As [10] and
competes with As in plant uptake [11]. Wu et al. [12]
have demonstrated that As is taken up by plants via
the phosphate transport system because of the chemi-
cal similarity between As and P [13,14]. Arsenates and
fluorides also share several physico-chemical proper-
ties with phosphates and it is known that phosphates
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have a significant role in As and F dynamics in soils.
Owing to the similarity between these elements, they
compete for the same soil adsorption sites. As(V) and
P compete for uptake through the same transport
systems in As hyperaccumulators [15,16], As-tolerant
non-hyperaccumulators [17] and As-sensitive non-
accumulators [13]. Phosphates are preferentially
adsorbed as compared with As, leading to an increase
in As solubility when soils are fertilized with P [18].
Several authors have found higher As accumulation
in cultivated plants in the presence of P [19]. Loga-
nathan et al. [20] also found an increase in the avail-
ability of F in plant when P content is soils increases
via P fertilization.

Chlorophyll is the most abundant pigment in all
plant species, and is essential for light harvesting and
energy transduction in photosynthesis. Its biosynthesis
occurs mainly in the plastid and is synchronized with
the formation of other pigments such as carotenoids.

The basic structure of a chlorophyll molecule is a
porphyrin ring, coordinated with a central magnesium
atom. This structure is responsible for its antioxidative
properties, as it occurs with heme molecule, an iron
protoporphyrin IX, a very similar molecule that shares
the first steps of its biosynthesis.

Antioxidant system responses against different
abiotic stresses have been observed in soybean
plants [4,21,22]. To our knowledge, there is no infor-
mation about the effect of P on antioxidant response
of soybeans induced by different concentrations of As.

Materials and methods
Plant material and growing conditions

Experiments were performed in a greenhouse where
soybean was grown in 5 | pots, containing a substrate
composed of 30% of washed sand and 70% of the
top horizon of a sandy loam Typic Argiudoll soil. Two
soils, classified on the basis of the concentration of
bioavailable P and taken from two adjacent plots,
were used. One of the soils received P fertilizer in the
season previous to sampling, whereas the other did
not (control). The final concentration of Bray and
Kurtz available P in soils was 21 mg P kg'1 (P+ soil)

Table 1. Factors, treatments and As and F concentrations.

and 8 mg Pkg_1 (P— soil). The available P concen-
tration in the P— soil was deficient for soybean
growth and the crop responded to P fertilization. In
contrast, the available P concentration available in
the P+ soil was above that limit, and thus the crop
did not need P application. Other soil properties were
identical in the two plots: size particle distribution
13% clay, 12%, silt, 74% sand; 12.6 g kg™ of organic
carbon (Walkley and Black method); pH 7.6 and
0.38 dSm™' ECs (soil saturation extract). In all cases,
the methodologies outlined by Sparks et al. [23] were
followed.

The design was factorial (2 x 10) at random with
three replications. The factors and treatments concen-
tration are shown in Table 1.

To spike these soils, different concentrations of
sodium arsenate and/or sodium F were added to
achieve a wide range of total As and total F levels (see
below). Then, soils were subjected to wetting/drying
cycles for 3 months. This procedure allowed the inter-
action between the added elements and the soil com-
ponents, reducing the overestimation of toxic effects
occurring when they are in their soluble forms [24].

Soybean seeds (cv Nidera 4613) were pregermi-
nated in the dark for 48 h. Afterward, three of them
were sown in each pot and then thinned to one
plant per pot 10 days later. To prevent any nutritional
deficit, each pot received a 2g complete fertilizer
including macro- and micronutrients, except P. Pots
were irrigated with deionized water, maintaining the
soil near field capacity throughout the experiment. At
60 days after sowing (R4 stage), the aerial biomass
and roots were harvested.

Arsenic and fluoride determination

Leaf and root samples were rinsed with distilled water,
dried, ground, sieved, homogenized and collected. As
and F content were determined as follows: As was
extracted by HNO3/H,0, acid digestion and measured
by atomic adsorption (ICP-AES) (USEPA, 2006) [25],
whereas F content was ashed at 400°C and quantified
by colorimetry (SPADNS, APHA, 1993) [26].

Factors Soils and As and F concentrations
1 P content P—:8mgP kg™’ P+:21mg P kg™’
2 As content Low: 10 mg As kg™ "; Low: 10 mg As kg™ ";
Medium: 50 mg As kg™"; Medium: 50 mg As kg™ ";
High: 100 mg As kg™ High: 100 mg As kg™
F content Low: 160 mg F kg™"; Low: 160 mg F kg™";

Medium: 250 mg F kg™";
High: 500 mg F kg™
As and F content

Control

Low: 10 mg As kg~' + 160 mg F kg™ ";
Medium: 50 mg As kg™ +250 mg F kg™";
High: As + F: 100 mg As kg~' +500 mg F kg™
Soil P—, with the background As and F concentrations

Medium: 250 mg F kg™";
High: 500 mg F kg™
Low: 10 mg As kg~' +160 mg F kg™ ";
Medium: 50 mg As kg™' +250 mg F kg™";
High: As + F: 100 mg As kg~' + 500 mg F kg™’
Soil P+, with the background As and F concentrations

Experiments were carried out as described in the ‘Materials and methods’ section.



Determination of thiobarbituric acid reactive
substances (TBARS)

Lipid peroxidation was measured on fresh tissues as
the amount of TBARS determined by the thiobarbituric
acid (TBA) reaction as described by Heath and Packer
[27]. Fresh control and treated leaves and roots
(0.3 g) were homogenized in 3 ml of 20% (w/v) trichlor-
oacetic acid (TCA). The homogenate was centrifuged at
3500 g for 20 min. Then, 1 ml of 20% TCA containing
0.5% (w/v) TBA and 100 ml 4% butylated hydroxyto-
luene in ethanol were added to 1 ml of the super-
natant. The mixture was heated at 95°C for 30 min
and then quickly cooled on ice. The contents were cen-
trifuged at 10,000 g for 15 min and the absorbance was
measured at 532 nm. The value for non-specific
absorption at 600 nm was subtracted. The concen-
tration of TBARS was calculated using an extinction

coefficient of 155 mM~' cm™".

Determination of chlorophyll content

Leaves (0.5 g, fresh weight) were homogenized with
96% ethanol (1:30 w/v). After centrifugation, the absor-
bance was measured in the supernatant at 665, 649
and 654 nm, as described by Wintermans and de
Mots [28].

Total glutathione assay

Non-protein thiols were extracted by homogenizing
0.3 g of fresh leaves or roots in 3 ml of 0.1 N HCl (pH
2), and 1 g polyvinylpyrrolidone (PVP). After centrifu-
gation at 10000 g for 10 min at 4°C, the supernatants
were used for analysis. Total GSH content (i.e. both
reduced and oxidized GSH) was determined in the
homogenates by spectrophotometry at 412 nm, using
yeast GSH reductase, DTNB and NADPH [29].

Antioxidant enzymes: preparations and assays

Extracts for the determination of CAT (EC 1.11.1.6), SOD
(EC 1.15.1.1) and guaiacol peroxidase (GPOX, EC
1.11.1.7) activities were prepared from 0.3 g of fresh
leaves and roots homogenized under ice-cold con-
ditions in 3 ml of extraction buffer, containing 50 mM
phosphate buffer (pH 7.4), 1 mM EDTA, 1g PVP and
0.5% (v/v) Triton X-100 at 4°C. The homogenates
were centrifuged at 10,000 g for 20 min and the super-
natant was used for the assays. CAT activity was deter-
mined in the homogenates by measuring the decrease
in absorption at 240 nm in a reaction medium contain-
ing 50 mM potassium phosphate buffer (pH 7.2) and
2 mM H,0,. The pseudo-first order reaction constant
(k' =k.[CAT]) of the decrease in H,0, absorption was
determined and the CAT content in pmol mg™'

protein was calculated using k=4.7x10" M~ s
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[30]. Total SOD activity was assayed by the inhibition
of the photochemical decrease of nitro blue tetrazo-
lium (NBT), as described by Becana et al. [31]. The reac-
tion mixture consisted of 50-150 ul of enzyme extract
and 3.5 ml O3 generating solution, which contained
14.3 mM methionine, 82.5 uM NBT and 2.2 uM ribofla-
vin. Extracts were brought to a final volume of 0.3 ml
with 50 mM K-phosphate (pH 7.8) and 0.1 mM
Na,EDTA. Test tubes were shaken and placed 30 cm
from a light bank consisting of six 15-W fluorescent
lamps. The reaction was allowed to run for 10 min
and stopped by switching the lights off. The decrease
in NBT was followed by reading absorbance at
560 nm. Blanks and controls were run in the same
way but without illumination and enzyme, respectively.
One unit of SOD was defined as the amount of enzyme
which inhibited 50% of NBT decrease under the assay
conditions. GPOX activity was determined in the hom-
ogenates by measuring the increase in absorption at
470 nm due to the formation of tetraguaiacol (e:
266 mM~' cm™"), 50 mM K-phosphate buffer pH 7,
0.1 mM EDTA, 10 mM guaiacol and 10 mM H,0..

Protein determination

Protein concentration was evaluated by the method of
Bradford [32], using bovine serum albumin as a
standard.

Statistics

The results obtained were evaluated using an analysis
of variance (ANOVA) test. When significant differences
were found, a comparison of means by the Tukey's
multiple range test was applied.

Results
Effects of As and F on plants

The aerial biomass of plants (data not shown) sub-
jected to As decreased by 28.6%, whereas the aerial
biomass of plants subjected to F was statistically not
different from that of controls. The root biomass was
more affected than the aerial biomass. When plants
were subjected to As treatments, the root biomass
decreased by 70% compared with the control,
whereas when they were subjected to F treatments,
the root biomass decreased by 23.7%. Results obtained
from plants subjected to both As and F resembled
those obtained with As alone. As and F concentrations
in plant tissues increased in a dose-dependent manner.
As concentration increased from 2.4 to 15.4 mg kg™ in
roots and from 0.8 to 7.2 mg kg™ in leaves. F concen-
tration in roots increased from 19mgkg” to
23.1 mg kg™, whereas that in leaves increased from
24mgkg™ to 206mgkg™' was similar between
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Table 2. Determination of TBARS on soybean roots and leaves
treated with low, medium and high As and/or F concentration
with both P conditions.

TBARS (malondialdehyde nmols/g FW)

Soil P+ Soil P—
Treatment Roots Leaves Roots Leaves
Control 35+3aA 50+5aA 38+5aA 45+3aA
As Low 76+t5bA 75+6bA 60+5bB  100+8 bC
Medium 73+6bB 75+7bA  105+8bB 102+7 bB

High 140+ 8 bA 140+ 10 bA 150+ 10 bA 175+ 11 bB

F Low 70£5bA 69+7bA 55+5bA  70+6bA
Medium 69+6 bA 68+6bA 65+8bA 80+6bB
High 69+5bA 69+7bA 59+7bA  100+9 bB

As+F Low 75+8bA 73x7bA  50+5bB  60*4bB
Medium 100+5bA 75+5bB  102+9bA 110+9 bA

High 1159 bA 1406 bB 125+10bA 170+ 12 bC

Experiments were carried out as described in the ‘Materials and methods’
section. Data are mean values of three independent experiments + S.E.
Each value represents three replicates. Different lowercase letter indi-
cates significant differences (p < 0.05) within columns. Different capital
letter indicates significant differences (p < 0.05) within rows, between
roots or leaves in Soil P+ and Soil P—, according to the Tukey’s multiple
range test.

organs. As concentration was always higher in roots
than in leaves, whereas F concentration P treatments.

Effects of As and F on lipid peroxidation

Table 2 shows the results of TBARS determination in
plants grown in both P+ and P— soils. Results from
leaves and roots revealed that all concentrations of
As led to an increase in TBARS formation in a dose-
dependent manner with respect to controls in the
P+ soil. TBARS content also was significantly affected
by the different concentrations of F as well as plants
treated with both F and As. Table 2 also shows the
similar results obtained in roots and leaves of
plants grown in the P— soil. However, most concen-
trations of TBARS in leaves and in roots were statisti-
cally different than in P+ soil. Particularly TBARS
concentration was generally higher in leaves of
plants subjected to the imposed treatments when
grown on the P— soil.

Effects of As and F on chlorophyll content

The chlorophyll content decreased with respect to con-
trols in plants treated with As, F and As + F in both the P
+ and the P— soils in a dose-dependent manner
(Figure 1). This effect of As and F was similar in both
soils, except by the significant decrease observed in
the chlorophyll content in plants grown in soils
treated in the P— soil with the highest concentration
of As.

Effects of As and F on GSH content

Table 2 shows the results obtained in plants grown in
both soils. The As in all the concentrations decreased
the GSH content in the roots and leaves and this

< 5k . 3 Control
soil +P

E 2k @ Aslevels

‘> 4 aA ahA @8 Fleves

S aA aA bA T bA As +F leves

€ 3 bB 1

2 b,

=2 bA

2 L

o 1t

L

(8]

Chlorofill (pmol g”! FW)
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Figure 1. Chlorophyll content on soybean leaves treatment
with low, medium and high As and/or F concentration with
both P conditions. Experiments were carried out as described
in the ‘Materials and methods’ section. Data are mean values
of three independent experiments + S.E. Each value represents
three replicates. Different lowercase letters within columns
indicate significant differences with respect to controls (p <
0.05). Different capital letters within rows indicate significant
differences between roots or leaves in Soil P+ and Soil P—(p
< 0.05), according to the Tukey’s multiple range test.

effect was more pronounced at high As levels, with
respect to controls. Conversely, F affected the GSH con-
centration less and only high F concentrations caused a
significant decrease in this parameter with respect to
controls. Moreover, As + F led to similar or even more
pronounced decrease to that caused by As alone. In a
no defined picture, the decrease in GSH content in
both tissues was something more accentuated in
plants grown in the P— soil than in those grown in
the P+ soil (Table 3).

Table 3. Glutathione content on soybean leaves treated with
low, medium and high As and/or F concentration with both
P conditions.

Glutathione content (pmols/g FW)

Soil P+ Soil P—
Treatment Roots Leaves Roots Leaves
Control 160+ 13 aA 350+20aA 180+ 15aA 350+20 aA
As Low 106 £ 11 bA 200+ 16 bA 100+ 8 bA 208 +18 bA
Medium 106 +8 bB 201+17bB 80+8bA 102+7 cA
High 40+5cA 90+10cA 40x6bA 77+8cA
F Low 155+ 11aB 250+7 bA 101+15bA 250+ 16 bA
Medium 150+12 aB 230+12bB 95+8 bA 200+ 16 bA
High 90+6bA 184+7bA 86+7bA 191+11DbA
As+F Low 52+8cC  204+21bB 90+5bA 298+ 14 bA
Medium 50+9 cA  202+18 bA 52+7 cA  195+14 bA
High 38+9cA  140+10cB 41+12cA 85+8cA

Experiments were carried out as described in the ‘Materials and methods’
section. Data are mean values of three independent experiments + S.E.
Each value represents three replicates. Different lowercase letters indi-
cate significant differences (p < 0.05) within columns, with respect to
controls. Different capital letters within rows indicate significant differ-
ences between roots or leaves in Soil P+ and Soil P—(p < 0.05), according
to the Tukey’s multiple range test.
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Figure 2. Determination of CAT activity on soybean roots and leaves’ treatment with low, medium and high As and/or F concen-
tration with both P conditions. Experiments were carried out as described in the ‘Materials and methods’ section. Data are mean
values of three independent experiments + S.E. Each value represents three replicates. Different lowercase letters within columns
indicate significant differences with respect to controls (p < 0.05). Different capital letters within rows indicate significant differ-
ences between roots or leaves in Soil P+ and Soil P—(p < 0.05), according to the Tukey’s multiple range test.

Effects of As and F on CAT, SOD and GPOX
activities

Arsenic enhanced CAT activity in the roots in the con-
centrations tested in the P+ soil (Figure 2). Conversely,
F showed no effect with respect to controls and when
the effect of As+F was analyzed, no difference with
respect to As alone was observed. In contrast, in
leaves, all treatments increased CAT activities in a
dose-dependent manner, except in the As+F treat-
ments. The results obtained in roots and leaves of
plants grown in the P— soil were similar to those
observed in the P+ soil (Figure 2). There is not a clear
differentiation in the response of the enzyme in each
soil.

In general terms, the SOD activity increased in a
dose-dependent manner as As and F increased. The
roots showed no changes in the enzyme activity with
respect to controls, in both the P+ and the P— soils
(Figure 3). In contrast, in leaves of soybean tested in
the P— soils, SOD activity increased with respect to con-
trols with As, F and As + F treatments at all the concen-
trations (Figure 3).

Arsenic enhanced GPOX activity in the roots and
leaves with respect to controls. In general, the response
was dose-dependent. On the other hand, roots from
plants grown in the P— soil showed that F had no
effect on roots and that GPOX decreased in leaves as
its concentration increased (Figure 4). Except in this
case, in general, there were no differences between
soils on the enzyme activity.

Discussion

In this work, GSH levels and roots decrease in a dose-
dependent manner. These results are in agreement
with those reported that physiological processes are sus-
ceptible to As toxicity. Cellular membranes become
damaged in the plants exposed to As [33]. Moreover,
As-induced oxidative stress causes many toxic effects in
plants, such as decrease in the photosynthetic rate [34],
decrease in photosynthetic pigments [35], GSH depletion
[36] and decrease in soluble protein content [37].

In the present study, we demonstrated that As
causes membrane damage at low, medium and high
concentrations as well as a decrease in chlorophyll
content. These effects were still more accentuated in
plants in Pteris vittata by Stoeva and Bineva [34].

Phytochelatins are synthesized enzymatically from
GSH by phytochelatin synthase in a metal-dependent
manner. When complexed with phytochelatins,
cations are less toxic and can be sequestered in the
vacuoles. As a consequence, in the presence of As, phy-
tochelatin’s biosynthesis increases diminishing the GSH
pool [38] Taking into account that GSH is involved in
phytochelatin synthesis, a decrease in the former
could be a consequence of the increase of the latter
because of the complexation of As by phytochelatins.
This is an important mechanism of detoxification [39].
Moreover, the activities of antioxidant enzymes (CAT,
SOD, GPOX) were enhanced in roots and in the
leaves as it has been previously observed in rice [40]
and wheat [41]. The increase in SOD activity was also
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Figure 3. Determination of SOD activity on soybean roots and leaves’ treatment with low, medium and high As and/or F concen-
tration with both P conditions. Experiments were carried out as described in the ‘Materials and methods’ section. Data are mean
values of three independent experiments + S.E. Each value represents three replicates. Different lowercase letters within columns

indicate significant differences with respect to controls (p < 0.05).

Different capital letters within rows indicate significant differ-

ences between roots or leaves in Soil P+ and Soil P—(p < 0.05), according to the Tukey’s multiple range test.

detected in Holcus lanatus [37]. Bustingorri et al. [22]
observed an increase in CAT and GPOX activities in
soybean plant but with higher concentration of As
and F.

It is worthy to note that in the P— soil, As caused a
more accentuated increase in lipid peroxidation and
a decrease in chlorophyll content. Phosphates and
arsenates compete for the same transport system
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Figure 4. Determination of GPOX activity on soybean roots and leaves’ treatment with low, medium and high As and/or F con-
centration with both P conditions. Experiments were carried out as described in the ‘Materials and methods’ section. Data are

mean values of three independent experiments + S.E. Each value

represents three replicates. Different lowercase letters within

columns indicate significant differences with respect to controls (p < 0.05). Different capital letters within rows indicate significant
differences between roots or leaves in Soil P+ and Soil P—(p < 0.05), according to the Tukey’s multiple range test.



[14], and when P content is lower, As can enter the cell
more easily [42-44].

The responses obtained in the F treatments showed
some difference from those obtained in the As treat-
ments: F caused less oxidative damage in leaves and
roots of soybean than As. These responses could be
due to the fact that the amount of plant available F
in the soil solution depends strongly on the solubility
of mineral phases, soil type and pH. F is taken up pas-
sively by plants. Previous reports have indicated that F
can enter the plant easily.

Our results show that the damage in the leaves was
greater than that in roots. These results were supported
by the response of antioxidant enzymes (CAT and
GPOX). In the roots, the antioxidant system was less
affected in the treatments with F alone. In the leaves,
antioxidant enzyme activities were altered with
respect to controls according to As concentrations.
Data here presented indicated that F is not so toxic
as As, and that higher levels of P in the soil do not
alter its behavior, and this fact could indicate that P is
not involved in F toxicity.

When As and F were simultaneously applied, the
toxic effects were not additive and the detrimental
effects were caused mainly by As. Plants grown in P+
treatments showed less membrane damage than
those grown in P— treatments. The presence of P
caused a smaller increase in TBARS levels and no differ-
ences in the activities of antioxidant enzymes except
for CAT in the leaves, which decreased in the P+ soil
with respect to the P— soil. Moreover, the P nutrition
status in the plant itself and P availability in the rhizo-
sphere can strongly affect As bioaccumulation in
plants [15,16]. The results here presented show that
in soybean plants As causes oxidative damage in a
dose-dependent manner, as observed by the increase
in TBARS formation and the alterations in the non-
enzymatic and enzymatic defense system. On the
other hand, this oxidative insult was lower in the
plants grown in the P+ soil [45,46]. F also caused oxi-
dative stress but to a lesser extent. Moreover, the avail-
able P concentration in the soils did not affect F action.
When the effect of both elements was analyzed, the
deleterious effects of the oxidative damage were due
mainly by As.

Considering the economic interest of soybean and
its subsequent expansion of As-contaminated areas,
the concentration of available P in the soil is of the
utmost interest. Data here presented indicate that
high available P concentration in the soils could be
effective in reducing the toxic effects of As on plants.
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