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The present work contributes to the study of nonequilibrium aspects of the Casimir forces with the
introduction of squeezed states in the calculations. Throughout this article two main results can be found,
being both strongly correlated. Primarily, the more formal result involves the development of a first-
principles canonical quantization formalism to study the quantum vacuum in the presence of different
dissipative material bodies in completely general scenarios. For this purpose, we consider a one-
dimensional quantum scalar field interacting with the volume elements’ degrees of freedom of the material
bodies, which are modeled as a set of composite systems consisting of quantum harmonic oscillators
interacting with an environment (provided as an infinite set of quantum harmonic oscillators acting as a
thermal bath). Solving the full dynamics of the composite system through its Heisenberg equations, we
study each contribution to the field operator by employing general properties of the Green function. We
deduce the long-time limit of the contributions to the field operator. In agreement with previous works, we
show that the expectation values of the components of the energy-momentum tensor present two
contributions, one associated to the thermal baths and the other one associated to the field’s initial
conditions. This allows the direct study of steady situations involving different initial states for the field
(keeping arbitrary thermal states for the baths). This leads to the other main result, consisting of computing
the Casimir force when the field is initially in thermal or continuum-single-mode squeezed states (the latter
being characterized by a given bandwidth and frequency). Time averaging is required for the squeezed
case, showing that both results can be given in a unified way, while for the thermal state, all the well-known
equilibrium results can be successfully reproduced. Finally, we compared the initial conditions’
contribution and the total force for each case, showing that the latter can be tuned in a wide range of
values through varying the size of the bandwidth.
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I. INTRODUCTION

The quantum nature of vacuum is still one of the most
relevant features of quantum field theory (QFT) due to
theoretical and also technological implications. From a
conceptual point of view, understanding the physical proper-
ties of vacuum at the quantum level is unavoidable in a wide
range of areas, from quantum optics [1] and condensed
matter [2] to astrophysics and cosmology [3]. On the other
hand, from a practical point of view, novel experiments
measuring forces [4,5] and heat transfer at the nanoscale level
[6] shows that, exploiting all these features, a new generation
of technological improvements is coming [7,8].
For these reasons, the study of quantum vacuum fluctua-

tions (going from Casimir–van der Waals interactions to
quantum friction) is of main interest. In particular, Casimir
forces arising from the physical adaptation of a quantum field
to the presence of arbitrary-shaped objects acting as boun-
daries are still a source of abundant scientific research (see,
for example, Ref. [9] for a review, including the study of

multiple complicated geometries and also several applica-
tions in different fields). Since the foundational paper by
Casimir [10], where the force between two perfect conductor
plateswas studied, numerous subsequentworks pointed out a
direction for studying different aspects of these vacuum
phenomena more related to realistic experimental scenarios.
The natural step, and one of the most remarkable works in
this sense, was the work by Lifshitz [11], where dissipation
and noisewere included for the first time in the calculation of
the Casimir force between dielectric plates at zero temper-
ature through an approach based on stochastic electrody-
namics, resulting in the celebrated Lifshitz formula for the
force. This work also set the basis for the so-called fluctua-
tional quantum electrodynamics (FQED) as it is currently
known. A few years later, in Ref. [12], a formal approach
based on QFT at finite temperature was developed to study
thermal corrections on computing the force, arriving at a
more sophisticated and complete formof theLifshitz formula
at thermal equilibrium. After these works, the study of
different features of the Casimir effect had a significant
growth going beyond fundamental physics and entering
chemistry and biology [13]. Moreover, a new generation*adrianrubiolopez0102@gmail.com
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of extremely accurate experiments (see, for example,
Refs. [14,15]) gave rise to the study of the forces between
objects of different geometries, dynamical phenomena (such
as the dynamical Casimir effect and quantum friction, which
both involve particle creation by moving boundaries) and
heat transfer at the nanoscale level [16]. Several discussions
have taken place due to the introduction of models for real
materials, exposing the discrepancies between the theoretical
models and their contrasts with experiments, such as the
Drude vs plasma controversy, first mentioned in Ref. [17]
(see also Ref. [14] for a more recent review). In fact, some of
these discussions are currently open yet and are awaiting a
solution.
Beyond all these advances, addressing nonequilibrium

scenarios from both theory and experiments was a signifi-
cant unfinished task for a long time. In recent years, it
gained great attention due to its potential applications [18].
One of the first and most remarkable works in the area was
given by Antezza et al. [19], who studied the Casimir
force between two slabs characterized by arbitrary fre-
quency-dependent permittivity functions. However, the
approach employed is more of an extension to nonequili-
brium scenarios of the Lifshitz’s method than a full
quantization scheme, and then it takes part of the men-
tioned FQED approaches. As far as we know, a full
quantum approach based on QFT for these situations
was given subsequently in Refs. [20,21]. In these works,
the Huttner-Barnett (HB) microscopic model [consisting of
the 3þ 1 electromagnetic (EM) field interacting with
material polarizable bodies described by polarization
degrees of freedom coupled to thermal baths in each point
of space [22]] is fully quantized by the closed time path
(CTP) or Schwinger-Keldysh functional formalism [23].
Implementing the influence functional to treat the field as
an open quantum system, the field correlation can be
calculated exactly and the result of Ref. [19] is recovered.
Nevertheless, although both results agree, from a concep-
tual point of view, they present very subtle differences.
In Ref. [19] the steady (nonequilibrium) state is taken as

an assumption and introduced in the calculations through
implicitly assuming time invariance for the Heisenberg
equations when giving its Fourier transform as the starting
point. Considering that, in fact, the Heisenberg equations
are always subjected to initial conditions, which are
discarded here by the “steadiness” assumption, in this
sense we can say that the scheme is a “steady quantization
scheme.” Moreover, the material bodies are described by
the macroscopic frequency-dependent (complex) permit-
tivity function and the fluctuations of the polarization
sources inside, relating both by a fluctuation-dissipation
relation containing the correct quantum thermal properties.
As the relation is established separately for each point of
each body, different temperatures for each body are easily
introduced and the steadiness of the nonequilibrium sce-
nario is quite reasonable and physically consistent. Then,

nonequilibrium forces between two half-spaces and
between two slabs (finite width) are analyzed. In the first
case, the force results in a sum of the contributions of each
half-space; each one characterized by the respective tem-
perature. For the two-slabs case, the force presents analog
contributions (coming from each slab) but, since the
bodies’ configuration is surrounded by vacuum, the radi-
ation (coming from distant sources) impinging on the
external surfaces also contributes to the force experienced
by each slab. Therefore, contributions from this radiation
enter the force. For these terms, the same expressions
deduced exclusively for dissipative materials are employed
for the vacuum (dissipationless) external regions, taking
advantage implicitly of the continuity of the dissipative
result with the dissipationless one when the damping
constant is taken to zero (as it is done also in Ref. [24]).
Apart from the calculations, the entire framework and
picture constitute a FQED scheme at a steady scenario
rather than a purely quantum one.
On the other hand, in Refs. [20,21], the situation arises in

another way. The CTP formalism implemented does not
assume a steady situation. On the contrary, it is built to study
the full time evolution fromgiven initial conditions at time t0,
being closely related to the full solution of the Heisenberg
equations. In this context, the steady situation emerges as
the long-time limit of the full time evolution, i.e., by taking
t0 → −∞ in all the expressions. Regarding the materials, in
theseworks, amicroscopicquantummodel (similar to theHB
model) is introduced to describe the internal dynamics of the
degrees of freedom and thermal baths at each point of the
dielectric bodies. Before the initial time t0, all the parts of the
total system (field and materials) are not interacting. At time
t0, all the interactions begin and the system starts to evolve.
Thus, the macroscopic EM properties of the material result
from tracing out the internal degrees of freedom and the
thermal baths during the interactionwith the EM field. In this
way, the steady situation is deduced and the fluctuation-
dissipation relation results naturally from the open quantum
system framework. In Ref. [20], a correspondence between
this quantum model and a stochastic description is fully
demonstrated, exposing the existing connection between
FQED and a fully quantum theory. In principle, three
contributions are shown to appear for every case, each one
associated to each field’s sources resulting from the inter-
actions present. One is associated to the thermal baths,
another one to the internal degrees of freedom and the last
one to the initial conditions of the field. In Ref. [21], the
formalism is applied to the study of the nonequilibrium half-
space problem. The steady situation is deduced and it is
shown that theonly contribution present in this case is theone
associated to the baths. Moreover, it gives exactly the same
result as the one obtained from the FQED approach at
Ref. [19]. However, related to the results of Ref. [25], it is
suggested from the calculations that for the case of slabs
(finite width), in addition to the baths, the initial conditions
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would contribute to the long-time regime. This would be
entirely related to the presence of infinite-size dissipationless
regions, which causes the initial free field fluctuations over-
come the damping in the dissipative material bodies and
constitute the vacuum modified modes when reaching the
steady situation. In other words, the modified modes would
be the steady result of thedynamical adaptationprocess of the
initial free fieldmodes (without boundaries) after the appear-
ance of thematerial boundaries, giving a nonvanishing initial
conditions’ contribution at the long-time regime. In this train
of thought, for the case of half-spaces, there is no initial
conditions’ contribution since, on the contrary, dissipation
overcomes free-field fluctuations. In fact, in the frameworkof
Ref. [19], the initial conditions’ contribution would match
with the distant sources’ contribution, although in this
approach the radiation is related to the quantum fluctuations
of the field already adapted to the boundaries. Moreover, it
would also be matched with the homogeneous solution
mentioned in Ref. [26], obtained from a “steady path integral
quantization” scheme. On the other hand, in a “steady
canonical quantization” scheme, this homogeneous solution
is quantized in a specific Hilbert space with its own creation
and annihilation operators for the vacuum modes. All in all,
the results of Refs. [20,21,25] are suggesting, indeed, that
these operators are defined at the initial time, i.e., they are the
creation and annihilation operators of the free field, although
theyareused toquantize thehomogeneouscontributionwhen
the boundaries are present.
In this sense, one of the main results of the present work is

to show that all the mentioned suggestions and correspond-
ences are true for arbitrarymaterial configurations, validating
the physical mechanism described above. For these pur-
poses, we developed the canonical quantization version of
Ref. [25], where the material model mentioned above is
considered in interaction with a scalar field. Clearly, the
approach presented here can be extended to the EM case but
for simplicity in the calculations we considered a one-
dimensional scalar field. We will proceed to solve the full
dynamics of the total system, regarding the field correlation,
which allowsus to study the expectationvalues of the energy-
momentum tensor and, consequently, the Casimir force. We
obtain the three mentioned contributions for every time and
deduce steady expressions by taking the long-time limit
t0 → −∞. At this point, all the results are given for a general
configuration. In thisway,we are able to study the scalar field
dynamics at any nonequilibrium scenario for this composite
system. As far as we know, this kind of approach to
nonequilibrium situations is completely new and its advan-
tage is to be very suitable for computing the force and every
quantity that can be obtained from the field operator. This is
the main contribution of this work from a purely conceptual
point of view.
Nevertheless, one of the practical advantages of this

approach is that it gives the chance to study the quantities
for nonclassical initial states of the field. In quantum optics

and cavity QED, squeezed states are the most common
nonclassical field states considered [27,28]. For example, in
quantum communications using this state, quantum fluctua-
tions of one of its quadrature components can be lower than
those of the corresponding part in a coherent state, while the
other component is higher. This gives the possibility of
tuning the signal-to-noise ratios of its quadrature compo-
nents, giving the chance to use one of the quadratures to
absorb the quantum noise, while the other can be imple-
mented to transmit an extremely well-defined signal. In
several applications, the quantum EM field inside a cavity is
in a squeezed state. The squeezing can be generated through
interacting with atoms inside the cavity [29], which also
opens the way to study other different quantum phenomena
as decoherence and teleportation [30–33]. Hence, under-
standing the physics of the interactions pertaining to the field
inside a cavity and involving nonclassical states is necessary
for the development of new quantum technologies. Although
the cavity is made of a good (but not perfect) conductor, it is
common in the analysis to consider it as made of perfect
materials, disregarding any corrections due to dissipation and
nonequilibrium thermal effects [34]. It is clear that the
effectiveness of this approximation depends on the exper-
imental conditions achieved. Therefore, it is of great interest
to include these effects accurately. In this work we shed light
on how to address these calculations. We calculate the
Casimir force between two dissipative material slabs (play-
ing the role of a cavity) when the field is in a squeezed state
and each slab has its own temperature. This greatly improves
the results found in a previous work [35], where the Casimir
force between two perfect conductor plates is calculated
when the field is in a squeezed state. Moreover, our present
result could be also implemented to enter the discussion
given in Ref. [36] about the spatial properties of the
squeezing of vacuum, including realistic details as thermal
imbalance between the plates and the effect of dissipation,
which escapes the scope of this work.
With the aim of focusing the main text of the work and the

calculations on the mentioned results, we have left large
calculations and deductions to several appendixes at the end
of the paper. The paper is organized as follows: in the next
section we describe the model and write the field equation
with its solution. The full derivation of the field equation is
left toAppendixA. In Sec. III, we study the long-time limit of
the contributions to the field operator, with the main features
of each one and the relation to other works. The analytical
technique (including a general discussion of different con-
figurations) along with the derivation of the long-time limit
for each contribution are left to Appendixes B, C, and D.
Then, inSec. IV, it is shown that two contributions takepart in
the expectation values of the energy-momentum tensor at
the steady state and each contribution is worked out. For the
baths’ contribution, thermal states are considered. For the
initial conditions’ contribution, the expectation values are
computed both for the thermal and also squeezed initial state
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

�
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

�

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X
n

�
1

2
mn _q2n;xðtÞ −

1

2
mnω

2
nq2n;xðtÞ

�

− 4πη
X
n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
�Z

t

t0

dτχxðt − τÞϕ̂ðx; τÞ
�

¼ 4πηeCðxÞ
�
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0

dτ _G2ðt − τÞ F̂xðτ − t0Þ
m

�
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼ 4πηe2

m the plasma frequency. It is worth noting
that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk

�
1

ωk

�1
2ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk

�
1

ωk

�1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
�Z

t

0

χxðt − τÞGRetðx; x0; τÞdτ
�

¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0

dt0
Z

dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ
�
_G1ðt0 − t0Þr̂x0 ðt0Þ þ _G2ðt0 − t0Þ

p̂x0 ðt0Þ
m

�

−
Z

t

t0

dt0
Z

dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ
Z

t0

t0

dτ _G2ðt0 − τÞ F̂x0 ðτ − t0Þ
m

; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ
As we are interested in evaluating the Casimir force in

nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.

Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ
IC ðx; tÞþ

ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,

ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ
with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the

QUANTUM VACUUM FLUCTUATIONS IN PRESENCE OF … PHYSICAL REVIEW D 95, 025009 (2017)

025009-5



equation. [It is worth noting that the Laplace transform ~GRet
turns out to be the Green function associated to the
operator ∂2

∂x2 − s2n2xðsÞ.]
Once we have obtained ~GRet in the s-space, we can

go back to the coordinate retarded Green function GRet via
the Laplace antitransform (or Mellin’s formula; see
Refs. [38,39]).
Therefore, the field operator can be written in terms of

the Laplace transform of the retarded Green function:

ϕ̂ðþÞ
IC ðx; tÞ ¼ −

Z
dk

�
1

ωk

�1
2

âkðt0Þe−iωkt0

×
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ

×
Z

dx0 ~GRetðx; x0; sÞeikx0 : ð12Þ

To find the Green function ~GRet, we use the technique
found in Ref. [40], where the Green function of the Sturm-
Liouville differential equation can be obtained from two
solutions of the associated homogeneous equation, each
one satisfying the boundary conditions on each side of the
interval where the variable takes values. Then, we perform
a spatial integration for the general case of an arbitrary
number of interfaces. Finally, analyzing the complex-
analytical properties given by the poles configuration,
the long-time (steady) operator for this contribution can
be worked out exactly by assuming causality as the only
physical requirement. This entire laborious task can be
found in Appendix B, where it is shown that the final and
most general expression for the long-time operator is
given by

ϕ̂ðþÞ
IC ðx; tÞ → ϕ̂ðþÞ;∞

IC ðx; tÞ ¼
Z

dk

�
1

ωk

�1
2

âkð−∞Þ½e−iktΘðkÞΦ>
−ikðxÞ þ eiktΘð−kÞðΦ<

−ikðxÞÞ��

þ ½time- and space-independent oscillatory term�: ð13Þ

The first term of this expression is exactly the one
suggested as an ansatz in the steady situation in Ref. [41],
based on the solution obtained for the dissipationless
material case in Ref. [42]. This also includes and confirms
the result shown in Ref. [25] for the initial condition
contribution in the case of a single delta plate (which
verifies the ansatz of Ref. [41]). It also includes the case of
one thick plate analyzed in Ref. [39]. In fact, this demon-
stration proves the general case based on the canonical
quantization scheme, extending to a wide variety of
situations. The functions Φ>

−ik correspond to the modified
modes for positive frequencies while ðΦ<

−ikÞ� are the modes
for the negative ones. The dynamical appearance and
physics of these modes from a transient stage to a steady
situation were mentioned briefly in Ref. [25] and examined
more deeply in Ref. [21], although in the 3þ 1 electro-
magnetic Lifshitz problem (two parallel half-spaces sepa-
rated by a distance) analyzed in that work there were no
modified modes at all. Here we have the same result for the
Lifshitz problem of a 1þ 1 scalar field. Clearly, the physics
are the same. The modified modes appear in situations
where there is an infinite-size dissipationless region, since
the free fluctuation of the quantum field prevails over the
dissipation in the finite regions occupied by materials,
achieving a nonvanishing steady contribution at the long-
time limit. Inversely, if there is no infinite-size dissipation-
less region, the initial conditions’ contribution vanishes at
the long-time limit, since dissipation overcomes free

fluctuation in finite regions and the contribution is
damped.
The second term, which is oscillatory and also time (and

space) independent, will have no relevance on the calcu-
lation of the energy-momentum tensor expectation values
since it involves time and space derivatives of the field
operator.
As a final comment for this section, it is worth noting

that the present demonstration is valid for every material
represented by a refraction index n, which enters the
Laplace transform of the retarded Green function via
Eq. (10). Then, the deduction only stands on the Green
function’s properties, but without any restriction on the
material model in addition to causality and physical
consistency (which implies poles with nonpositive real
parts). The information about the material is indeed
contained in the specific form of the refraction index,
which is the result of the interaction between the materials
and the quantum field. Here, as it happens in Ref. [39], this
is related to the definition of the susceptibility function χ,
obtained from solving the Heisenberg equations of motion
for the material’s degrees of freedom (volume elements
plus thermal baths). In the CTP-integral formulation of
Ref. [25] (and Ref. [20] for the electromagnetic version),
the refraction index is directly related to the dissipation
kernel generated by the material. However, as we have
seen, the fact that the initial conditions’ contribution does
not vanish in the steady regime is more related to the
existence of the infinite-size dissipationless regions rather
than the material properties.
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B. Long-time limit of volume elements’ contribution

Now, we consider the field operator’s contribution
associated to the volume elements. Since this contribution
contains the volume elements’ initial conditions
fr̂xðt0Þ; p̂xðt0Þg, the operator of this part always acts on
the volume elements’ Hilbert spaces. These operators can
always be expressed in terms of the annihilation and
creation operators:

r̂xðt0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p ðb̂†0;xðt0Þ þ b̂0;xðt0ÞÞ;

p̂xðt0Þ ¼ i

ffiffiffiffiffiffiffiffiffi
mω0

2

r
ðb̂†0;xðt0Þ − b̂0;xðt0ÞÞ: ð14Þ

We can write this contribution as split in terms of the
annihilation and creation operators of each volume

element, ϕ̂Aðx; tÞ ¼ ϕ̂ðþÞ
A ðx; tÞ þ ϕ̂ð−Þ

A ðx; tÞ. From Eq. (8),
we have

ϕ̂ðþÞ
A ðx; tÞ ¼ −

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ðt0Þ

×
Z

t

t0

dt0GRetðx; x0; t − t0Þð _G1ðt0 − t0Þ

− iω0
_G2ðt0 − t0ÞÞ; ð15Þ

where, for simplicity, we have omitted the spatial labels on
the volume elements’ properties, such as the parameters
(frequency, mass and density), or Green functions of the
material (G1;2). However, all the calculations will be valid
considering this spatial dependence.
Again, the crucial point is to deduce the long-time limit

for this operator contribution. The Green function can be
written in terms of its Laplace transform and analyzing the
poles configuration. The steady expression can be obtained
by only involving assumptions related to causality. This
work is realized at Appendix C. Therefore, the long-time
limit (t0 → −∞) of the operator is

ϕ̂ðþÞ
A ðx; tÞ → ϕ̂ðþÞ;∞

A ¼ −
1

2

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ð−∞Þ;

ð16Þ

which is a time- and space-independent operator.
At first glance, it is clear that the presence of the material

distribution Cðx0Þ causes the integration to be over the
regions containing material.
However, since the energy-momentum tensor is con-

structed from expectation values of binary products of the
field operator derivatives, the time and space independence
of the long-time limit of the field operator means that the
volume elements do not contribute in the steady situation
for the physical dynamical quantities of interest. This is
clearly in accordance with the results obtained in

Refs. [20,21,25] for different situations. This also shows
how the approximation considered in Refs. [41,43], in
which this contribution was discarded, is not correct at the
operator level but turns out to be valid when calculating
energy-momentum tensor expectation values.
As a final comment, it should be noted that the behavior

of the volume elements’ contribution and the fact that it
does not join the steady situation are directly related to the
material model considered. The dissipative dynamics of
each volume element, considered effectively as a quantum
Brownian particle, makes the contribution vanish at the
long-time limit. Nevertheless, if the material model for the
volume elements were taken to be quantum systems with
nondissipative dynamics, then a contribution in the steady
situation would be present. This will be the case for the
contribution of the baths in the next section. Moreover, this
is also the case if, for example, we set the dissipation
parameter γ0 equal to zero, i.e., if we set every coupling
constant between the baths and the volume elements equal
to zero. The permittivity will be plasmalike and, in addition
to the pole at s ¼ 0, two more poles with zero real part
(s ¼ �iω0) will contribute to the volume elements’ field
operator at the steady situation. For the Drude model, the
situation goes back to the case in which s ¼ 0 is the only
pole, although the expression of the long-time limit of the
field operator changes slightly.

C. Long-time limit of thermal baths’ contribution

From Eq. (8), the baths’ contribution is given by

ϕ̂Bðx; tÞ ¼ −
Z

t

t0

dt0
Z

dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

×
Z

t0

t0

dτ _G2ðt0 − τÞ F̂x0 ðτ − t0Þ
m

: ð17Þ

In contrast with how we proceeded for the other
contributions, the full expression can be worked out
now, instead of considering the annihilation contribution
separately. However, the same methodological approach as
for the other two contributions can be implemented. The
crucial point is that, due to the dissipationless dynamics of
the harmonic oscillators of the baths, the long-time limit of
the solution is an operator that depends on both time and
space. This work is shown in detail in Appendix D, with the
conclusion that the long-time contribution in this case reads

ϕ̂Bðx; tÞ → ϕ̂∞
B ðx; tÞ ¼

Z
dx0

4πηeCðx0Þ
m

×
Z þ∞

−∞

dω
2π

e−iωtiωG2ðωÞ

×GRetðx; x0;ωÞF̂∞
x0 ðωÞ; ð18Þ

which has exactly the same form as the expression achieved
in Ref. [19] for the EM field using a stochastic electrody-
namics framework for the (quantum) Lifshitz problem.
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time

limit F̂
∞
x0 ðωÞ contains a limit on t0 that seems to be

oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
�
δμ

γδν
α −

1

2
ημνη

γα

�
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
�
δμ

γδν
α −

1

2
ημνη

γα

�
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ�: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,

h∂γϕ̂
∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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parts of the total Hilbert space associated to the field
(Hϕ) and to the baths (HB), respectively.
Moreover, the last equation constitutes a generalization of

the expression considered in Ref. [43] for the calculation of
the pressure and also is in agreement with the separation of
contributions deduced in Refs. [20,25] for different specific
situations studied through a functional integral approach. It
is worth noting that in this case the thermal state of the baths
ensures separation, regardless of the field’s initial state.
However, the same splitting can be achieved if the field has
an initial thermal state, regardless of the state of the baths.
It is clear that the agreement between the calculations in

Refs. [41,43] (which mistakenly assume no contribution
from the volume elements to the field operator) and the
present ones relies on the fact that the physical quantities
of interest are constructed from derivatives of the field
operator. In this sense, if the field correlation could be
measured directly, both approaches would differ due to the
presence of the terms independent of the coordinates that
would enter the field correlation, making the latter finally
also depend on the volume elements’ initial state.
As a final comment, it is important to note that here

we are obtaining the splitting in the long-time regime, i.e.,
as a result of (and after) the dynamical transient evolution
from an uncorrelated and noninteracting initial situation.
Thus, the steady state achieved is closely related with the
establishment of a nonequilibrium energy exchange at a
constant (time-independent) rate between the different parts

of the total system (see Ref. [44] for a similar analysis on a
system characterized by a Langevin equation of motion).
In this sense, an analog splitting in a steady situation was
found in Ref. [45] by assuming a stationary regime in the
implementation of a steady canonical quantization scheme.
However, this is not deduced from an initial conditions’
problem, because the steadiness assumption is crucial for
the calculations and limits this approach to the case of
thermal states. On the other hand, our present approach,
without assuming a steady situation, gives the correct
framework to include arbitrary quantum states and address
more general scenarios in a consistent physical way.

A. Thermal baths’ contribution to the
energy-momentum tensor

We start by calculating the contribution to the expect-
ation values of the energy-momentum tensor associated to
the thermal baths, given by the second term in Eq. (22):

hT̂B;∞
μν ðxσ1ÞiB ≡

�
δμ

γδν
α −

1

2
ημνη

γα

�

×
1

2
hf∂γϕ̂

∞
B ðxσ1Þ; ∂αϕ̂

∞
B ðxσ1ÞgiB; ð23Þ

where fÂ; B̂g ¼ Â B̂þB̂ Â is the anticommutator of the
operators Â and B̂.
Considering Eq. (18), the derivative can be written as

∂μϕ̂
∞
B ðx; tÞ ¼

Z
dx0

4πηeCðx0Þ
m

Z þ∞

−∞

dω0

2π
iω0G2ðω0Þe−iω0t

h
δμ

0ð−iω0ÞGRetðx; x0;ω0Þ þ δμ
1∂xGRetðx; x0;ω0Þ

i
F̂
∞
x0 ðω0Þ: ð24Þ

Therefore, the expectation value of the product of derivatives involves the correlation of the stochastic force operators.
These expectation values can be obtained from the definitions of the noise kernel and the stochastic force operator in
Eqs. (A7) and (A9), as done in Ref. [43]:

hfF̂∞
x0 ðω0Þ; F̂∞

x00 ðω00ÞgiB ¼ ð2πÞ2δðx0 − x00Þ Jðω
0Þ

2η
coth

�
βBω

0

2

�
δðω0 þ ω00Þ: ð25Þ

Due to the delta functions, we obtain for the expectation value in the rhs of Eq. (23)

hf∂μϕ̂
∞
B ðx; tÞ; ∂αϕ̂

∞
B ðx; tÞgiB ¼

Z
dx0ω2

PlCðx0Þ
Z þ∞

−∞
dωω2jG2ðωÞj22π

JðωÞ
m

coth

�
βBω

2

�

×
h
δγ

0ð−iωÞGRetðx; x0;ωÞ þ δγ
1∂xGRetðx; x0;ωÞ

i

×
h
δα

0iωG�
Retðx; x0;ωÞ þ δα

1∂xG
�
Retðx; x0;ωÞ

i
: ð26Þ

Considering Eq. (A6), it can be easily proved that ωγðωÞ ¼ 2π
m JðωÞ. Moreover, from the definition of the refractive index

below Eq. (10) and given a cutoff function without poles for the spectral density JðωÞ, it can be shown that

ω2
PlωγðωÞjG2ðωÞj2 ¼ 2ReðnÞImðnÞ; ð27Þ
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which is valid for every odd spectral density for any type of environment, in agreement with the results found in Ref. [43].
Finally, for the expectation value of the components of the energy-momentum tensor, we have

hT̂B;∞
μν ðxÞiB ¼

Z
dx0Cðx0Þ

Z þ∞

−∞
dω2ω2Reðnx0 ÞImðnx0 Þ coth

�
βB;x0ω

2

�

×
�
½δμ0ð−iωÞGRetðx; x0;ωÞ þ δμ

1∂xGRetðx; x0;ωÞ�½δν0iωG�
Retðx; x0;ωÞ þ δν

1∂xG
�
Retðx; x0;ωÞ�

−
1

2
ημν½ω2jGRetðx; x0;ωÞj2 − j∂xGRetðx; x0;ωÞj2�

�
; ð28Þ

which does not depend on the time coordinate. On the other
hand, there is still a spatial dependence in principle.
Moreover, it should be noted that in the last expression
we have included spatial labels for the material properties,
denoting that the result is also valid for inhomogeneous
materials.
This contribution of the baths to the energy-momentum

tensor is in fact the 1þ 1 scalar version and also the
generalization (in terms of boundaries and inhomogeneity
properties) of the expressions found in Refs. [19–21,24,
25,39,41,43], but this time deduced from a full canonical
quantum procedure.

B. Initial conditions’ contribution to the
energy-momentum tensor

We can now calculate the contribution to the energy-
momentum tensor resulting from the initial conditions.
With the aim of calculating the expectation values of the
products of derivatives of the field operator, for simplicity
we rewrite Eq. (13) as

ϕ̂∞
ICðx;tÞ

¼
Z

dk

�
1

ωk

�1
2½âkð−∞Þe−iωktΦkðxÞþ â†kð−∞ÞeiωktðΦkðxÞÞ��

þ½time- andspace-independent oscillatory term�; ð29Þ

where we have to consider that ΦkðxÞ ¼ Φ>
−ikðxÞ for k > 0,

ΦkðxÞ ¼ ðΦ<
−ikðxÞÞ� for k < 0, and ωk ¼ jkj.

This way, the derivative of the field operator is
obtained in a straightforward fashion by considering that
∂μ½e−iωktΦkðxÞ� ¼ e−iωktðδμ0ð−iωkÞΦkðxÞ þ δμ

1Φ0
kðxÞÞ:

∂μϕ̂
∞
ICðxσÞ ¼

Z
dk

�
1

ωk

�1
2½âkð−∞Þe−iωktðδμ0ð−iωkÞΦkðxÞ

þ δμ
1Φ0

kðxÞÞ þ â†kð−∞Þeiωktðδμ0iωkðΦkðxÞÞ�
þ δμ

1ðΦ0
kðxÞÞ�Þ�: ð30Þ

Considering that hfâ†kð−∞Þ; â†k0 ð−∞Þgiϕ ¼ hfâkð−∞Þ;
âk0 ð−∞Þgi�ϕ ¼ 2hâkð−∞Þâk0 ð−∞Þi�ϕ and also that

hfâ†kð−∞Þ; âk0 ð−∞Þgiϕ ¼ 2hâ†kð−∞Þâk0 ð−∞Þiϕ þ δðk−
k0Þ ¼ hfâkð−∞Þ; â†k0 ð−∞Þgi�ϕ, we obtain the expectation
values of the components of the energy-momentum tensor:

hT̂IC;∞
μν ðxσ1Þiϕ ¼ hT̂IC;∞

μν ðx1ÞiVacϕ þ T State
μν ðxσ1Þ; ð31Þ

where hT̂IC;∞
μν ðx1ÞiVacϕ corresponds to the contribution

associated entirely to vacuum fluctuations at zero temper-
ature, which is always present, state and (at least) time
independent, and is given by

hT̂IC;∞
μν ðx1ÞiVacϕ ¼

Z
dk

1

ωk
Re½ðδμ0ð−iωkÞΦk þ δμ

1Φ0
kÞðδν0iωkÞðΦkÞ� þ δν

1ðΦ0
kÞ�Þ −

ημν
2

ðω2
kjΦkj2 − jΦ0

kj2Þ�; ð32Þ

while T State
μν ðxσ1Þ corresponds to the specific contribution for the given initial state we consider for the field:

T State
μν ðxσ1Þ ¼

Z
dk

Z
dk0

�
1

ωkωk0

�1
2

2Re

�
hâkð−∞Þâk0 ð−∞Þiϕe−iðωkþωk0 Þt½ðδμ0ð−iωkÞΦk þ δμ

1Φ0
kÞðδν0ð−iωk0 ÞΦk0 þ δν

1Φ0
k0 Þ

þ 1

2
ημνðωkωk0ΦkΦk0 þ Φ0

kΦ
0
k0 Þ� þ hâ†kð−∞Þâk0 ð−∞Þiϕeiðωk−ωk0 Þt

× ½ðδμ0iωkΦk þ δμ
1Φ0

kÞðδν0ð−iωk0 ÞðΦk0 Þ� þ δν
1ðΦ0

k0 Þ�Þ −
1

2
ημνðωkωk0 ðΦkÞ�Φk0 − ðΦ0

kÞ�Φ0
k0 Þ�

�
; ð33Þ

which in principle depends on all the spacetime coordinates.
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All in all, depending on the initial state considered for the
field, the different expectation values of the components of
the energy-momentum tensor, which are expressed as the
sum of a state-independent expectation value (correspond-
ing to the vacuum fluctuations at zero temperature) and a
state-dependent term. For this last term, two important
cases to consider are thermal and squeezed initial states.

1. Thermal and continuum-single-mode squeezed states

By considering a thermal initial state for the field,
characterized by a temperature βϕ ¼ 1=Tϕ, the expectation
values of the products of annihilation and creation
operators that appear in Eq. (33) can be calculated
straightforwardly:

hâkð−∞Þâk0 ð−∞Þiϕ ¼ 0;

hâ†kð−∞Þâk0 ð−∞Þiϕ ¼ NðωkÞδðk − k0Þ; ð34Þ

where NðωkÞ ¼ 1

eβϕωk−1
is the boson occupation number,

i.e., the Bose-Einstein distribution.
In this case, T State

μν ðxσ1Þ simplifies to give the same
integral as hT̂IC;∞

μν ðx1ÞiVacϕ but containing 2NðωkÞ in the
integrand. In other words, T State

μν ðxσ1Þ turns out to be the
thermal correction for the vacuum fluctuations at zero
temperature, which is the expected result. Therefore,

considering that cothðβϕωk

2
Þ ¼ 1þ 2NðωkÞ, we have for

Eq. (31)

hT̂IC;∞
μν ðxσ1Þiϕ

≡ hT̂IC;∞
μν ðx1ÞiTϕ

ϕ

¼
Z

dk
1

ωk
coth

�
βϕωk

2

�
Re

�
ðδμ0ð−iωkÞΦk þ δμ

1Φ0
kÞ

× ðδν0iωkðΦkÞ� þ δν
1ðΦ0

kÞ�Þ −
ημν
2

ðω2
kjΦkj2 − jΦ0

kj2Þ
�
;

ð35Þ

which is, at least, a time-independent expression also. The
dependence on the spatial coordinate is determined for each
configuration through the introduction of the appropriate
mode functions Φk.
Considering a continuum-single-mode squeezed state

for the field characterized by a squeezing parameter
ξðkÞ ¼ jξðkÞjeiφðkÞ (see Refs. [1,46]),

jξðkÞi ¼ e−
1
2

R þ∞
−∞

dkðξðkÞâ†2k −ξ�ðkÞâ2kÞj0i; ð36Þ

and the expectation values of the products of annihilation
and creation operators, we have

hâkð−∞Þâk0 ð−∞Þiϕ ¼ −eiφðkÞ sinh ðjξðkÞjÞ
× cosh ðjξðkÞjÞδðk − k0Þ; ð37Þ

hâ†kð−∞Þâk0 ð−∞Þiϕ ¼ sinh2ðjξðkÞjÞδðk − k0Þ: ð38Þ

In this case, the term of T State
μν ðxσ1Þ associated to hâ†âi

combines with hT̂IC;∞
μν ðx1ÞiVacϕ because of the delta function

δðk − k0Þ. For the other term, δðk − k0Þ simplifies the
expression, but the results are both space and time
dependent.
Considering that 1þ2sinh2ðjξðkÞjÞ¼ coshð2jξðkÞjÞ and

2 sinh ðjξðkÞjÞ cosh ðjξðkÞjÞ ¼ sinh ð2jξðkÞjÞ, we finally
have

hT̂IC;∞
μν ðxσ1Þiϕ¼hT̂IC;∞

μν ðx1ÞiSqueezedϕ þT Squeezed
μν ðxσ1Þ; ð39Þ

where the (at least) time-independent expectation value is
given by

hT̂IC;∞
μν ðx1ÞiSqueezedϕ ¼

Z
dk

1

ωk
coshð2jξðkÞjÞRe

h
ðδμ0ð−iωkÞΦkþδμ

1Φ0
kÞðδν0iωkðΦkÞ�þδν

1ðΦ0
kÞ�Þ−

ημν
2
ðω2

kjΦkj2− jΦ0
kj2Þ

i
;

ð40Þ

and the second term is

T Squeezed
μν ðxσ1Þ ¼ −

Z
dk

1

ωk
sinh ð2jξðkÞjÞRe

h
eiφðkÞe−i2ωkt½ðδμ0ð−iωkÞΦk þ δμ

1Φ0
kÞðδν0ð−iωkÞΦk þ δν

1Φ0
kÞ

þ 1

2
ημνðω2

kΦ
2
k þ Φ02

k Þ�
i
: ð41Þ

This last expression can be taken one step further through time averaging. For these steady quantities defined at the
long-time limit, the time average for a quantity A is given by
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hhAiit ¼ lim
τ→þ∞

1

τ

Z
τ=2

−τ=2
dτ0Aðτ0Þ: ð42Þ

Therefore, for the time dependence in the integrand of

T Squeezed
μν , we have hhe−i2ωktiit ¼ limτ→þ∞

sinðωkτÞ
ωkτ

¼ 0 for
k ≠ 0 and hh1iit ¼ 1 for k ¼ 0. However, for this last case,
the rest of the integrand of T Squeezed

μν vanishes since Φk is
given by sums of e�ikx. Finally, we obtain

hhT Squeezed
μν iit ¼ 0: ð43Þ

It should be noted that this result is due to the oscillatory
time dependence for every k. If the modes have another
dependence, this last time average could be different from
zero. However, for boundary conditions on the spatial
coordinate only, the time dependence is in general oscil-
latory for a field in dielectric media and, therefore, the time
average vanishes.
All in all, for both cases, after taking the time average,

the expectation value of the energy-momentum tensor can
be written as

hhhT̂IC;∞
μν ðxσ1Þiϕiit

¼
Z

dk
1

ωk
FðkÞRe

h
ðδμ0ð−iωkÞΦk þ δμ

1Φ0
kÞ

× ðδν0iωkðΦkÞ� þ δν
1ðΦ0

kÞ�Þ
−
ημν
2

ðω2
kjΦkj2 − jΦ0

kj2Þ
i
; ð44Þ

having FðkÞ ¼ cothðβϕωk

2
Þ for a thermal state and FðkÞ ¼

cosh ð2jξðkÞjÞ for a squeezed state. It should be noted that
other initial states could provide another time and space
dependence for the expectation values of the components
of the energy-momentum tensor, complicating the time-
average procedure and opening a new type of formula for
the force. The case of continuum-single-mode squeezed
states, given the expectation values for annihilation and
creation operators, turns out to be very simple as we will
see in the next section. Due to the time average, the forces
for thermal and continuum-single-mode squeezed states
can be written as particular cases of the last expression.
Similar results can be obtained for the case of continuum-
two-mode squeezed states characterized by a frequency Ω
(see Ref. [1] for the quantum state), which after time
averaging the expressions results in basically the same
result. On the other hand, other initial states, as con-
tinuum-coherent states for example, would present more
complicated expressions, including double integration
over the frequency, since the expectation values for the
products of annihilation and creation operators do not
include a Dirac delta function δðk − k0Þ.

V. CASIMIR FORCE FOR FINITE WIDTH
PLATES CONFIGURATION

Once we have given expressions for the expectation
values of the components of the energy-momentum oper-
ator, we proceed to calculate the Casimir force between two
homogeneous plates of finite width d and different materi-
als (nL and nR for the left and right plates, respectively)
separated by a distance a. With this aim, to calculate the
force over one of the plates we subtract the field’s pressures
on each side of the plate. In our case, the pressure is
given by the expectation value of the xx component of the
energy-momentum tensor operator. Moreover, as this
expectation value splits into two contributions, the same
is true for the Casimir force (as it happens in
Refs. [20,21,24,25,37,39,41,43]). Therefore, we have

FC ¼ hT̂xxiExt − hT̂xxiInt
¼ hT̂IC

xxiExt þ hT̂B
xxiExt − hT̂IC

xxiInt − hT̂B
xxiInt

¼ FIC
C þ FB

C; ð45Þ

where the superscript “Int” denotes the region of the
vacuum gap between the plates and “Ext” denotes the
region outside the plates’ configuration adjacent to
the respective plate under consideration. It is clear that
in the last expression, for the initial conditions’ contribution
to the energy-momentum tensor, we are considering the
time-averaged expression given in Eq. (44).
Considering Eqs. (28) and (44), for the full calculation of

each contribution, we need both the mode functions
(or homogeneous solutions) Φ and the transform of the
Green functionGRet for the two-plates configuration. These
expressions are given in Appendix E. Then, we can easily
calculate the contribution to the Casimir force acting on the
left plate when the field is in a thermal or continuum-single-
mode squeezed state through Eqs. (44) and (45), obtaining

FIC
C ½a; d;F� ¼

Z þ∞

0

dkkFðkÞ½1þ jR>
−ikj2 þ jT−ikj2

− jC>
−ikj2 − jD>

−ikj2 − jC<
−ikj2 − jD<

−ikj2�;
ð46Þ

which is an extension of the results found in Refs. [41–43,
47]. The explicit dependence on F denotes that the same
expression is valid for both thermal and squeezed states.
Nevertheless, while for the former, FðkÞ is always an even
function, for the latter, an even FðkÞ is required for an even
ξðkÞ, which was assumed for obtaining the last result.
It should be noted that due to the dissipation present in

this scenario, jR>
−ikj2 þ jT−ikj2 ≠ 1 and jrij2 þ jtij2 ≠ 1.

For the contribution of the baths, employing the last
expressions and replacing them in Eq. (28) to obtain the
contribution as Eq. (45) states, it is straightforward to
obtain
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FB
C½a; d; βB;L; βB;R� ¼

Z þ∞

0

dω
ω

8
jT−iωj2

�
coth

�
βB;Lω

2

� jnL þ 1j2
jnLj2

1

jtRj2jtLj2
ðReðnLÞð1 − e−2ωImðnLÞdÞ

× ½jð1 − rLrRei2ωaÞð1 − rnLrLÞ − rnLrRt
2
Le

i2ωaj2 − jð1 − rLrRei2ωaÞðrL − rnLÞ þ rRt2Le
i2ωaj2

þ jtLj2ð1þ jrRj2Þð1 − jrnL j2Þ� þ 2ImðnLÞIm½ðei2ωReðnLÞd − 1Þð½ð1 − rLrRei2ωaÞð1 − rnLrLÞ
− rnLrRt

2
Le

i2ωa�½ð1 − r�Lr
�
Re

−i2ωaÞðr�L − r�nLÞ þ r�Rt
�2
L e−i2ωa� þ jtLj2ð1þ jrRj2ÞrnLÞ�Þ

þ coth

�
βB;Rω

2

� jnR þ 1j2
jnRj2

�
1 −

1þ jrLj2
jtLj2

�
ðReðnRÞðe2ωImðnRÞd − 1Þ½1 − jrnR j2� − 2ImðnRÞ

× Im½rnRðei2ωReðnRÞd − 1Þ�Þ
�
: ð47Þ

Therefore, considering the last expression and Eq. (46),
the nonequilibrium force experienced by the left plate of a
Casimir configuration is given by

FC½a; d;F; βB;L; βB;R� ¼ FIC
C ½a; d;F� þ FB

C½a; d; βB;L; βB;R�:
ð48Þ

All in all, this is the Casimir force for a nonequilibrium
scenario consisting of two plates of finite width d and
different materials. It is, in fact, the generalization of
the results found in Refs. [41,43]. As it happens in those
situations, it is expected that our new result is regularized
by the dependence of the reflection coefficient on k, which
ensures convergence by including a natural cutoff in the
model considered.
Moreover, two important limit cases can be recovered

from this general expression. One is the force for the case of
materials without dissipation (real frequency-independent
refractive indexes) and the other one is the Lifshitz formula,
which is the force between two half-spaces (infinite
width) at thermal equilibrium. Appendix F is devoted to
showing how these results can be recovered from our
general nonequilibrium expressions.

VI. COMPARISON BETWEEN CASIMIR FORCES
FOR THERMAL AND SQUEEZED STATES

We have calculated the Casimir force between two finite
width plates in Eqs. (46), (47), and (48) for both situations,
when the initial state for the field is thermal or squeezed,
while the baths at each point of the plates are always
characterized by a proper temperature. Therefore, the
comparisons between both cases and between our result
and previous ones are mandatory. Although we have
general formulas valid even for the case of different
temperatures in each slab, in the present work we focus
on the comparison between different states of the field,
while keeping the same temperature on both plates (and
equal to the temperature of the field when considering the
thermal state for it). For simplicity, analyzing full non-
equilibrium scenarios, including different temperatures

between the parts and squeezed states, is left as pending
future work.
In a previous work [35], the Casimir force between

perfect conductor plates was calculated when the EM field
was in a squeezed state. Given the perfect material, the
plates enter as boundary conditions on the quantum field.
As the material of the plates does not present any internal
dynamics, the system of interest (the field) is not an open
system for this case.
Therefore, the quantization of the system is based

directly on quantizing the modes of the field, confined
to the space between the plates. This implies that only a
Hilbert space for the field is required for the corresponding
quantum theory.
As the field is confined in the transverse direction to the

plates, the transverse component of the wave vector of each
mode is discretized. Then, this is inherited by the eigenfre-
quencies of the problem. As in our calculation, the squeezed
state enters when computing the expectation values of
products of the creation and annihilation operators. This
results in the factor coshð2jξmjÞ, equivalent to ours but
logically discretized due to the allowed modes for this
idealized case (with the subscript m as the label of the
discretemodes here). This was done in Ref. [35] inwhich, for
simplicity, one of the cases analyzed was to take a constant
squeezing for all the modes, ξm ¼ ξ for every m. Therefore,
the factor coshð2jξmjÞ is a constant and the force turns out to
be the well-known Casimir’s result times coshð2jξjÞ.
In our case, we are considering a one-dimensional scalar

field instead of a full EM field. However, the respective
limit of perfect conductors can be addressed from our
general formulas. The first step is to erase any internal
dynamics in order to remove the dissipation from the result.
As mentioned in the first section of Appendix F, this is
achieved by setting γL;RðωÞ≡ 0 (which gives FB

C ≡ 0) and
taking the zeroth order of the permittivity functions.
Therefore, the Casimir force is given by the initial con-
ditions’ contribution only through Eq. (F4). For the case
of an initial squeezed state, we have to put FðkÞ ¼
coshð2jξðkÞjÞ. If we also impose a constant squeezing
for all the modes, we obtain
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FC½a; d; ξ ¼ const�jNo Diss ¼ coshð2jξjÞ
Z þ∞

0

dkk

�
2 −

½jtLj2ð1þ jrRj2Þ þ jtRj2ð1þ jrLj2Þ�
j1 − rLrRei2ωaj2

�

¼ coshð2jξjÞFTϕ¼0

C ½a; d�jNo Diss; ð49Þ

where F
Tϕ¼0

C ½a; d�jNo Diss is the Casimir force between two
slabs of materials without dissipation at zero temperature,
which is in agreement with Ref. [47].
This result is analog to the one obtained in Ref. [35] but

to the case of two slabs of materials without dissipation.
Moreover, for the case of perfect-conductor plates, follow-
ing the procedure given in Ref. [42] for the respective
limit (analyzing the behavior of the integrand), it can be

easily shown that F
Tϕ¼0

C ½a; d�jNo Diss can be reduced to the
corresponding expression for the Casimir force between
perfect conductors. Therefore, the one-dimensional scalar
version of the result given in Ref. [35] is fully achieved.
Nevertheless, considering constant squeezing for all the

modes of the field is too idealized. On the one hand, in
cavity QED, it is usual to consider that in perfect conductor
cavities, only one of the discrete modes of the field is
squeezed [30–33]. On the other hand, in our case, the cavity
is formed by dielectric slabs, so it is reasonable to expect
that the squeezing is not limited to a unique mode. If we
want to squeeze one mode of frequency Ω0, we expect to
effectively squeeze this mode but also the modes around
it contained in a bandwidth σ centered in Ω0. We assume
for simplicity that the squeezing parameter ξðkÞ for all
the modes contained in the bandwidth (for
Ω0 − σ

2
< k < Ω0 þ σ

2
) is the same and given by 1=σ (there

are no significant changes in the analysis if we choose for
the squeezing const=σ, such that const is any real number).
This choice is made because we want the squeezing
parameter ξ, as a function of k, to recover a squeezed state

only for the mode Ω0 when the bandwidth σ approaches 0.
In other words, we are demanding that ξðkÞ → δðk −Ω0Þ
when σ → 0, in such a way that Eq. (36) results in a
squeezed state only for the frequency Ω0. Accordingly,
comparing the initial conditions’ contributions for a
squeezed state with this squeezing distribution ξσ;Ω0

ðkÞ
and for a thermal state with Tϕ ¼ 300K (room temper-
ature), and considering ohmic thermal baths in both cases,
we obtain Fig. 1(a) for different values of Ω0 as a function
of σ (see Ref. [37]).
As it can be seen, the curves in Fig. 1(a) are always

below 1, implying that the contribution for the squeezed
state is always greater than for the thermal state for any
values of σ and Ω0. This is expected because the presence
of the factor coshð2jξðkÞjÞ in the integrand, combined with
the chosen squeezing distribution, makes the integration
unfold, but all the frequencies keep contributing to the
value of the integral. For the frequencies outside the
bandwidth σ centered at Ω0 we have that coshð2jξðkÞjÞ≡
1 since ξðkÞ≡ 0, while for the frequencies belonging to the
bandwidth, coshð2jξðkÞjÞ takes a constant value greater
than 1. Therefore, the final value of the initial conditions’
contribution for the squeezed state is greater than that for
the thermal state.
However, as the bandwidth becomes larger, the value of

the squeezing given by 1=σ becomes smaller. Therefore, for
large σ, the squeezing approaches zero and the value of the
contribution for the squeezed state gets closer to the thermal
value. At first glance, this seems natural since the initial

FIG. 1. (a) Ratio of the initial conditions’ contributions for a thermal state with Tϕ ¼ 300K and a continuum-single-mode squeezed
state as a function of the bandwidth σ for different values of the center frequencyΩ0 (compared with the plasma frequency ωPl). (b) Ratio
of the total forces for a thermal state with Tϕ ¼ 300K and a continuum-single-mode squeezed state as a function of σ for different Ω0’s.
Parameters are γL;R ¼ 10−1=a; ω0;i ¼ 10=a; ωPl;i ¼ 10=a; d=a ¼ 102; a ¼ 100 nm, and σ is given in units of a.
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conditions’ contribution at zero temperature results from
setting F≡ 1 for every k. But, in our case, we are
comparing the contribution for a squeezed state with the
value for a thermal one with Tϕ ¼ 300K instead of zero
temperature. However, the integrand of the initial condi-
tions’ contribution does not change significantly for
different values of temperature because k½1þ jR>

−ikj2þ
jT−ikj2 − jC>

−ikj2 − jD>
−ikj2 − jC<

−ikj2 − jD<
−ikj2� in Eq. (46)

is different from zero when the thermal factor cothðβϕk
2
Þ is

close to 1. This means that the initial conditions’ contri-
bution is insensitive to the chosen temperature. Thus, the
ratio between the initial conditions’ contributions for a
thermal state with Tϕ ¼ 300K and for a squeezed state with
large bandwidth σ (which approaches the result with
Tϕ ¼ 0K) is logically close to 1.
A similar argument also explains the fact that the curves

in Fig. 1(a) are not ordered according to their values of Ω0

for the values of σ shown in the figure. The point is that for
a fixed σ, different values of Ω0 enhance (through the
squeezing factor) different parts of the spectrum of the
integrand. Therefore, the final value of the contribution to
the force strongly depends on the chosen Ω0 for a narrow
bandwidth σ. However, for large σ, the enhanced parts of
the integrand are very similar, independently of the chosen
value of Ω0, and the final value of the contributions
approach it and get ordered according to it. This can be
seen at the end of the curves. This was checked also for
higher values of σ.
On the other hand, the behavior of the curves for very

small σ is explained by another feature of the squeezing
distribution ξðkÞ. As the bandwidth becomes narrower, the
contribution for the modes inside it gets greatly enhanced
since the squeezing parameter is given by 1=σ. Therefore,
although the number of enhanced modes is lower, its
contributions to the integral grow strongly. Therefore,
the final contributions to the force also grow, getting
numerically divergent values when the bandwidth
approaches zero. Therefore, the ratio for the contributions
of the force in the different situations tends to zero.
However, it should be noted that this is in fact a numerical
limitation instead of a correct result. The limit of σ → 0 is
well defined analytically. As we mentioned before, the
choice of the squeezing distribution was to describe an
imperfect squeezing of a mode of frequency Ω0 charac-
terized by a bandwidth σ, in such a way that the perfect
squeezing on the mode Ω0 only could be obtained through
the limit of null bandwidth. If we like to obtain this result,
we should go to Eq. (36) and set ξðkÞ ¼ δðk − Ω0Þ. Then,
the full calculation of the initial conditions’ contribution is
straightforward, obtaining that it corresponds to the evalu-
ation of the integrand at Eq. (46) on the chosen frequency
Ω0, which a well-defined finite result. It is clear that this
value strongly depends on the chosen frequency; however it
remains always finite.

Beyond all these features, although the final value of the
initial conditions’ contribution to the force seems to vary
significantly, it does for a small interval of σ (approxi-
mately until 0,75 in units of a for the given curves). Then, it
seems to be insensitive to the changes of σ for a wide range
of values. This is because we are comparing the initial
conditions’ contributions only. However, while the baths’
contributions to the total force (based on the expelled field
by the materials of the plates) tends to separate the plates,
the initial conditions’ contribution tends to attract them.
Then, the total force results from a subtraction which is
more sensitive to the changes of σ. This is observed in
Fig. 1(b), where the approach to an asymptotic value (also
from below) of the ratio of the total forces for the squeezed
and thermal states occurs for values of σ four orders of
magnitude larger (until 350 in units of a approximately).
It should be noted that for the baths in each plate, the

temperatures were all equal to 300K. Thus, for the thermal
case, the total force is the one at thermal equilibrium.
Contrary to what we have when comparing the initial

conditions’ contributions separately, the curves are ordered
by the value of Ω0. For the large-σ behavior, the asymptotic
value is close to 1 but it is not equal to it. This shows that
the ratio of the total forces is sensitive to the chosen
temperature. On the other hand, the behavior of the curves
for small σ presents the same troubles that were mentioned
for the other figure. Again, the limit σ → 0 can be studied
analytically.
All in all, the ratio between the total forces when the

initial conditions’ contributions are different seems to allow
tuning the force by modifying the squeezing properties (the
bandwidth σ and the frequency Ω0) of the field state in a
wide range of values. As the ratio is smaller than 1, the
tuning could intensify the (always attractive) total force
from a minimum value defined by the temperature of the
plates.

VII. FINAL REMARKS

In this work we have studied several aspects of the
Casimir forces in different out-of-equilibrium situations,
analyzing the magnitude and elucidating the steady dynam-
ics at different nontrivial scenarios for the chosen model.
Specifically, from a conceptual point of view, we have

achieved a well-defined and consistent approach for the
study of the Casimir forces at completely general scenarios.
We developed a first-principles canonical quantization
formalism for the study of the interaction between a
quantum scalar field and dissipative-material polarizable
bodies. These are locally modeled as complex quantum
systems in each point of space, formed by quantum
harmonic oscillators describing the volume elements of
the polarizable body which are coupled to its own thermal
bath, as commonly used since Ref. [22]. In analogy to the
results obtained through the CTP integral formulation given
in Refs. [20,25], we have obtained a full equation of motion
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for the field interacting effectively with the material bodies.
However, as in Ref. [39], the equation stands for the
quantum field operator and (as every Heisenberg equation)
is subjected to initial conditions, which for simplicity we
took as free field operators. The solution for this equation is
given in terms of the Green function and all the sources
included in the problem that generate field due to the
interactions between the different parts of the total system.
It is important to remark that the interactions are switched
on at a given initial time t0, being a sudden start analog to
the time evolution considered in problems involving
quantum quenches. For arbitrary time, we obtain three
contributions to the field operator, each one associated to a
specific part of the total system. One is associated to the
volume elements, another one is associated to the baths
and, finally, there is a contribution entirely related to the
field initial conditions. As the parts of the total system are
initially free, the field operator is separate in three con-
tributions, each one acting on the respective Hilbert space
(Hϕ ⊗ HA ⊗ HB). This splitting is critical for studying the
long-time limit (t0 → −∞) of each contribution separately.
We achieved expressions for the long-time contribution to

the field operator of each part of the total system, showing
that at the steady situation only two of them contribute to the
expectation values of the energy-momentum tensor compo-
nents. There is no long-time contribution from the volume
elements. Moreover, we showed that the baths’ contribution
to the long-time field operator matches with the one
considered in Ref. [19] from a FQED approach, while the
one associated to the initial conditions has the form of the
homogeneous solutions considered in previous works for
other steady quantization schemes. In fact, this contribution
also agrees with the result obtained in Ref. [25] and the
mechanism described in Ref. [21], where this was suggested
but not fully demonstrated. Here, we describe clearly how
the existence of infinite-size regions without dissipation for
the field are directly related to a nonvanishing long-time
contribution of the initial conditions. All in all, as in
Refs. [20,25] but this time from a canonical quantization
scheme, our general result closes a conceptual hole between
the full quantum theory and the FQED approaches. The
matching between both and the way that FQED is related to
quantum fluctuations are clearly explained.
Once we explored the general features of the developed

approach, the other main result of the work is based on
taking advantage of the results obtained for the expectation
values of the energy-momentum tensor components of
general material configurations. We proceeded to fully
calculate the force between two slabs of different materials
and temperatures but the same width. The initial condi-
tions’ contribution was evaluated for two types of states,
thermal and continuum single squeezed. For the latter, a
time average was required to determine the value of the
force and write the two cases in a unified way. Then, for the
squeezed case, we showed how to recover the results in

Ref. [35] of the force between perfect conductor plates.
However, our result is the out-of-equilibrium generalized
version to dissipative materials and squeezed states for the
field. Therefore, we proceeded to compare this case with
the result at thermal equilibrium, taking Tϕ ¼ 300K. From
Fig. 1(a), we showed that the initial conditions’ contribu-
tion is sensitive to the change on the bandwidth of squeezed
modes σ only for small values of the bandwidth, regardless
of the centering frequency Ω0. Moreover, the contribution
is insensitive to changes in temperature. Nevertheless, in
Fig. 1(b), we showed that when comparing the total force
for each case, the sensitivity is increased by four orders of
magnitude when changing the values of σ. We also showed
that the total force is also sensitive when changing the
temperature. All in all, considering a constant squeezing for
given σ and Ω0, we showed that the change of σ allows us
to tune the value of the (always attractive) Casimir force
from a minimum value defined by the temperature of the
plates. This could be of great interest for application in
technological improvements.
Moreover, out-of-thermal-equilibrium forces and heat

transfer can be studied from the present results. Also the
situation of suddenly changing the distance between the
plates, which is related to the dynamical Casimir effect. This
can be achieved by employing the long-time field operator
for a given configuration of the plates as the initial condition
for a new configuration. This is left as pending future work.
As a final comment, it should be noted that these results

can be easily extended to the three-dimensional scalar field,
where two kinds of modes enter, the evanescent and the
propagating. For our case of a one-dimensional field, we
only deal with propagating modes. On the other hand,
addressing the extension for the EM case could be in
principle a nontrivial issue, but is in any case achievable.
It is clear that the main complication to adapt this canonical
quantization approach to the EM case will be related to the
difficulties associated to quantizing the EM field, which
forces us to deal with its gauge invariance and vectorial
nature at a quantum framework (as it happens on a path
integral formulation in Ref. [20]). However, as it was shown
from the CTP approach (Refs. [20,25]), the conclusions
obtained here for the scalar case will remain broadly valid for
the EM field. Including squeezed states together with the
vectorial case and the different kinds of modes could present
particular behaviors, especially when studying the long- and
short-distances regimes, where the different modes become
dominant. However, all these features are out of the scope of
the present work and are also left as pending work.
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APPENDIX A: DEDUCING THE
FIELD EQUATION

In this section, we show how Eq. (3) is rigorously
obtained given the chosen model. Starting from the
Lagrangian (1), it is easy to derive the Heisenberg equations
of motion for the different operators. They are given by

p̂n;x ¼ mn
_̂qn;x; _̂pn;x ¼ −mnω

2
nq̂n;x þ λnr̂x; ðA1Þ

p̂x ¼ m _̂rx þ eϕ̂; _̂px ¼ −mω2
0r̂x þ

X
n

λnq̂n;x; ðA2Þ

□ϕ̂ ¼ 4πηe _̂rx; ðA3Þ

where the operators p̂x and p̂n;x are the conjugate momen-
tum operators associated to the operators r̂x and q̂n;x,
respectively.
Combining the first two equations, we get

mn
̈q̂n;x þmnω

2
nq̂n;x − λnr̂x ¼ 0: ðA4Þ

As usual in the context of QBM, we solve the equations
for the operators q̂n;x, taking r̂x as a source, and replace
the solutions into the pair of Eqs. (A2). In this way, the
microscopic degrees of freedom in the material satisfy a
Langevin-like equation of the form

_̂px ¼ −mω2
0r̂x −m

d
dt

�Z
t

t0

dτγðt − τÞr̂xðτÞ
�
þ F̂xðt − t0Þ;

ðA5Þ
where the damping kernel γ and the stochastic force
operator F̂x are the same as the ones of QBM (see [37]
for a general and complete view of QBM and also [48] for
an extensive study of Langevin-like equations in different
contexts). They are given by

γðtÞ ¼ 2

m

Z þ∞

0

dω
JðωÞ
ω

cosðωtÞ; ðA6Þ

F̂xðt − t0Þ ¼
X
n

λnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnωn

p ðe−iωnðt−t0Þb̂n;xðt0Þ

þ eiωnðt−t0Þb̂†n;xðt0ÞÞ: ðA7Þ

Here b̂n;xðt0Þ and b̂†n;xðt0Þ are the annihilation and
creation operators associated to q̂n;xðt0Þ, and JðωÞ is the
spectral density that characterizes the environment, which
gives the number of oscillators in each frequency for given
values of the coupling constants λn (see Refs. [37,43] for
more details).

At equilibrium, the stochastic force operator in Eq. (A7)
and the damping kernel γ in Eq. (A6) are not independent.
The statistical properties of the stochastic force operator are
given by the dissipation and noise kernels:

Dðt − t0Þ≡ ih½F̂ðtÞ; F̂ðt0Þ�i ¼ i½F̂ðtÞ; F̂ðt0Þ�

¼ −2
Z þ∞

0

dωJðωÞ sin ðωðt − t0ÞÞ; ðA8Þ

D1ðt − t0Þ≡ hfF̂ðtÞ; F̂ðt0Þgi

¼ 2

Z þ∞

0

dωJðωÞ coth
�
βBω

2

�
cos ðωðt − t0ÞÞ;

ðA9Þ
which are the formal quantum open systems generalization
of the relations employed in Ref. [39] for general envi-
ronments and arbitrary temperature. Note that only the
noise kernel D1 involves the environmental temperature
βB ¼ 1=TB as a parameter. Considering Eq. (A6) and
Eq. (A8), it is easy to show that

d
dt

ðγðt − sÞÞ ¼ −
1

m
Dðt − sÞ; ðA10Þ

which relates the damping kernel γ to the statistical
properties of the stochastic force operator F̂.
All in all, the set of equations to solve now are Eqs. (A2),

(A3), and (A5).
It is possible to obtain a formal solution for the operators

r̂xðtÞ by considering the field ϕ as a source for the equation.
This solution generalizes the crude approximation made in
Ref. [39] for the evolution of the microscopic degrees of
freedom in the mirrors. It is given by

r̂xðtÞ ¼ G1ðt − t0Þr̂xðt0Þ þG2ðt − t0Þ _̂rxðt0Þ

þ 1

m

Z
t

t0

dτG2ðt − τÞðF̂xðτ − t0Þ − e _̂ϕðx; τÞÞ;

ðA11Þ
where G1;2 are the Green functions associated to the QBM
equation that satisfy

G1ð0Þ ¼ 1; _G1ð0Þ ¼ 0; ðA12Þ

G2ð0Þ ¼ 0; _G2ð0Þ ¼ 1; ðA13Þ

for which the Laplace transforms are given by

~GnðzÞ ¼
z2−n

z2 þ ω2
0 þ z~γðzÞ ; ðA14Þ

with n ¼ 1, 2 and where ~γ is the Laplace transform of the
damping kernel. Note that, given these conditions, one can
prove that G1ðtÞ ¼ _G2ðtÞ.
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Inserting this solution into Eq. (A3), we obtain the
following equation for the field operator given in Ref. [43]:

□ϕ̂þ 4πηe2

m

Z
t

t0

dτG1ðt − τÞ _̂ϕðx; τÞ

¼ 4πηe½ _G1ðt − t0Þr̂xðt0Þ þG1ðt − t0Þ _̂rxðt0Þ

þ 1

m

Z
t

t0

dτG1ðt − τÞF̂xðτ − t0Þ�; ðA15Þ

which can also be rewritten as in Ref. [39], finally arriving
at Eq. (3).

APPENDIX B: STEADY INITIAL CONDITIONS’
CONTRIBUTION FROM COMPLEX ANALYSIS

This section is devoted to show how Eq. (13) is obtained
for the long-time operator of the initial conditions’
contribution.
We begin by considering Eq. (12) as a starting point.

Following Ref. [40], we can write the desired Green
function as

~GRetðx; x0; sÞ ¼
Φ<

s ðx<ÞΦ>
s ðx>Þ

Wsðx0Þ
; ðB1Þ

where x> (x<) is the bigger (smaller) value between x and
x0, Φ<

s (Φ>
s ) is the homogeneous solution associated to

Eq. (10) satisfying only the boundary condition on the left
(right) limit of the variable value’s interval and WsðxÞ ¼
Φ<

s ðxÞ dΦ
>
s

dx − dΦ<
s

dx Φ>
s ðxÞ is the Wronskian of the solutions

(which has to be independent of x).
At this point, we go a step further and give a demon-

stration for the long-time limit of this operator for a
completely general case. We will consider the case of
N − 1 interfaces separating different materials character-
ized by refractive index nα, with α ¼ 1; 2;…; N − 1; N for
a given positive integer N. However, beyond the regions
imposed by the N − 1 interfaces, the construction of the
Green function ~GRetðx; x0; sÞ always contains a jolt asso-
ciated to the relation between the field and source points
(x, x0, respectively). Given that the field point x is chosen in

the m region, the spatial integral over the source point x0
in Eq. (12) separates in N þ 1 integrals, N − 1 integrals
associated to each region not containing x, and two more
associated to the splitting of the m region due to the jolt in
the relation between x and x0. Therefore,

Z
dx0 →

�Z
x1

−∞
þ
Z

x2

x1

þ � � � þ
Z

xm−1

xm−2

þ
Z

x

xm−1

þ
Z

xm

x

þ
Z

xmþ1

xm

þ � � � þ
Z

xN

xN−1

þ
Z þ∞

xN

�
dx0; ðB2Þ

where fxig are the positions of the N interfaces.
Then, considering the construction of the Green function

through Eq. (B1), the first m integrals in Eq. (B2) are of the
form

Z
xα

xα−1

dx0 ~GRetðx; x0; sÞeikx0 ¼
Φ>

s ðxÞ
Ws

Z
xα

xα−1

dx0Φ<
s ðx0Þeikx0 ;

ðB3Þ

for every α ¼ 1;…; m by considering x0 ¼ −∞ for the
lower limit in the integral with α ¼ 1 and xm ¼ x in the
upper limit of the last integral (α ¼ m).
The last N −mþ 2 integrals in Eq. (B2) are of the form

Z
xα

xα−1

dx0 ~GRetðx; x0; sÞeikx0 ¼
Φ<

s ðxÞ
Ws

Z
xα

xα−1

dx0Φ>
s ðx0Þeikx0 ;

ðB4Þ

with α ¼ m;…; N þ 1, by considering xm−1 ¼ x for the
first integral and xNþ1 ¼ þ∞ for the upper limit of the last
integral.
By considering that the homogeneous solutions in each

region can be, in general (except for the first and last
regions as we will see below), written as the superposition
of waves traveling to the right and to the left, i.e.,
Φ≶

s ðxÞ ¼
P

j¼þ;−K
≶
s ðj;αÞejsnαðsÞx, where K≶

s ðj;αÞ are
the coefficients resulting from the appropriate boundary
conditions, we therefore have

Z
dx0 ~GRetðx; x0; sÞeikx0 ¼

Φ>
s ðxÞ
Ws

X
j¼þ;−

j
�Xm−1

α¼1

K<
s ðj; αÞ

ðsnαðsÞ þ jikÞ ðe
ðjsnαðsÞþikÞxα − eðjsnαðsÞþikÞxα−1Þ

þ K<
s ðj; mÞ

ðsnmðsÞ þ jikÞ ðe
ðjsnmðsÞþikÞx − eðjsnmðsÞþikÞxm−1Þ

�

þ Φ<
s ðxÞ
Ws

X
j¼þ;−

j

�
K>

s ðj; mÞ
ðsnmðsÞ þ jikÞ ðe

ðjsnmðsÞþikÞxm − eðjsnmðsÞþikÞxÞ

þ
XNþ1

α¼mþ1

K>
s ðj; αÞ

ðsnαðsÞ þ jikÞ ðe
ðjsnαðsÞþikÞxα − eðjsnαðsÞþikÞxα−1Þ

�
: ðB5Þ
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After introducing this into Eq. (12), the next step is to
perform the complex integration over s. For this purpose,
the residue theorem has to be employed considering a
complex contour, including the line in the complex space
l − iΩ, withΩ ∈ R and closing to the left. It is important to
consider that, by definition, the Laplace integration is such
that the poles lie at the left of the line l − iΩ. Therefore,
solving the full time evolution of the contribution to the
field operator of Eq. (12) implies knowing the poles’
configuration of all of the terms of Eq. (B5). However,
not all of the poles will contribute to the long-time limit
(t0 → −∞). In fact, as it was pointed out in Ref. [21], the
steady situation will be determined by the poles with zero
real part, i.e., purely imaginary poles. Nevertheless, the
causality property implies that the poles of the Laplace
transform of the retarded Green function ~GRetðx; x0; sÞ have
a negative real part. The only pole with zero real part is the
one at s ¼ 0 provided by the Wronskian. Therefore, the
long-time limit will be defined by the poles resulting from
the spatial integration. These poles are provided by
snαðsÞ þ jik in each region.
In the first place, it turns out that if a given region α is

filled with a dissipative material [nαðsÞ ≠ 1], then snαðsÞ þ
jik has no poles with zero real part. Therefore, those terms
associated to filled regions will not contribute to the steady
state; i.e., the result vanishes in the long-time limit.
Thus, in principle, only regions filled with dissipation-

less materials may contribute to the steady situation. In

particular, we have the vacuum regions, where nα ≡ 1, and
the denominator reads sþ jik, providing its roots as a
candidate to the poles (s ¼ −jik). However, if an inter-
mediate region of finite length is considered (α ¼ 2;…; N),
the corresponding term after spatial integration contains a
factor eðjsþikÞA − eðjsþikÞB, with A, B the corresponding
limit of integration of the given term. This factor cancels
out when s ¼ −jik in such a way that the limit of
ðeðjsþikÞA − eðjsþikÞBÞ=ðsþ jikÞ goes to zero (by
l’Hôpital’s rule), giving that there is no pole at s ¼ −jik
for these terms. Clearly, this means that these terms do not
contribute to the steady state.
Considering the analyzed cases at this point, the last

possibility is the case where the dissipationless regions are
not intermediate, having α equal to 1 or N þ 1. Given the
convergence of ~GRetðx; x0; sÞ for great values of x, x0, for
α ¼ 1 we have K<

s ð−; 1Þ≡ 0, while for α ¼ N þ 1 we
have K>

s ðþ; N þ 1Þ≡ 0. This means that in these regions,
outgoing waves are the only solution there. At the same
time, for α ¼ 1, given that x0 ¼ −∞ and that s ¼ l − iΩ
(with l > 0), then eðsþikÞx0 → 0 in the corresponding term
in Eq. (B5). Analogously, for α ¼ N þ 1, given that
xNþ1 ¼ þ∞ and that s ¼ l − iΩ (with l > 0), we
have eð−sþikÞxNþ1 → 0.
All in all, for dissipationless regions with α ¼ 1, N þ 1,

we can write the Laplace integration of Eq. (B5) as

Z
lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ
Z

dx0 ~GRetðx; x0; sÞeikx0

¼
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞΦ>
s ðxÞ

K<
s ðþ; 1Þ
Ws

eðsþikÞx1

ðsþ ikÞ

þ
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞΦ<
s ðxÞ

K>
s ð−; N þ 1Þ

Ws

eð−sþikÞxN

ðs − ikÞ þ ½terms of intermediate regions�: ðB6Þ

One last simplification can be done related to the explicit calculation of the Wronskian. Given that it is independent
of the spatial coordinate, the Wronskian can be calculated in every region, giving equalities between the different
coefficients in each region. If we calculate it in the first region (α ¼ 1) by consideringΦ<

s ðx0Þ ¼ K<
s ðþ; 1Þesx0 andΦ>

s ðx0Þ ¼
e−sx

0 þ K>
s ðþ; 1Þesx0 for each homogeneous solution, we obtain Ws ¼ −2sK<

s ðþ; 1Þ. Analogously, calculating in the last
region (α ¼ N þ 1), we obtainWs ¼ −2sK>

s ð−; N þ 1Þ. Then, using the first expression of the Wronskian for the first term
in the rhs of Eq. (B6), and the second expression for the second term of the same equation, we can write

Z
lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ
Z

dx0 ~GRetðx; x0; sÞeikx0 ¼ −
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞΦ>
s ðxÞ

eðsþikÞx1

2sðsþ ikÞ

−
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞΦ<
s ðxÞ

eð−sþikÞxN

2sðs − ikÞ
þ ½terms of intermediate regions�: ðB7Þ

Taking into account that the long-time limit of this integral will be dominated by the poles with zero real parts, each of the
first two terms on the rhs of the last equation can be written as the sum of the residue at s ¼ 0, s ¼ �ik, and the residue that
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will not contribute to the steady situation. It is worth
noting that the pole at s ¼ 0 makes the parameter l that
defines the Laplace antitransform necessarily positive.
Thus, the new poles with zero real part resulting from
the spatial integration are always located at the left of the
line lþ iΩ and then inside the contour of integration, as is
needed.
Now, as we mentioned before, in general (except for the

first and last regions) the homogeneous solutions in the
region α are given by Φ≶

s ðxÞ ¼
P

j¼þ;−K
≶
s ðj; αÞejsnαðsÞx,

and then each exponential contributes to different causality
restrictions for each term.
The first integral splits into two, each one containing the

exponential factors esðt−t0þjnαðsÞxþx1Þ for each j. The expo-
nents define the convergence of the integral and in which
direction the contour has to be closed to use the residue
theorem. It is clear that closing to the right will make the
integral equal to zero due to the lack of poles inside the
contour. Therefore, the integral is different from zero when
the contours close to the left. To obtain the restriction in

terms of t; t0; x, and x1 resulting in each integral, as in
Refs. [39,49], we analyze the case of large jsj. In that case,
nαðsÞ → 1 and the exponents tends to sðt − t0 þ jxþ x1Þ.
It turns out that the contour must be closed to the left when
t − t0 þ jxþ x1 > 0. Although these results are obtained
for large jsj, they are valid for the entire integral, and
express the natural mathematical manifestation of causality
and the retardation effects that take place in the tran-
sient stage.
For the second integral the situation is analogous, and the

restrictions are t − t0 þ jx − xN > 0. It is clear that the
terms of intermediate regions in Eq. (B7) also give causality
restrictions but, as those terms will not contribute to the
steady situation, we do not analyze them.
The generalization of this deduction for the first and last

regions (α ¼ 1 or N þ 1, respectively) is straightforward.
However, for the demonstration we follow the general
situation of intermediate regions.
Therefore, we have

Z
lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ
Z

dx0 ~GRetðx; x0; sÞeikx0

¼ −
X
j¼þ;−

Θðt − t0 þ jxþ x1Þ
�
Res

�
esðt−t0Þðs − iωkÞK>

s ðj; αÞejsnαðsÞx
eðsþikÞx1

2sðsþ ikÞ ; 0
�

þ Res

�
esðt−t0Þðs − iωkÞK>

s ðj; αÞejsnαðsÞx
eðsþikÞx1

2sðsþ ikÞ ;−ik
��

þ ½residue with vanishing long-time limit�

−
X
j¼þ;−

Θðt − t0 þ jx − xNÞ
�
Res

�
esðt−t0Þðs − iωkÞK<

s ðj;αÞejsnαðsÞx
eð−sþikÞxN

2sðs − ikÞ ; 0
�

þ Res

�
esðt−t0Þðs − iωkÞK<

s ðj; αÞejsnαðsÞx
eð−sþikÞxN

2sðs − ikÞ ; ik
��

þ ½residue with vanishing long-time limit� þ ½residue of terms of intermediate regions�: ðB8Þ

It turns out that an explicit calculation of the poles at s ¼ 0 results in time- and space-independent quantities [after
assuming that K<

0 ðþ; αÞ ¼ 1 ¼ K>
0 ð−; αÞ, while K<

0 ð−; αÞ ¼ 0 ¼ K>
0 ðþ; αÞ, as it happens in general for the zero frequency

solutions due to the scattering properties of the coefficients for every α]. The calculation of the other residue at s ¼ �ik is
straightforward, giving

Z
lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ
Z

dx0 ~GRetðx; x0; sÞeikx0

¼ 1

2

ωk

k
½Θðt − t0 þ xþ x1Þeikx1 − Θðt − t0 − x − xNÞeikxN �

−
1

2

X
j¼þ;−

Θðt − t0 þ jxþ x1Þe−ikðt−t0Þ
�
1þ ωk

k

�
K>

−ikðj; αÞe−jiknαð−ikÞx

−
1

2

X
j¼þ;−

Θðt − t0 þ jx − xNÞeikðt−t0Þ
�
1 −

ωk

k

�
K<

ikðj; αÞejiknαðikÞx

þ ½residue with vanishing long-time limit� þ ½residue of terms of intermediate regions�; ðB9Þ
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where the first two terms correspond to the poles at s ¼ 0 of
both integrals.
The crucial point is that, when considering the long-time

limit (t0 → −∞), all the Heaviside functions present go to
1. Thus, on one hand, the first two terms (associated to the
pole at s ¼ 0) become time and space independent and, as
we shall see, they will not contribute to the calculations
relative to the energy-momentum tensor expectation value.
On the other hand, the sums over j in the third and fourth
terms add up to the homogeneous solutions Φ≶ again. The
rest terms vanish in the long-time limit. Ignoring the
oscillatory dependence on t0 of the third and fourth terms
and that ωk

k ≡ sgnðkÞ, we can write

Z
lþi∞

l−i∞

ds
2πi

esðt−t0Þðs − iωkÞ
Z

dx0 ~GRetðx; x0; sÞeikx0

→
1

2
sgnðkÞ½eikx1 − eikxN � − 1

2
e−ikðt−t0Þ

�
1þ ωk

k

�
Φ>

−ikðxÞ

−
1

2
eikðt−t0Þ

�
1 −

ωk

k

�
Φ<

ikðxÞ: ðB10Þ

Considering that 1� ωk
k ≡ 2Θð�kÞ and assuming that

the homogeneous solution satisfies ðΦ−ikðxÞÞ� ¼ ΦikðxÞ [or
analogously, that ΦsðxÞ is real for real s], inserting this into
Eq. (12) and taking the long-time limit (t0 → −∞) by
considering all the properties of each term mentioned
before, we finally obtain Eq. (13).

APPENDIX C: STEADY VOLUME ELEMENTS’
CONTRIBUTION FROM COMPLEX ANALYSIS

In this section, we follow the same approach as in
Appendix B, but to address the long-time limit of the
field operator for the volume elements’ contribution given
in Eq. (16).
Therefore, our starting point is Eq. (15). Writing the

Green function in terms of its Laplace transform and
making the substitution τ ¼ t0 − t0, the contribution to
the field operator reads

ϕ̂ðþÞ
A ðx; tÞ ¼ −

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ðt0Þ

×
Z

lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ

×
Z

t−t0

0

dτesðt−t0−τÞð _G1ðτÞ − iω0
_G2ðτÞÞ:

ðC1Þ

It is worth noting that the integral over τ is a convolution.
Its Laplace transform is a product of the Laplace transform
of est and _G1ðtÞ − iω0

_G2ðtÞ. Therefore, the convolution
can be written as an antitransform too, and the contribution
to the field operator can be written as

ϕ̂ðþÞ
A ðx; tÞ ¼ −

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ðt0Þ

×
Z

lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ

×
Z

l0þi∞

l0−i∞

dz
2πi

ezðt−t0Þ

ðz − sÞ ðzðz − iω0Þ ~G2ðzÞ − 1Þ;

ðC2Þ

where l0 > l to have a well-defined Laplace transform of
est, ensuring the convergence of the integral and the
causality property at once.
This expression allow us to write the convolution in

terms of the residue of the poles of the integrand. Due to the
causality property, ~G2 has poles with nonpositive real parts.
Then, as l0 > l, the integral over z can be written as the
residuum at z ¼ s [associated to 1=ðz − sÞ] plus all the
residue with nonpositive real parts that will give terms that
vanish at the long-time limit (t0 → −∞). Thus, we obtain

ϕ̂ðþÞ
A ðx; tÞ ¼ −

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ðt0Þ

×
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þ ~GRetðx; x0; sÞ

× ðsðs − iω0Þ ~G2ðsÞ − 1Þ
þ ½terms with vanishing long-time limit�:

ðC3Þ

Again, the causality of the retarded Green functions
GRet; G2 gives that the integrand in the integral over s has
poles with nonpositive real parts. The only pole having zero
real part is the one at s ¼ 0 provided by the Wronskian
contained in ~GRet, which is the only one that will not vanish
at the long-time limit. It should be noted that only the
second term of sðs − iω0Þ ~G2ðsÞ − 1 will have s ¼ 0 as a
pole, since for the first term the denominator that provides
the pole cancels with s in the numerator.
Considering the expression of the Green function of

Eq. (B1) and the general form for the homogeneous
solutions Φ≶

s , the Green function can be written as

GRetðx;x0;sÞ¼
1

Ws

X
j;k¼þ;−

½Θðx−x0ÞK<
s ðj;αÞK>

s ðk;βÞ

þΘðx0−xÞK<
s ðk;βÞK>

s ðj;αÞ�esðjnαðsÞx0þknβðsÞxÞ;

ðC4Þ

for arbitrary x in the α region and x0 in the β region.
Now, by taking into account the properties of the

coefficients K≶
s at s ¼ 0 and the analysis associated to

the causality of the transient stage, we can calculate the
residuum at s ¼ 0, obtaining for every x
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ϕ̂ðþÞ
A ðx; tÞ ¼ −

Z
dx0

4πηeCðx0Þffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p b̂0;x0 ðt0Þ

×
Θðt − t0 þ x0 − xÞΘðt − t0 − x0 þ xÞ

2

þ ½terms with vanishing long-time limit�:
ðC5Þ

Thus, taking the long-time limit (t0 → −∞), we easily
obtain Eq. (16).

APPENDIX D: STEADY BATHS’ CONTRIBUTION
FROM COMPLEX ANALYSIS

The present section shows how Eq. (18) can be obtained
by taking Eq. (17) as the starting point. The approach will
be the same as in the last two sections for the other two
contributions, by separating the steady contribution by
analyzing the poles configuration.
The first step consists of writing the field’s retarded

Green function as a Laplace antitransform, rewriting
Eq. (17) as

ϕ̂Bðx; tÞ ¼ −
Z

dx04πηeCðx0Þ
Z

lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ

×
Z

t

t0

dt0esðt−t0Þ
Z

t0

t0

dτ _G2ðt0 − τÞ F̂x0 ðτ − t0Þ
m

:

ðD1Þ
The resulting integrals over t0 and τ are basically a

double convolution and we can write it in terms of its
Laplace transform:

Z
t

t0

dt0esðt−t0Þ
Z

t0

t0

dτ _G2ðt0 − τÞ F̂x0 ðτ − t0Þ
m

¼
Z

l0þi∞

l0−i∞

dz
2πi

ezðt−t0Þ
z

ðz − sÞ
~G2ðzÞ

~̂Fx0 ðzÞ
m

; ðD2Þ

where, as for the volume elements’ contribution, we have to
take l0 > l in order to verify the convergence requirement of
the function est. Given this, we can rewrite the double
convolution in terms of its residue associated to the poles of
the integrand in the rhs of the last expression. These are the
poles at z ¼ s, the poles provided by the Laplace transform
of the stochastic force operator and the poles associated to
~G2, which gives terms that go to zero in the long-time limit:

Z
t

t0

dt0esðt−t0Þ
Z

t0

t0

dτ _G2ðt0 − τÞ F̂x0 ðτ − t0Þ
m

¼ esðt−t0Þs ~G2ðsÞ
~̂Fx0 ðsÞ
m

þ ½residue of the poles of ~̂Fx0 �
þ ½terms with vanishing long-time limit�: ðD3Þ

Now, by considering Eq. (A7), the Laplace transform of
the stochastic force operator is given by

~̂Fx0 ðzÞ ¼
X
n

λnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnωn

p
�

1

ðzþ iωnÞ
b̂n;x0 ðt0Þ

þ 1

ðz − iωnÞ
b̂†n;x0 ðt0Þ

�
; ðD4Þ

which presents poles at z ¼ �iωn for each term, and
therefore the second term of the rhs of Eq. (D3) can be
written as

½Residue of the poles of ~̂Fx0 � ¼ Res

�
ezðt−t0Þ

z ~G2ðzÞ
ðz − sÞ

~̂Fx0 ðzÞ
m

;−iωn

�
þ Res

�
ezðt−t0Þ

z ~G2ðzÞ
ðz − sÞ

~̂Fx0 ðzÞ
m

; iωn

�

¼ 1

m

X
n

λniωnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnωn

p
�
~G2ð−iωnÞ
ðsþ iωnÞ

e−iωnðt−t0Þb̂n;x0 ðt0Þ −
~G2ðiωnÞ
ðs − iωnÞ

eiωnðt−t0Þb̂†n;x0 ðt0Þ
�
: ðD5Þ

At this point, we can write the last expression as an integral over a continuous frequency ω by introducing Dirac delta
functions:

½Residueof thepolesof ~̂Fx0 �¼
Z þ∞

−∞

dω
2π

e−iωt
iω ~G2ð−iωÞ
mðsþiωÞ 2π

X
n

λnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnωn

p ½δðω−ωnÞeiωnt0 b̂n;x0 ðt0ÞþδðωþωnÞe−iωnt0 b̂†n;x0 ðt0Þ�

¼
Z þ∞

−∞

dω
2π

e−iωt
iωG2ðωÞ
ðsþiωÞ

F̂x0 ðωÞ
m

; ðD6Þ
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where we have used that ~fð−iωÞ ¼ fðωÞ for every causal function as the retarded Green function G2, fðωÞ being the

Fourier transform of the given causal function fðtÞ (which also admits a Laplace transform). Moreover, F̂x0 ðωÞ turns out to
be the Fourier transform of the stochastic force operator, considering the time variable in Eq. (A7) extended to the entire real
domain.
Considering the last expression and replacing Eq. (D3) in the field’s contribution, we have

ϕ̂Bðx; tÞ ¼ −
Z

dx04πηeCðx0Þ
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þs ~G2ðsÞ ~GRetðx; x0; sÞ
~̂Fx0 ðsÞ
m

−
Z

dx04πηeCðx0Þ
Z þ∞

−∞

dω
2π

e−iωtiωG2ðωÞ
F̂x0 ðωÞ
m

Z
lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ
ðsþ iωÞ

þ ½terms with vanishing long-time limit�: ðD7Þ

Nevertheless, the integral over s of the second term of the last equation can be worked out further. Considering it as a limit
of a Laplace antitransform, we have

Z
lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ
ðsþ iωÞ ¼ lim

t0→t0

Z
lþi∞

l−i∞

ds
2πi

esðt0−t0Þ
~GRetðx; x0; sÞ
ðsþ iωÞ ; ðD8Þ

where the rhs results in the antitransform of a convolution of the functions associated to the transforms ~GRetðx; x0; sÞ and
1=ðsþ iωÞ. Therefore, we can write the convolution and take the limit on the integral, which clearly vanishes due to the fact
that both integration limits become the same:

Z
lþi∞

l−i∞

ds
2πi

~GRetðx; x0; sÞ
ðsþ iωÞ ¼ lim

t0→t0

Z
t0

t0

dτGRetðx; x0; t0 − τÞe−iωðτ−t0Þ ≡ 0: ðD9Þ

Hence, the contribution of the baths to the field operator reads

ϕ̂Bðx; tÞ ¼ −
Z

dx04πηeCðx0Þ
Z

lþi∞

l−i∞

ds
2πi

esðt−t0Þs ~G2ðsÞ ~GRetðx; x0; sÞ
~̂Fx0 ðsÞ
m

þ ½terms with vanishing long-time limit�:

ðD10Þ

Again, for the Laplace antitransform of the first term in the rhs, we can proceed as before, and write it in terms of the

residue of the integrand. This time, we have the poles of ~̂Fx0 (located at s ¼ �iωn) and the ones with negative real part
provided by ~G2 and ~GRet, but excluding the pole at s ¼ 0 due to the factor s present in the integrand, which prevents it. As
we mentioned before, the poles with negative real part will result in terms that vanish at the long-time limit.
We can proceed as before to write the terms in the last expression as an integral over ω, finally obtaining for the

contribution of the baths to the field operator

ϕ̂Bðx; tÞ ¼ −
Z

dx0
4πηeCðx0Þ

m

Z þ∞

−∞

dω
2π

e−iωtð−iωÞG2ðωÞ
W−iω

X
j;k¼þ;−

Θðt − t0 þ jx0 þ kxÞðΘðx − x0ÞK<
−iωðj; αÞ

× K>
−iωðk; βÞ þ Θðx0 − xÞK<

−iωðk; βÞK>
−iωðj; αÞÞe−iωðjnαð−iωÞx0þknβð−iωÞxÞF̂x0 ðωÞ

þ ½terms with vanishing long-time limit�: ðD11Þ

By taking the long-time limit of this expression, it is straightforward to finally obtain Eq. (18).

APPENDIX E: GREEN FUNCTION FOR TWO FINITE WIDTH PLATES CONFIGURATION

To calculate each contribution to the total force through Eqs. (28) and (44), we need the modified modes Φ≶
s (and

consequently, the Green function) obtained from Eq. (10) for the specific problem. This section is devoted to giving those
expressions.
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For the present problem of two different slabs of width d separated by a distance a, the modified modes are given by

Φ<
s ðxÞ ¼

8>>>>>><
>>>>>>:

T<
s esx; for x < −d − a

2

E<
s esnLx þ F<

s e−snLx; for − d − a
2
< x < − a

2

C<
s esx þD<

s e−sx; for − a
2
< x < a

2

A<
s esnRx þ B<

s e−snRx; for a
2
< x < dþ a

2

esx þ R<
s e−sx; for dþ a

2
< x

ðE1Þ

Φ>
s ðxÞ ¼

8>>>>>><
>>>>>>:

e−sx þ R>
s esx; for x < −d − a

2

A>
s e−snLx þ B>

s esnLx; for − d − a
2
< x < − a

2

C>
s e−sx þD>

s esx; for − a
2
< x < a

2

E>
s e−snRx þ F>

s esnRx; for a
2
< x < dþ a

2

T>
s e−sx; for dþ a

2
< x

; ðE2Þ

where the coefficients for each homogeneous solution can be found in Ref. [47]:

R>
s ¼

�
rL þ rRt2Le

−2sa

1 − rLrRe−2sa

�
esðaþ2dÞ; T>

s ¼ tRtLe2sd

1 − rLrRe−2sa
; ðE3Þ

C>
s ¼ e−sd

T>
s

tR
; D>

s ¼ e−sðaþdÞ rR
tR

T>
s ; ðE4Þ

A>
s ¼ ðnL þ 1Þ

2nL
esð1−nLÞða2þdÞ½1 − rnLR

>
s e−sðaþ2dÞ�; B>

s ¼ ðnL þ 1Þ
2nL

esð1þnLÞða2þdÞ½R>
s e−sðaþ2dÞ − rnL �; ðE5Þ

E>
s ¼ ðnR þ 1Þ

2nR
esðnR−1Þða2þdÞT>

s ; F>
s ¼ ðnR − 1Þ

2nR
e−sðnRþ1Þða

2
þdÞT>

s ; ðE6Þ

where we have given all the coefficients in terms of the reflection and transmission coefficients of the two-plates
configuration (R>

s and T>
s ). Moreover, rL;R and tL;R are the reflection and transmission coefficients for the left and right

plates, respectively:

ri ¼
rnið1 − e−2snidÞ
ð1 − r2nie

−2snidÞ ; ti ¼
4ni

ðni þ 1Þ2
e−snid

ð1 − r2nie
−2snidÞ ; ðE7Þ

with rni ¼ 1−ni
1þni

, the reflection coefficient of a surface of refractive index ni.
It should be noted that the < coefficients are obtained from the given ones by the interchange of L and R in the

expressions. Considering this, it turns out that T>
s ¼ T<

s , so the superscript for this coefficient can be omitted.
For the given configuration of finite width plates, the boundary conditions on the modes were a continuity of the mode

and its spatial derivative at the interfaces between the material slabs and the surrounding vacuum.
On the other hand, to calculate the contribution of the baths to the Casimir force, we also need the Green function (or its

Laplace transform) with the field point x in the regions outside and between the plates.
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Therefore, taking x < −d − a
2
, through Eq. (B1), the Laplace transform of the retarded Green function reads

~GRetðx; x0; sÞ ¼ −
1

2s

8>>>>>>>>>>><
>>>>>>>>>>>:

esx
0 ðe−sx þ R>

s esxÞ; for x0 < x < −d − a
2

ðe−sx0 þ R>
s esx

0 Þesx; for x < x0 < −d − a
2

ðA>
s e−snLx

0 þ B>
s esnLx

0 Þesx; for x < −d − a
2
< x0 < − a

2

ðC>
s e−sx

0 þD>
s esx

0 Þesx; for x < −d − a
2
< − a

2
< x0 < a

2

ðE>
s e−snRx

0 þ F>
s esnRx

0 Þesx; for x < −d − a
2
< a

2
< x0 < dþ a

2

Tse−sx
0
esx; for x < −d − a

2
< dþ a

2
< x0

: ðE8Þ

For the case where − a
2
< x < a

2
, we have

~GRetðx; x0; sÞ ¼ −
1

2s

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Tsesx
0 e−sd

tR
ðe−sx þ rRe−saesxÞ; for x0 < −d − a

2
< − a

2
< x < a

2

ðE<
s esnLx

0 þ F<
s e−snLx

0 Þ e−sdtR
ðe−sx þ rRe−saesxÞ; for − d − a

2
< x0 < − a

2
< x < a

2

ðC<
s esx

0 þD<
s e−sx

0 Þ e−sdtR
ðe−sx þ rRe−saesxÞ; for − a

2
< x0 < x < a

2

ðC>
s e−sx

0 þD>
s esx

0 Þ e−sdtL
ðesx þ rLe−sae−sxÞ; for − a

2
< x < x0 < a

2

ðE>
s e−snRx

0 þ F>
s esnRx

0 Þ e−sdtL
ðesx þ rLe−sae−sxÞ; for − a

2
< x < a

2
< x0 < dþ a

2

Tse−sx
0 e−sd

tL
ðesx þ rLe−sae−sxÞ; for − a

2
< x < a

2
< dþ a

2
< x0

: ðE9Þ

APPENDIX F: LIMIT CASES: DISSIPATIONLESS
MATERIAL AND THE LIFSHITZ FORMULA

In this section, we show how the general expressions for
the force given in Eqs. (46), (47), and (48) allow us to
recover two well-known results for the Casimir force. One of
the limit cases is to obtain the Casimir force existing between
two slabs of arbitrary thickness made of materials without
dissipation. The other one is to obtain the force between two
half-spaces (infinite width) of dissipative materials at thermal
equilibrium, which is known as the Lifshitz formula.

1. Material without dissipation

The first limit case to verify is the Casimir force between
two plates of finite width and different materials without
dissipation. Considering the definition of the refractive
index in each point of the material, given by Eq. (11),
setting dissipation equal to zero implies taking γL;RðωÞ≡ 0,
i.e., setting a damping kernel equal to zero for each plate.
Therefore, the refractive indices (and consequently the
permittivity function) simplify to

n2i ð−iωÞ ¼ εiðωÞ ¼ 1þ ω2
Pl;i

ðω2
0;i − ω2Þ ; ðF1Þ

which is a real function of ω.
However, real frequency-dependent permittivities violate

the Kramers-Kronig relations and, consequently, are for-
bidden in order to respect physical causality.

Hence, setting dissipation equal to zero is not enough to
obtain a well-defined physical model without dissipation.
To finally obtain the correct model, as done in Ref. [25],
we have to take the zeroth order of this last expression by
setting ω ¼ 0. In this case, we obtain

εi;ND ¼ 1þ ω2
Pl;i

ω2
0;i

; ðF2Þ

which is a real but frequency-independent function.
These permittivities verify the Kramers-Kronig relation
trivially, since a null imaginary part implies a frequency-
independent real part (see Ref. [49]).
All in all, taking the limit case of materials without

dissipation is achieved by putting γ ≡ 0 plus taking the
zeroth order of the resulting permittivity.
Oncewe have considered how to take the limit ofmaterials

without dissipation, in any case, we have ImðniÞ≡ 0. This
also implies that ð�1Þðe�2ωImðniÞd − 1Þ≡ 0. Therefore, the
direct consequence is that the baths’ contribution trivially
vanishes:

FB
C½a; d; βB;L; βB;R�jNo Diss ≡ 0: ðF3Þ

Nevertheless, the contribution of the initial conditions to
the Casimir force FIC

C ½a; d;F� does not vanish. In fact, in
this case, it is responsible for the total Casimir force.
Moreover, once the dissipation is suppressed, both

identities jR>
−ikj2 þ jT−ikj2 ¼ 1 and jrij2 þ jtij2 ¼ 1 are

also recovered.
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Accordingly, the total Casimir force reads

FC½a;d;F�jNoDiss
≡FIC

C ½a;d;F�jNoDiss
¼
Z þ∞

0

dkkFðkÞ½2− jC>
−ikj2− jD>

−ikj2− jC<
−ikj2− jD<

−ikj2�

¼
Z þ∞

0

dkkFðkÞ
�
2−

½jtLj2ð1þjrRj2ÞþjtRj2ð1þjrLj2Þ�
j1−rLrRei2ωaj2

�
:

ðF4Þ

For the case of considering the same material for both
plates, we have that rL ¼ rR ¼ r and tL ¼ tR ¼ t, and the
last expression straightforwardly simplifies to

FC½a; d;F�j1-Mat
No Diss ¼ 2

Z þ∞

0

dkkFðkÞ
�
1 −

1 − jrj4
j1 − r2ei2ωaj2

�
;

ðF5Þ

which is the Casimir force between two finite plates of
finite width and the same material without dissipation. If we

consider an equilibrium scenario, FðkÞ ¼ cothðβϕωk

2
Þ, and

the result is in agreement with the result found in Ref. [42]
for a formally equivalent situation.
Moreover, from this point of view for the thermal case,

Eq. (F4) is the generalization of the result of Ref. [42] for
the case of plates of different materials without dissipation.
Nevertheless, the result obtained is an equilibrium situation
ensured by the equilibrium state for the field. Considering
the result obtained for this limit case, the calculation of the
Casimir force between material bodies without dissipation
is formally achieved through a quantum field described in a
Hilbert space that here we can match to the Hilbert space of
a free field. This is in fact what is done in well-known
literature to obtain the Casimir force between dielectric

plates without dissipation and in equilibrium (see
Refs. [50,51]). In previous works, the result including
dissipative materials is often obtained as an extension of
this simplified scenario through letting the real and fre-
quency-independent permittivity in this case to be replaced
by a complex frequency-dependent function in the final
result. This extension procedure in fact works in equilib-
rium situations because the results including and disregard-
ing dissipation are formally the same. However, as we have
seen before, nonequilibrium scenarios critically require the
introduction of degrees of freedom for the materials bodies
since the extension procedure loses physical sense in
successfully introducing nonequilibrium features through
a particular state for the field.

2. Lifshitz formula

The other important limit case is the Lifshitz formula.
Starting from Eqs. (46) and (47), the formal procedure to
recover the well-known Lifshitz result consists of taking the
limit of infinite width (d → þ∞) in the expressions and
then setting thermal equilibrium between the baths and the
field at the initial time [therefore, for the initial conditions’

contribution, we will be considering FðkÞ ¼ cothðβϕωk

2
Þ in

this section].
To successfully take the limit of infinite width on the

contributions to the total force, from Eq. (E7), we have that

ri → rni , ti → 0 but jtij2e2ωImðniÞd → 16jnij2
jniþ1j4. Therefore,

considering the definitions for the different coefficients

given in Eqs. (E3) and (E4) and that 1 − jrni j2 ¼ 2ReðniÞ
jniþ1j2 , we

get each contribution to the force:

FIC
C ½a; d → þ∞; βϕ� ¼

Z þ∞

0

dkk coth

�
βϕk

2

�
½1þ jrnL j2�;

ðF6Þ

FB
C½a; d → þ∞; βB;L; βB;R� ¼

Z þ∞

0

dωω
�
coth

�
βB;Lω

2

�
½1 − jrnL j2�

�
1 −

½1þ jrnR j2�
j1 − rnLrnRe

i2ωaj2
�

− coth

�
βB;Rω

2

� ½1 − jrnR j2�½1þ jrnL j2�
j1 − rnLrnRe

i2ωaj2
�
: ðF7Þ

Setting thermal equilibrium between the baths and the field (βB;L ¼ βB;R ¼ βϕ ≡ β), we obtain the total force as

FC½a; d → þ∞; β; β; β� ¼ FIC
C ½a; d → þ∞; β� þ FB

C½a; d → þ∞; β; β�

¼ 4

Z þ∞

0

dkk coth

�
βk
2

� ½jrnR j2jrnL j2 − ReðrnLrnRei2ωaÞ�
j1 − rnLrnRe

i2ωaj2

¼ −
Z þ∞

−∞
dkk coth

�
βk
2

�
Re

�
rnLð−ikÞrnRð−ikÞei2ka

1 − rnLð−ikÞrnRð−ikÞei2ka
�
; ðF8Þ
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where we have used the fact that the integrand is even and
stressed the explicit dependence on k related to the
definition of the coefficients given in Eq. (E7).
In order to calculate the integral through the residue

theorem, we can consider the expansion of the thermal
factor in terms of the Matsubara poles:

coth
�
βk
2

�
¼ 2

β

�
1

k
þ
Xþ∞

l¼1

�
1

kþ iξl
þ 1

k − iξl

��
; ðF9Þ

with ξl ¼ 2πl
β the Matsubara frequencies.

Assuming that kRe½ rnL rnRe
i2ωa

1−rnL rnRe
i2ωa� has no poles on the upper

half of the complex plane, the Cauchy theorem can be
applied. If we consider a contour closing in the upper half,

the only poles that contribute to the integral are iξl (the
denominator 1=k for the first term of the last equation is
canceled, giving no pole at k ¼ 0). Therefore, we obtain

FC½a; d → þ∞; β; β; β�

¼ 4π

β

Xþ∞

l¼1

ξl
rnLðξlÞrnRðξlÞe−2ξla

ð1 − rnLðξlÞrnRðξlÞe−2ξlaÞÞ
; ðF10Þ

where from Eq. (E7) we have that rniðsÞ is real for real s.
The last equation corresponds exactly to the finite-

temperature Lifshitz formula for two plates of different
dissipative materials (being the generalization of the result
found in Ref. [43]).
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