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Abstract Assessing the water quality in a river basin seems to be an easy tool.

However, some degree of expertise is required when planning and executing several

tasks necessary to avoid either excessive or insufficient data. In this chapter we

briefly describe some aspect of sampling and sample preparation, which have been

discussed in deep in previous chapters. However, after sampling a river, it is

necessary to analyse several parameters, arising from many monitoring stations,

sampled at different time, etc. All of this generates an amazing database that needs to

be carefully explored, looking to extract the most relevant information on changes in

the water quality, probable pollution sources, temporal and spatial changes and so

on. One simple approximation is the construction of water quality indices from both

chemical and biological data, deep discussed in Bistoni et al. (Handb Environ Chem.

https://doi.org/10.1007/698_2016_455, 2016) and Amé and Pesce (Handb Environ

Chem. https://doi.org/10.1007/698_2015_434, 2015). The other way is using multi-

variate statistics (chemometrics), trying to evidence which changes are occurring,

where and when. Here we discuss several chemometrics methods used to verify

changes in the water quality of the Suquı́a River basin, starting with non-supervised

methods, like cluster analysis (CA), factor analysis (FA, including principal com-

ponents analysis – PCA) and going to supervised methods, namely, discriminant

analysis (DA) and generalized procrustes analysis (GPA). Although PCA has

become the most popular method of analysis for the evaluation of water quality,

we think that PCA should be complemented with other methods that help to

corroborate results from PCA. In this case, we used CA as a primary tool to evidence
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spatial differences in the water quality along the basin, confirming these results by

PCA, which also added evidence on temporal differences. DA allowed further

confirmation of both temporal and spatial changes, with an important data reduction,

which is important for the survey of a river basin when the budget is restrictive.

Finally, GPA brings further confirmation of other chemometrics methods, enabling a

clear differentiation between water quality at diverse river sections, during both dry

and rainy season. So far, we truly expect that this chapter helps readers to better

design future surveys to evaluate changes of the water quality in other rivers

worldwide.

Keywords Chemometrics, Integrated evaluation, Multivariate statistics, River

basin, Water quality
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1 Introduction

River basins function with complex interactions between biotic and abiotic com-

ponents. In order to understand these complex interactions, it is often necessary

characterizing the basin considering its geology, hydrology, biology and human

activities. Some measurements can be made directly in the basin by using sensors or

collecting samples that can be analysed at the laboratory and in the field as well. For

instance, pH, conductivity, water flow, temperature, etc. can be field measured;

while organic and inorganic elements require laboratory work for measuring.

Furthermore, the community structure of fish can be field obtained but needs further

analysis at the laboratory to point out changes, etc. Other biological elements need

to be sampled in the field but transferred to the laboratory for a detailed analysis

(plankton structure, macroinvertebrates, microorganisms, etc.). Thus, an integrated

analysis of a river basin requires the assemblage of several data, from different

origin, units, magnitude, etc. So, it will be necessary to have appropriate statistical

methods to examine the relationships among the parameters measured to describe

the functioning of the chemical-biological processes that gave rise to the observed

values, behaviour and changes [1].

It is noteworthy that the use of mathematical and statistical methods, including

chemometrics and many other statistical methods/algorithms, in environmental and
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other sciences has increased steeply during the last years. Conducting a quick search

in the most recognized scientific databases (PubMed, ScienceDirect, Scopus), it is

possible to observe that statistical methods have gained a huge space in different

areas. Statistical analysis is at the core of most modern data mining models [2, 3].

During the last years, with the development of computational software, we can

perform more complex statistical analysis, exploring our data deeper and in a more

complex way. However, this means that the statistical models and analysis are

complex too; therefore, we need to be familiar with the potential and limitations of

a much greater range of statistical approaches [2, 4].

Furthermore, scientific journals demand proving that the experimental differ-

ences between data sets are statistically significant; thus, an increasing number of

software tools and packages have been developed to cover this need. However,

modern, user-friendly software has led to a generation of “click and go” users, who

are eagerly destined to obtain the P-values and multivariate plots (projection of

samples and variables on the factor plane) but with less or no idea on how the

statistical parameters are calculated. Furthermore, some researchers do not know

the theoretical and practical reasons for performing such tests [2, 5, 6].

Computational tools available can be used not only to run statistical analysis

such as univariate and bivariate tests but also multivariate calibration and develop-

ment of complex models, simulating different scenarios that consider a set of inputs

or simply making predictions for specific data sets or conditions. Therefore, one

should avoid and forget the word “test” and replace it with analysis. A test implies

something simple and unified and gives a clear answer related to a P-value,
something rarely for environmental data. In practice, one has to apply data explo-

ration, check assumptions, validate the models, perhaps apply a series of methods

and most importantly interpret the results [7].

For instance, ecologists evaluating the community composition in aquatic sys-

tems need to include the characterization of individual populations, the environ-

ment and, of course, relating the observed biological variation to the environmental

characteristics. One has to take into account this multidimensionality, so a univar-

iate analysis does not work in most cases. The most appropriate methods for

statistical analysis of such data are the “multivariate statistical methods” [8].

One important point when analysing an extensive data set, like those produced

during basin monitoring, is the data reduction. Data reduction means that not all

obtained data are to be used to show the main basin characteristics, its variations

and changes (e.g. temporal and spatial changes). In spite of using the whole data set,

mathematically- statistically methods can be used to select those variables that are

most representative of such changes, enabling a good analysis from a reduced data

set, which points out critical variables that fit for the analysis purpose. Multivariate

statistics helps scientists to discover the data structure, helping to reduce the amount

of data but keeping the important information for easier comprehension. Multivar-

iate analysis uses relationships between variables to order the objects of study

according to the results of the measured variables and to classify monitoring

sites, biological species or ecosystems in distinct classes, each containing entities

with similar chemical and/or physiological characteristics. However, multivariate

analysis is complicated in theoretical structure and in operational methodology [8].
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Most of the statistical tests are based on a set of assumptions about the data that

must be met prior to the application of the statistical analysis and testing of a

hypothesis. For example, most of the parametric statistics analyses have an assump-

tion that the data follow a certain distribution. Other assumptions include homo-

scedasticity, linearity and independence. The non-compliance of these assumptions

may have little impact on the results or conclusions; yet others may arise the

possibility of making errors type I or II (false positive and false negative), leading

to incorrect inferences about the results and thus undermine meaningful research

[3, 9]. In this sense, statistical procedure should be use to check that the statistical

analyses meet the assumptions, and the results from these procedures need to be

reported to verify that the conclusions raised from the statistical analysis are

valid [9].

There are new statistical methods that can be applied to answer almost every

concern in studies related to aquatic systems; however, the greatest challenge is to

figure out how the various statistical methods relate to each other, determining

which method is most appropriate for any particular problem.

Before questioning which statistical analysis should I apply? The scientist

should answer: What are the underlying questions? What do I want to show?

What am I looking for? Answering these questions will give you the basis for

deciding the most appropriate statistical approach. Our objective as scientists is to

be able to use these tools efficiently, without losing sight of the vision, that is, the

motivation of the research done (e.g. base chemical/biological monitoring, evalu-

ation of temporal and spatial changes along a basin, integrating chemical with

biological data, etc.).

On the other hand, sometimes it is necessary to present our results in a simple

way, which can be easily understood by the people, policy makers, magistrates, etc.

Under these circumstances, we can choose non-statistical models, like the use of an

index that reflects the overall quality status of a basin, temporal and spatial changes,

etc. The use of water quality indice, for instance, can provide this kind of practical

approach to show changes along a basin, a temporal trend during monitoring

surveys, etc. [10]. However, it is worth to mention that the validity of these indices

needs to be confirmed by a more strength mathematical-statistical model to dem-

onstrate their usefulness and accuracy when informing results to the population.

This chapter will provide both a conceptual and practical understanding of the

application of quality indices and multivariate statistics in the evaluation of changes

along a river basin.

We hope that, after reading this chapter, you should be able to understand and

know the validity and limitations of water quality indices as well as the assumptions

of different statistical methods, identify the appropriate model for the sampling

design, interpret the output of the method used for data mining and design the

monitoring and analysis programme that best fits for the purpose, lowering cost and

maximizing information.
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2 Monitoring a River Basin

The design of a monitoring programme should fit for purpose. If the aim of the

survey is bringing baseline information on the current status of the basin, or

checking changes with respect to previous monitoring campaigns or evaluating

the usefulness of the water for a specific purpose (e.g. drinking water, irrigation,

industrial uses, tourism/recreation, aquaculture, etc.), it should be considered that

each of these different purposes involves different water quality requisites, and,

thus, the sampling strategy and analytical methods may differ. Some classical

literature can be advised for those intending to start with the monitoring of a river

basin [11, 12]. However, few practical tips are presented as follows:

1. Consider the river hydrology and its seasonal changes [13]. It is important to

evaluate temporal changes considering variations in the river flow, which leads

to dilution/concentration of contaminants, different degree of toxicity (related to

the dilution of toxics), presence of particulate matter (PM) (affecting the absorp-

tion of diverse pollutants to its surface, in addition to transport phenomena of

pollutants attached to PM, etc.), different land uses during winter and summer,

different environmental conditions for the river biota, etc. (from bacteria to

higher organisms, etc.). River hydrology also involves different areas within a

basin (high, medium, lower basin), usually associated with different flow,

turbulence, sediment structure (sand, clay, etc.) and many other conditions that

can change from upper to lower basin. Consider that both native and non-native

biotas are also affected by hydrological changes along the basin [14].

2. If natural or artificial lakes are present in the basin, their limnology should also

be studied [15]. The study of limnologic issues can help to understand and

prevent algae blooms, including those producing toxins that can affect both

the native biota and human health. In addition, the study of the limnology

helps to predict the quality of drinking water if the lake/reservoir is used for

such purpose, etc.

3. Make an inventory of human activities along the basin. It helps to identify point

pollution sources (industries, sewage exits, urban or agricultural run-off, etc.).

This inventory usually helps to avoid unnecessary analyses in areas where some

pollutants could not be expected. Of course, for a scientific work, it is necessary

to consider pristine (reference) points to compare changes with respect to more

impacted areas.

4. If possible, make an inventory of the biota inhabiting different basin areas,

including both native and introduced biota. This is very helpful to evaluate

how water quality changes are affecting the assemblages between different

species, changes in dominance, endangered species, etc. [14].

5. Be prepared to evaluate changes in the water quality at different levels (surface

water, sediment, interstitial water, etc.), at different areas (upper, middle and

lower basin), with different pollution sources (human eutrophication, urban

run-off, industrial effluents, wastewater, agricultural run-off, etc.). Each of

these pollution sources could require different analytical methods and, accord-

ingly, different budget to perform the monitoring survey [16–18]. In addition,
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temporal changes should be considered as previously stated. To this point, when

the budget is restrictive or even with less restrictive resources, a very careful

analysis of requested information should be performed before sampling, never

after sampling. Sometimes, professionals with less experience in water quality

assessments just decide to get hundred samples, analysing a restricted set of

parameters, losing valuable information that could be obtained from the same

sampling campaign. Additionally, the possibility for safe sample storage should

be considered, since after a first preliminary analysis, further elements could

help to get a better diagnostic of the basin. If well-stored samples are available,

preliminary results can be later completed with additional information without

repeating the sampling, which would require the entire analysis of the new

sample set. Moreover, stored samples can be used to compare changes along

years when introducing new analytical methods, enhancing the scope of

analysed parameters, etc.

6. Get enough number of samples from each environmental compartment (water,

sediment, biota, etc.) at each area. Sampling campaigns are expensive, time

consuming, requiring appropriate weather conditions, etc.; thus, getting only one

sample from each area will be not enough if you need a serious, scientific-based,

statistically sound result to be presented. On the other hand, excessive number of

samples can be expensive to analyse, can be negative for endangered biota, etc.

Just consider the appropriate number of samples necessary to get statistically

representative results from your survey.

7. Repeat monitoring campaign for at least 2 years, better 3–4 different years.

This is just for consider inter-year variations caused by different climatic

conditions, etc.

8. Use appropriate tools for monitoring. Some practical tips can be found at WHO

[12], Chapman [11] and recent scientific literature (see, for instance, [19–23]). It

is quite common to find the use of metallic tools used to get samples designed for

metal analysis. Particularly with trace elements, the use of metallic tools results

in contamination of samples. In this case, pre-cleaned plastic tools should be

used. On the contrary, to analyse organic elements, the use of plastic tools should

be avoided as many organic compounds can be adsorbed onto some plastic

surfaces, etc. [18]. Some particular cases need to be addressed. For instance,

using glass bottles for sampling water for boron analysis should be avoided as

the glass usually contains boron-silicate, which interferes with the measurement

of boron. In addition, the common practice of adding mineral acids to stabilize

samples should be considered using ultra-pure acids (ICP-MS grade) to avoid

interferences when analysing trace elements by ICP-MS and related methods

[17].
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3 Data Mining from Monitored Basins

3.1 Use of Indices

Water monitoring for different purposes is well defined (e.g. aquatic life preserva-

tion, contact recreation, drinking water use) [11, 12]. However, the overall water

quality is sometimes difficult to assess from a large number of samples, each

containing concentrations for many parameters, including different magnitudes

within analysed parameters [11]. Although any measured parameter is worth to

be analysed by itself (univariate change using a single parameter, e.g. changes in

water conductivity along a river basin), it is also quite common to analyse groups of

parameters sharing a common feature (e.g. nitrogen load through the analysis of

ammonia, nitrites, nitrates and organic nitrogen). Even so, the analysis of a single

parameter provides only partial information on the overall water quality. Thus, the

integration of several parameters to afford a better idea of changes along the basin

seems a reasonable approach [10].

Mathematical-computational modelling of river water quality is possible but

requires a previous knowledge of hydraulics and hydrodynamics [13]. Besides,

mathematical models require extensive validation (see, for instance, [11, 24–32]).

The use of water quality indices (WQI) is a simple practice that overcomes many

of the previous mentioned problems and allows the public and decision makers to

receive water quality information, based on scientific criteria, from a complex data

set, but presented in a simple form that can be used for regulatory purposes, public

information, etc. [10]. WQI also permit assessing changes in the water quality along

the basin, identifying trends and sudden changes produced by point pollution

sources [11].

The use of WQI to assess the water quality in the Suquı́a River basin has been

explained in [16] and will not be repeated here.

It is worth mentioning that other indices, like a Biotic Index, can be constructed

using different parameters (e.g. fish diversity, etc.), not only chemical or physical

parameters. This biotic index has been constructed for the Suquı́a River basin [33],

considering valuable information on the biota present in the basin [14].

3.2 Multivariate Statistics (Chemometrics)

Even though WQI provide a useful way to predict changes and trends in the water

quality considering multiple parameters, WQI do not provide evidences on the

pollution sources, mainly because they are calculated after normalization of ana-

lytical values and weighting of such normalized values, according to the impor-

tance of the measured parameter for the aquatic life preservation [10, 14]. The use

of multivariate techniques (also called chemometrics) is another method that can be

adopted to evaluate water quality changes [11]. Other words used to describe some
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multivariate methods is “pattern recognition techniques” as these methods allow

discovering different patterns, representing different behaviour of the data set

(although not all multivariate methods led to patterns). In the case of the Suquı́a

River basin, the use of chemometrics allowed differentiating different parameters

associated with diverse point and non-point pollution sources [34].

3.2.1 Exploratory Methods: Cluster Analysis

Cluster analysis (CA) can be divided in hierarchical and non-hierarchical. Hierar-

chical CA forms clusters sequentially, starting with the most similar pair of objects

and forming higher clusters step by step. The similarity between two samples is

usually given by the Euclidean distance, and a “distance” can be represented by the

“difference” between analytical values from both samples [35]. One efficient way

to calculate such distance is the Wards method, which uses analysis of variance to

verify the distances between clusters, minimizing the sum of squares of any two

(hypothetical) clusters that can be formed at each step.

Non-hierarchical CA methods, including fuzzy clustering, evaluate overall dis-

tributions of objects by pairs, classifying them into groups.

CA repeats the process of forming and joining clusters until obtaining a single

cluster containing all samples. CA results in a dendrogram (tree diagram), provid-

ing a picture of the groups and its proximity, in addition to data reduction.

Many times, it is convenient to standardize the data set to obtain better results

with CA [35–40]. Thus, grouped data presented in a dendrogram can be recognized

as belonging to dry or wet season in seasonal analysis or belonging to the upper,

middle or lower river basin during spatial analysis.

Some examples of other river basins studied using CA can be found in Astel

et al. [41]; [42–51]. CA can be also used for the study of variations in groundwater,

lakes, etc. (e.g. [52, 53])

Figure 1 presents results of both temporal and spatial analyses of samples

corresponding to the Suquı́a River basin. Figure 1 was constructed using the same

chemical and microbiological parameters used to construct WQI [16]; however,

using biological and biochemical parameters is also possible (see, for instance,

[54]). But here comes one of the first limitations of chemometrics methods:

increasing the number of parameters considered (translated into columns in the

matrix used for statistical calculation) also requires increasing the number of

samples (each sample represents a row in the matrix, although data arising from

different analytical replicates can be used as separate rows, accounting for both

sample and analytical variations). In Fig. 1 samples belonging to a common area/

season were grouped, namely, group “A” accounts mainly for samples from the

lower basin (with 15% samples corresponding to the middle basin); group “B”

accounts for samples from the high basin (with 25% samples from the middle

basin). Thus, this approach helps to better visualize differences/similitudes between

studied areas/seasons.
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As we can see from Fig. 1, data arising from 201 samples, taken along several

years at the Suquı́a River basin (grouped according to basin area), are separated into

two main groups, at approximately 50% of the maximal Euclidean distance (dotted

line). What we can say from this plot is that the Suquı́a River Basin shows a clear

difference in the water quality between the high and lower basin, meanwhile

medium basin overlaps the other two zones.

It is also interesting to remark that CA does not show those parameters leading to

the constructed dendrogram (Fig. 1). Thus, although CA can be used as a primary

tool to see how to divide (grouping) our data set, it fails to show what is important

and what is less important, to measure to reach such group separation.

3.2.2 Exploratory Methods: Factor Analysis/Principal Component

Analysis

Factor analysis (FA), which includes principal components analysis (PCA), is used

for data reduction without loss of information. Large data sets are common when

evaluating temporal-spatial changes in river water quality, where several stations

are included along the river basin to account for diverse environmental issues. In

addition, several samples are taken at each site during one monitoring campaign,

and many monitoring campaigns are organized to account for temporal changes,

etc. In addition to the number of samples, several physical, chemical and biological

parameters are usually evaluated, with two to five analytical replicates, etc. This
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Fig. 1 Dendrogram constructed by cluster analysis (CA) of chemical and microbiological data

evaluated in the Suquı́a River basin
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construct a big database that must be considered, evidencing changes along the

basin or between seasons, pointing out key parameters to distinguish between

different areas/seasons, etc.

PCA mathematically operates from the covariance matrix, which describes the

dispersion of the multiple measured parameters, to obtain eigenvalues and eigen-

vectors. Linear combinations of the original variables and eigenvectors result in

new variables, called principal components (PCs). A new set of axes, called factor

axes, are obtained in a lower dimensional space onto which the original space of

variables can be projected. Further rotation of the axis defined by PCA produces

new groups of variables called varifactors (VFs). This last procedure is frequently

known as factor analysis (FA), which is not the same with PC. The basic features

associated with FA/PCA are data reduction and data grouping. Data reduction is

obtained because we usually need only a few VFs/PCs to get a good description of

the entire data set variability with a minimum of loss of information. Mathemati-

cally speaking, it is a linear combination of the variables that are most correlated

with it. This further implies that the factor coordinates (or factor loadings) of a

variable are the correlations between the variable and the factor or principal axes.

Accordingly, interpretation of the PCs must be done in terms of the correlation.

With this fact and the objective of factor interpretation in mind, given a set of

variables, we should naturally be looking for those variables that have the highest

(absolute) values of the factor coordinates for the given factors. Some other

statistics that are useful for the purpose of interpretation are relative contribution

of the factor axis to the eccentricity of the variables and the relative contribution of

a variable to the variance of the factor axis. Besides, in FA, VFs usually group the

studied variables in accordance with common features (i.e. soluble salts, organic

pollutants, etc.). So FA and PCA are particularly valuable when a chemical,

physical or biological interpretation of the data grouped in VFs/PCs is possible

[11, 34, 40, 46–48].

Principal components analysis (PCA) has become one of the most popular

methods used in multivariate statistics. Many reports on the use of PCA for the

evaluation of changes in river water quality have been published (e.g. [34, 41, 43,

45, 46, 48, 49, 55–57]), including the combined use of physical, chemical, biolog-

ical and biochemical parameters [58].

When PCA was applied to the same data set used to calculate WQI [16] and CA

(Fig. 1), we obtained two complementary information on the water quality of the

Suquı́a River. Figure 2 shows only spatial differences along the basin, pointing out

high, medium and low basin areas as well as physical and chemical parameters

associated with such basin areas. From Fig. 2 we can see that using only two

principal components (PC1 and PC2), it is possible to account for 59% of the

variance.

Different symbols and colours indicate different basins and seasons. Even

though only 59% of the variance is explained, analysing PC1, samples from the

high basin (wet and dry season) and samples from medium basin (wet season) are

located to the left of the graph, in agreement with results obtained in CA (Fig. 1).

On the right side of PC1, samples from the low basin (dry season) are located, while
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close to the zero point are samples belonging to middle basin (dry season) and to the

low basin (wet season). It is worth to remark that samples located close to the zero

point are not characterized by any of the analysed variables; instead, samples

located to the left of PC1 are characterized by dissolved oxygen, pH and temper-

ature. Conversely, samples located to the right of PC1 are characterized by ammo-

nia nitrogen, conductivity, dissolved oxygen, chloride, COD, hardness, nitrates

nitrogen, nitrites nitrogen, total solids, sulphates, total coliforms and BOD.

When data belonging to a particular area are averaged, the PCA biplot looks like

Fig. 3. In Fig. 3 we can see even better differences between the low and the high

basin, with the middle basin in the middle. When comparing Fig. 2 with Fig. 3, it is

evident that real data points (Fig. 2) show some degree of overlaps, which is the

natural situation as small changes are observed along the year, between years, etc.

However, Fig. 3 better summarizes the trend observed along the basin. Similar

interpretation as in Fig. 2, related to the variables and samples distribution along the

axes, can be made.

Figure 3 shows that principal components 1 and 2 account for ca. 90.9% of the

total variance. So far, PCA is able to differentiate well between higher, middle and

lower basin, with most of the chemical parameters showing a strong change from

higher to lower basin (from left to right along CP1 in this case). In addition to

spatial differences, Fig. 3 also shows that the Suquı́a River basin also presents

temporal variations. As it is evident from Fig. 3, variations along CP1 are much

more pronounced than the corresponding to CP2, which means that temporal

variations are less significant than spatial variations. However, further analysis

evidences that the lower basin has bigger differences between wet (rainy) and dry

season along CP1. So far, Fig. 3 resembles results obtained by CA (Fig. 1), showing

that similar results are possible by two independent methods, using different

mathematical approaches, diverse modes of graphical representation but same

trends. This provides with additional certainty on the analysis of results, which is

important to reinforce our conclusions but not so frequently performed by many

researchers, policy makers, etc.

3.3 Supervised Methods: Discriminant Analysis (DA)/
Generalized Procrustes (GPA)

3.3.1 Discriminant Analysis (DA)

In contrast with CA, PCA and FA, which can be carried out without previous

indication of the group to which a particular sample/data belongs, supervised

methods require a grouping variable. In river monitoring this grouping variable is

usually the monitoring station or the sampling period (summer/winter, etc.),

although grouping variable can also refer to a group of monitoring stations (high

basin, low basin, etc.) or to a group of months with some common characteristic

(dry season/wet season, etc.).

M.V. Baroni and D.A. Wunderlin
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Among others, DA technique is probably the most popular for evaluating

changes along a river basin, within different seasons, etc. [34, 46, 48, 49]. DA

builds up a discriminant function for each group, this function has the form

presented in Eq. (1), and it is similar to a mathematical function having multiple

terms (to the corresponding variables parameters analysed), with different load

(weight) each for the final result [34, 39].

f Gið Þ ¼ k1þ
Xn

J¼1

wij:pij ð1Þ

where

i is the number of groups (G).

ki is the constant inherent to each group.

n is the number of parameters used to classify a data set into a given group.

wij is the weight coefficient, assigned by DA, to a given parameter/variable ( j),
measured within a particular group (i).

( pij) is the analytical value of the parameter/variable ( j), corresponding to a

particular group (i).

During river monitoring it is necessary to measure parameters having different

magnitudes in their value (e.g. pH, 1–14 and conductivity, 100–>1,000, etc.).

Although these differences in magnitudes can be compensated assigning different

values to wij, it is very frequent to standardize the entire data set (matrix) to mean

0 and variance 1 [34, 39].

The efficiency of these discriminant functions (DF) needs to be checked. Here

two alternative procedures can be used:

(a) Construct the DF using one part of the data set; check its goodness with the

remaining data (which implies a large number of samples to be able to divide

the data set in two).

(b) Use the entire data set for constructing DF, but use the cross-validation method

to verify it, which refers to the process of assessing the predictive accuracy of

the model in a test sample (cross-validation), relative to its predictive accuracy

in the learning sample from which the model was developed. If the model

performs as well in the test sample as in the learning sample, it is said to cross-

validate. One common method for cross-validation is the so named “one in, one

out,” which first constructs the discriminant function with the entire data set,

removes one data line (set of variables corresponding to a particular site,

monitored at a particular time), recalculates new DFs and checks if the removed

data fits to its original group using the new constructed function. This procedure

is repeated for each data line from the original matrix.

One additional feature that DA offers is the possibility to include all the vari-

ables measured to calculate DFs (standard mode), or constructing DFs by a stepwise

procedure. Stepwise mode can be also divided into two alternatives, forward or

backward stepwise. Forward stepwise mode starts including only one parameter
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within DF (the most significant to differentiate among groups); in the next step, it

adds the second most significant parameter and verifies significant changes

(improvements) in the ability to discriminate groups. If so, a third step is performed

and so on until adding a new variable does not significantly improve the previous

discriminating power, which causes that the stepwise procedure is stopped and DFs

are constructed using only those parameters significant to the discrimination. The

second alternative is the backward stepwise mode, which starts with all the vari-

ables measured (as in the standard mode) and then removes the less significant

variable in a second step and so on until removing a variable causes a significant

drop in the predictive ability. So far, stepwise modes allow reducing the starting

number of variables, keeping only those that are significant to discriminate among

river sections, seasons, etc. This is an important issue of DA, because it allows

reducing the number of parameters to be measured in monitoring campaigns but

keeping the same valuable information on changes in the river water quality,

identification of both point and non-point pollution sources, etc. [34].

DA was applied to the same data set used in [16] for calculating water quality

indice and in this chapter to show how CA (Fig. 1) and PCA (Figs. 2 and 3) perform.

Results from DA, corresponding to the Suquı́a River basin, are shown in Table 1

and Fig. 4.

From Table 1 it is evident that the classification power of DA did not change so

much from the standard to the backward stepwise mode, which rendered the best

compromise between right assignations (classification) and number of parameters

to be used. In this case, using only six parameters would be enough to distinguish

water from the high, medium or lower basin of the river and according to the season

of sampling. Moreover, these six parameters are relatively simple to measure and

could be used in a surveillance programme of the basin, at low cost.

Table 1 Parameters used by DA in different modes to evaluate spatial and temporal changes in

the water quality of the Suquı́a River basin

Parameters used Standard mode Forward stepwise Backward stepwise

Ammonia nitrogen ✓*

BOD-5 ✓*

Chloride ✓ ✓ ✓

Chem.Oxig.demand ✓ ✓

Conductivity ✓*

Dissolved oxygen ✓ ✓ ✓

Hardness ✓ ✓ ✓

Nitrates nitrogen ✓ ✓

Nitrites nitrogen ✓ ✓

pH ✓ ✓ ✓

Solids: total ✓* ✓*

Sulphates ✓ ✓

Temperature ✓ ✓ ✓

Total coliforms ✓* ✓*

Classification goodness 87.2% 87.5% 85.2%

* P > 0.05
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From Fig. 4 it is clear that the best separation is obtained between the higher and

the lower basin, which is expected considering the presence of the big city in the

middle. Also from Fig. 4 we can see that the middle basin is overlapped with both

high and lower basins. Additionally, Root 1 separates spatially well the river (from

right ¼ high basin to left ¼ low basin). Conversely, Root 2 separates the basin

according to the season (dry vs. wet). So far, DA affords similar results than those

obtained with CA and PCA but now with a notorious reduction in the amount of

data necessary to point out both spatial and temporal differences observed along the

river basin throughout a year.

3.3.2 Generalized Procrustes Analysis (GPA)

Generalized procrustes analysis (GPA) is one of the family of methods that are

concerned with the analysis of data arising from different group of variables/

parameters, and it is frequently used to find a consensus from different set of

variables analysed to a sample. In other words, the main goal is to acquire a

consensus from the different groups of variables after they have undergone pro-

crustes transformations that reduce individual differences by means of translation,

rotation and reflection as well as isotropic scaling [59].

Root 1 vs. Root 2
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Root 1
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 High basin - dry
 High basin - wet
 Medium basin - dry
 Medium basin - wet
 Low basin - wet
 Low basin - dry

Fig. 4 Biplot obtained from DA (backward stepwise mode), corresponding to monitoring stations

throughout the basin at both dry and wet season
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The statistical problem is to find a set of transformations (rotation, reflection,

translation and an optional isotropic scaling factor), so that there is maximal

agreement among the transformed configurations. The consensus is simply the

average of all the transformed configurations. Here we used the Grower algorithm

that minimizes within-samples variance by applying translation, scaling and rota-

tion to generate a p-dimensional average configuration Yc. Following this, a

q-dimensional group average space (q � p) is constructed from Yc by PCA.

Therefore, GPA theory and algorithms can be applied to match chemical, physical

and microbiological data arising from the different basin locations.

The aim of GPA is to evaluate the correspondence between different data from

the same object, in this case the different river basin and stations. We evaluate the

correspondence between microbiological parameters (Configuration 1; Fig. 5:

includes BOD and total coliforms, accounting for changes in the microbiological

quality of the river water), chloride (Configuration 2; Fig. 5: representing changes

in the water quality probably due to urban run-off [34]) and chemical parameters

(Configuration 3; Fig. 5: includes several variables: conductivity, temperature, pH,

dissolved oxygen, ammonia nitrogen, COD, hardness, nitrates and nitrites nitrogen,

total solids and sulphates). This last group generally accounts for chemical changes

in the water quality, sometimes related to urban activities but in many cases related

with sewage pollution. In this analysis, two components explained almost 97% of

the total variance, contributed by three groups of variables: CP1 explains 94.2%,

while the CP2 explained 2.7% (see Fig. 5). As shown in Fig. 4, similar results to

PCA analysis are obtained. Samples from the high basin during both seasons are

differentiated from the rest. On the other hand, the low basin (dry season) is on the

opposite side of the biplot, while the rest is around the zero point. Table 2 shows the

consensus values for each basin and season among the different groups of variables

under study. The average consensus was 88.7%, which means that the three groups

of variables (configurations 1–3) describe samples in similar ways. The low basin

showed the highest level of consensus (97.1%) during the dry season, followed by

the high basin in both seasons, while the lowest values were for the middle basin.

This is in accordance with the results obtained along all the statistical analysis,

which always showed that samples from the middle basin are overlapped, some-

times with the higher basin and sometimes with the lower one. This overlapping of

the middle basin is expected, as previously stated, because of seasonal differences

in the river flow, causing more or less dilution of different analytes, more or less

turbidity; also changes in the water temperature from winter to summer cause

changes in dissolved oxygen, etc. So far, the middle basin is by far the most difficult

area to characterize in the Suquı́a River basin. We were not able to find other reports

on the use of GPA in water quality assessment, being this probably the first.

Integrating Data from Suquı́a River Basin: Chemometrics and Other Concepts
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4 Conclusions

Monitoring and analysing a river for different purposes are difficult tasks. A rational

analysis of the river hydrology, climate, urbanization, industries, etc. is required

before starting a surveillance programme. After deciding the monitoring stations

and a set of parameters to be monitored and measured, a big data set is constructed.

This big data set can be simplified and transformed to a water quality indice (WQI),

reflecting the change in the water quality along the basin or between seasons.

Although WQI are easy to explain, there is a deficit of detailed information in a

WQI. Thus, multivariate statistical methods (chemometrics, pattern recognition

methods, etc.) help to fully evaluate changes in the water quality at many levels,

in our case spatial and temporal changes. Among multivariate methods, CA can be

used as a primary, unsupervised method to verify bulk differences in the water

quality, for instance, between the higher and the lower basin in the Suquı́a River.

However, CA does not indicate which parameters are causing such differences.

PCA/FA can also be used to evaluate differences between areas (spatial changes)

and seasons in an unsupervised way (without indicating the real origin of each

sample). PCA and FA enable differentiating spatial areas and/or seasons or both,

pointing out a set of parameters (variables) associated with each area/season. This is

usually visualized through a biplot (Figs. 2 and 3), showing the dispersion of data

points and their association with a group of variables. Finally, supervised methods

(DA and GPA) enable a better differentiation between areas and seasons (or both),

using the entire data set but also leading to an important data reduction, with less

deficiency of information, in many cases. So far, DA and GPA are, in our criteria,

best-suited methods for the evaluation of changes in the water quality of a river

basin. In the case of the Suquı́a River basin, DA enables differentiating both spatial

and temporal changes, with 85% certainty, using only six parameters. In addition,

GPA evidenced that less changes are observed in the high basin during both spatial

and temporal analyses, which means that the Suquı́a River maintains a relative

constant water quality along the year in the high basin. Conversely, GPA shows big

temporal differences in the lower basin. So far, the water quality of the Suquı́a River

is better during the rainy season (more close to the higher basin quality) than during

the dry season, where the low river flow causes concentration of most of the

pollutants, decrease in the dissolved oxygen, etc. Finally, also GPA shows that

Table 2 GPA: analysis of variance: sum of squares within each case

Consensus Residual Total Prop cons

High basin – dry 0.499 0.039 0.539 0.927

High basin – wet 0.486 0.038 0.524 0.928

Medium basin – dry 0.06 0.13 0.19 0.314

Medium basin – wet 0.082 0.046 0.129 0.64

Low basin – wet 0.228 0.041 0.269 0.849

Low basin – dry 1.311 0.039 1.35 0.971

Total 2.667 0.333 3 0.889
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the middle basin has an intermediate water quality, being more similar to the quality

of the lower basin during the dry season and close to the quality observed in the high

basin during the wet season.
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Hidrográfica Galicia-Costa durante el perı́odo 1973-1995. Análisis predictivo a 2010]. Tecno-

logia del Agua 25(261):54–61

43. Kannel PR, Lee S, Kanel SR, Khan SP (2007) Chemometric application in classification and

assessment of monitoring locations of an urban river system. Anal Chim Acta 582(2):390–399

44. Khalil B, Ouarda TBMJ, St-Hilaire A (2011) A statistical approach for the assessment and

redesign of the Nile Delta drainage system water-quality-monitoring locations. J Environ

Monit 13(8):2190–2205

45. Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics

in river water classification. Water Res 40(4):744–752

46. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical

techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475

47. Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M,

Kouimtzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res

37(17):4119–4124

48. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the eval-

uation of spatial and temporal variations in water quality of Gomti River (India) – a case study.

Water Res 38(18):3980–3992

49. Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution

sources of Gomti river (India) using multivariate statistical techniques – a case study.

Anal Chim Acta 538(1–2):355–374

50. Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment

of heavy metals in the river estuarine sediments-a case study: Mahanadi basin, India. J Hazard

Mater 186(2–3):1837–1846

51. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River

(Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:

355–364

52. Devic G, Djordjevic D, Sakan S (2014) Natural and anthropogenic factors affecting the

groundwater quality in Serbia. Sci Total Environ 468-469:933–942

53. Li G, Liu G, Zhou C, Chou C-L, Zheng L, Wang J (2012) Spatial distribution and

multiple sources of heavy metals in the water of Chaohu Lake, Anhui, China. Environ

Monit Assess 184(5):2763–2773

54. Cao Y, Bark AW, Williams WP (1997) A comparison of clustering methods for river benthic

community analysis. Hydrobiologia 347(1–3):25–40

55. Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River

sediments: a chemometric and geochemical approach. Chemosphere 87(8):945–953

56. Clarke RT, Wright JF, Furse MT (2003) RIVPACS models for predicting the expected macro-

invertebrate fauna and assessing the ecological quality of rivers. Ecol Model 160(3):219–233

57. Marchant R, Hirst A, Norris RH, Butcher R, Metzeling L, Tiller D (1997) Classification and

prediction of macroinvertebrate assemblages from running waters in Victoria, Australia.

J N Am Benthol Soc 16(3):664–681

58. Monferrán MV, Galanti LN, Bonansea RI, Amé MV, Wunderlin DA (2011) Integrated survey
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