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In this paper we study the zero energy solutions of the Dirac equation in the background of a Z2 vortex of
a non-Abelian gauge model with three charged scalar fields. We determine the number of the fermionic
zero modes giving their explicit form for two specific Ansätze.
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I. INTRODUCTION

Programa Nacional de Pós Doutorado da CAPES The
spectrum of Dirac-like operators in the presence of topo-
logically nontrivial backgrounds has attracted the attention of
physicists since the early work of Jackiw and Rebbi [1]
discussing the cases d ¼ 1 and d ¼ 3 soliton backgrounds
(kinks and monopoles) as well as d ¼ 4 instanton back-
grounds. In particular,’t Hooft found a solutionof a notorious
problem in high energy physics, the so-called U(1) problem
in QCD [2–5] taking into account the contribution of the
Diracoperator zeromodes in a topologically nontrivial gauge
background of instanton configurations.
Later on Jackiw and Rossi [6] considered the case in

which the topological background is provided by vortexlike
configurations and explicitly constructed the zero modes of
the Dirac operator in d ¼ 2 spatial dimensions. The result
suggested that also in two-dimensional noncompact spaces
the index theorem is valid, as was afterward proven in [7].
Interestingly enough, the Jackiw and Rossi zero modes can
be chosen to be eigenmodes of a particle conjugation
operator and hence considered as Majorana zero modes
(see [8] and references therein).
The physical implications of zero modes are very

surprising. Apart from their QCD application mentioned
above, they are at the basis of charge fractionalization and
cosmic string superconductivity, just to name some exam-
ples ([1,9,10]).
Concerning planar physics, a more recent wave of

interest started after the realization that Majorana quasi-
particles can appear in some solid states systems—the
topological superconductors—and they could play an
important role in building topological protected qubits [11].
As mentioned before, in d ¼ 2 dimensional systems, the

existence of zero modes is linked to the presence of a
vortexlike background. The original work of Jackiw and
Rossi [3] was concerned with zero modes of electrons
moving in the background of a Nielsen-Olesen vortex.
Many generalizations are possible. For instance, the case in

which the vortex background is the one arising in a non-
Abelian theory was considered in [12,13]. Zero modes for
the case of a Chern-Simons vortex background were
studied in [14–15] and more recently in the context of
models having hidden sectors [16] that could be relevant in
connection to superconductivity [17].
Recently a new type of Z2 vortices in non-Abelian gauge

theories was presented in [18]. This type of configuration is
a local generalization of magnetic vortices that appear in
some triangular lattices of antiferromagnetic materials [19].
It corresponds to a non-Abelian SUð2Þ gauge theory with
three scalar Higgs fields in the adjoint representation. We
analyze in this paper the existence of fermionic zero modes
under such backgrounds by constructing them explicitly.
The paper is organized as follows: In Sec. II, we briefly

review the Z2 vortices in non-Abelian gauge theories
coupled to three scalar triplets [18] that will be taken as
a background of the Dirac equation defining the zero mode
problem. Then in Sec. III we introduce the Lagrangian for
fermions minimally coupled to the non-Abelian gauge field
background and also include a scalar-fermion coupling
inspired in the one introduced in [12] for studying the zero
mode problem in the background of the ZN vortices
discussed in [20]. After proposing an axially symmetric
Ansatz, we are able to decouple the gauge field thanks to
the existence of a charge conjugation operator that reduces
the zero mode equations to ordinary radial differential
equations in the scalar field background. Solving these
equations we find the explicit form and number of the zero
modes. We present in Sec. IVa summary of our results and
a discussion of possible applications.

II. THE VORTEX BACKGROUND

As a background for the Dirac fermion equation, we
consider the vortex solutions found in [18] for a SUð2Þ
gauge theory coupled to three scalar fields in the adjoint
representation. The 2þ 1 dimensional Lagrangian leading
to vortex configurations reads
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L ¼ −
1

4
~Fμν

~Fμν þ 1

2
Dμ

~ΦaDμ ~Φa − Vð~ΦaÞ: ð1Þ

Here the gauge fields Aμ take values in the Lie algebra of

SUð2Þ, Aμ ¼ ~Aμ · ~σ=2 while the scalars in the adjoint

representation are written as Φa ¼ ~Φa · ~σ=2 (a ¼ 1, 2, 3
and ~σ are the Pauli matrices). Field strengths and covariant
derivatives are defined as

~Fμν ¼ ∂μ
~Aν − ∂ν

~Aμ þ e~Aμ × ~Aν; ð2Þ

Dμ
~Φa ¼ ∂μ

~Φa þ e~Aμ × ~Φa: ð3Þ

As for the potential, one has

Vð~ΦaÞ ¼ λ1ð~Φ1 · ~Φ1 − η2Þ2 þ λ2ð~Φ2 · ~Φ2 − η2Þ2

þ λ3ð~Φ3 · ~Φ3 − η2Þ2 þ Vmixð~ΦaÞ ð4Þ

where

Vmixð~ΦaÞ ¼ μ2ð~Φ1 þ ~Φ2 þ ~Φ3Þ2 þ λ4ð~Φ1 þ ~Φ2 þ ~Φ3Þ4:
ð5Þ

It is clear that if we take λi > 0 and μ2 > 0 then the vacuum
corresponds to

~Φa · ~Φa ¼ η2; ð6Þ

~Φ1 þ ~Φ2 þ ~Φ3 ¼ 0: ð7Þ

Note that the condition (7) corresponds to a 120° configu-
ration of the triplet of scalars, which in the antiferromag-
netic model defined in a triangular lattice corresponds to
spins arranged as in the “Mercedes-Benz” logo.
Concerning Vmix, the first term is the continuum ana-

logue of the Heisenberg interaction in antiferromagnets (the
term with λ4 coupling constant is included because it is
compatible with renormalization).
Two different Ansätze were shown to lead to topologi-

cally nontrivial axially symmetric vortexlike solutions [18].
Written in polar coordinates they read

(i) Ansatz I:

~Φ1 ¼ fðrÞð− sin nφ; cos nφ; 0Þ;
~Φ2 ¼ fðrÞ

�
− sin

�
nφþ 2π

3

�
; cos

�
nφþ 2π

3

�
; 0
�
;

~Φ3 ¼ fðrÞ
�
− sin

�
nφþ 4π

3

�
; cos

�
nφþ 4π

3

�
; 0

�
;

~Aφ ¼ −
1

e

�
0; 0;

aðrÞ
r

�
: ð8Þ

(ii) Ansatz II:

~Φ1 ¼ ð0; 0; ηÞ;
~Φ2 ¼

1

2
ð−

ffiffiffi
3

p
fðrÞ sinðnφÞ;

ffiffiffi
3

p
fðrÞ cosðnφÞÞ;−ηÞ;

~Φ3 ¼
1

2
ð

ffiffiffi
3

p
fðrÞ sinðnφÞ;−

ffiffiffi
3

p
fðrÞ cosðnφÞÞ;−ηÞ;

~Aφ ¼ −
1

e

�
0; 0;

aðrÞ
r

�
; ð9Þ

with n ∈ Z. Notice that both Ansätze satisfy Eq. (7). The
conditions to ensure finite energy configurations are

lim
r→0

fðrÞ ∼ rjnj að0Þ ¼ 0

lim
r→∞

fðrÞ ¼ η lim
r→∞

aðrÞ ¼ −n: ð10Þ

The field equations derived from Lagrangian (1) reduce to
the radial equation

f00 þ 1

r
f0 −

1

r2
ðnþ aÞ2f ¼ 4λfðrÞðf2 − η2Þ ð11Þ

which apart from a numerical factor coincides with the
radial equation for the Abelian Higgs model equation of
motion for the complex scalar if one shifts λ according to
λ → λ=3 in the case of Ansatz I and λ → 8λ=9 for Ansatz II.

III. THE DIRAC EQUATION

As mentioned above, inspired by the zero-mode analysis
presented in [12] extending to the non-Abelian case in the
Jackiw-Rossi Abelian construction [3], we shall consider
the following SUð2Þ gauge invariant Dirac Lagrangian:

L ¼
Z

d3xψðiγμ∂μ × I þ eγμ × Aμ − gaI × ΦaÞψ : ð12Þ

Here γμ are the 2 × 2 gamma matrices and the background
fields Aμ andΦa are those discussed in the previous section.
The × symbol denotes the tensor product with the first
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factor acting in the spinorial indices and the second one in
SUð2Þ ones.
Fermion ψ is in the fundamental representation of SUð2Þ

and will be written in the form

ψ ¼

0
BBB@

ψU
1

ψU
2

ψD
1

ψD
2

1
CCCA ð13Þ

with spinorial indices U, D and SUð2Þ ones 1,2. The
fermion-scalar couplings ga have the same dimensions as
the gauge coupling e, ½ga� ¼ ½e� ¼ m1=2. Note that the
scalar-fermion interaction is gauge invariant.
Lagrangian (12) leads to the fermion field equation

ðiαj∂j × I þ eαj × Aj − gaβ × ΦaÞψ ¼ −i∂tψ ð14Þ

where γ0 ¼ β, γj ¼ βαj and j ¼ 1, 2 are the spatial indices.
We choose the Dirac matrices αj; β in the form

αj ¼ σj; j ¼ 1; 2; β ¼ σ3; ð15Þ

where σj; σ3 are the Pauli matrices.
Following [12] we shall introduce the transformation

ψ → L3ψ

L3 ¼ β × σ3 ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCA ð16Þ

which will play an important role in finding and classifying
zero modes, which is one of the main purposes of this work.
From Eq. (14), the zero-energy solutions satisfy

ðiσj∂j × 1þ eσj × Aj − gaβ × ΦaÞψ ¼ 0: ð17Þ

To find zero mode solutions we start by considering
Ansatz I. It will be convenient to write the gauge field in the
form

AjðrÞ ¼
1

e
ϵji∂ikðrÞσ3 ð18Þ

where

k ¼ −
Z

r

0

aðρÞ
ρ

dρ: ð19Þ

We now make the following change on the fermion field:

ψðrÞ ¼ TðrÞXðrÞ ð20Þ

with

TðrÞ ¼ exp ðkðrÞL3Þ ð21Þ

so that the gauge field in Eq. (17) decouples and we are left
with

ðiσj∂j × I − gaβ × ΦaÞXðrÞ ¼ 0: ð22Þ

The decoupling was possible because, for Ansatz I, the
operator L3 anticommutes with the zero-mode Dirac
operator in Eq. (17). Indeed, concerning Dirac matrices,
L3 anticommutes with the first two terms in Eq. (17) and
commutes with the third one while for the SUð2Þ gen-
erators, they commute with the first two terms and anti-
commute with the last one. Then as a result L3

anticommutes with the zero-mode Dirac operator.
Written in components, Eq. (22) reads

ði∂1 þ ∂2ÞXD
1 þ ifðrÞG1XU

2 ¼ 0;

ði∂1 − ∂2ÞXU
2 þ ifðrÞG2XD

1 ¼ 0; ð23Þ

ði∂1 þ ∂2ÞXD
2 − ifðrÞG2XU

1 ¼ 0;

ði∂1 − ∂2ÞXU
1 − ifðrÞG1XD

2 ¼ 0; ð24Þ

where

G1 ¼ ðg1e−inϕ þ g2e−iðnϕþ2π=3Þ þ g3e−iðnϕþ4π=3ÞÞ=2
¼ e−inϕðg1 þ g2e−i2π=3 þ g3e−i4π=3Þ=2≡ Ae−inϕ

¼ jAjeiαe−inϕ; ð25Þ

G2 ¼ ðg1einϕ þ g2eiðnϕþ2π=3Þ þ g3eiðnϕþ4π=3ÞÞ=2
¼ einϕðg1 þ g2ei2π=3 þ g3ei4π=3Þ=2≡ A�einϕ

¼ jAje−iαeinϕ: ð26Þ

In view of the cylindrical symmetry, it is convenient to use
polar coordinates for which Eqs. (23) and (24) become

e−iϕ
�
i∂r þ

1

r
∂ϕ

�
XD
1 þ ifðrÞjAjeiαe−inϕXU

2 ¼ 0;

eiϕ
�
i∂r −

1

r
∂ϕ

�
XU
2 þ ifðrÞjAje−iαeinϕXD

1 ¼ 0; ð27Þ

and

e−iϕ
�
i∂r þ

1

r
∂ϕ

�
XD
2 − ifðrÞjAje−iαeinϕXU

1 ¼ 0;

eiϕ
�
i∂r −

1

r
∂ϕ

�
XU
1 − ifðrÞjAjeiαe−inϕXD

2 ¼ 0: ð28Þ
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We now propose for the first two equations the Ansatz

XD
1 ¼ χD1 e

iðm−nþ1Þϕ;

XU
2 ¼ χU2 e

imϕ: ð29Þ

As a result, the angular dependence factorizes and the zero-
mode equations for Eq. (27) reduce to ordinary differential
equations

�
∂r þ

ðm − nþ 1Þ
r

�
χD1 þ fðrÞχU2 ¼ 0;

�
∂r −

m
r

�
χU2 þ fðrÞjAj2χD1 ¼ 0; ð30Þ

where we have redefined AχU2 as χU2 .
Similarly, for the third and forth equations we write

XU
1 ¼ χU1 e

−imϕ;

XD
2 ¼ χD2 e

−iðm−n−1Þ;ϕ ð31Þ

so that Eqs. (28) become

�
∂r −

ðm − n − 1Þ
r

�
χD2 − fðrÞjAj2χU1 ¼ 0;

�
∂r þ

m
r

�
χU1 − fðrÞχD2 ¼ 0; ð32Þ

where we have redefined AχD2 as χD2 . Without loss of
generality we choose χU1 ; χ

U
2 and χD1 ; χ

D
2 real.

In view of conditions (10) for the vortex background, in
order to have well-behaved zero modes near the origin the
first set of equations, Eq. (30), implies

χD1 ~small rr
n−m−1; rmþjnjþ1;

χU2 ~small rr
n−mþjnj; rm: ð33Þ

Compatibility of behaviors (33) implies

n − 1 ≥ m ≥ 0: ð34Þ

These conditions imposes n to be a positive vortex number.
The second set of equations, Eq. (32), imposes

χU1 ~small rr
m−nþjnj; r−m;

χD2 ~small rr
m−n−1; r−mþjnjþ1: ð35Þ

Following the same procedure as above, we get in this case
the following condition from Eq. (35):

nþ 1 ≤ m ≤ 0: ð36Þ

These conditions correspond to a negative vortex number.
In summary, both for positive and negative values of n

we conclude that there are jnj zero modes.
Using the explicit form of L3

expðkðrÞL3Þ ¼

0
BBB@

expðkðrÞÞ 0 0 0

0 expð−kðrÞÞ 0 0

0 0 − expðkðrÞÞ 0

0 0 0 − expð−kðrÞÞ

1
CCCA ð37Þ

zero-energy eigenfunctions for Ansatz I where n − 1 ≥
m ≥ 0 are

ψn>0ð~rÞ ¼

0
BB@

0

e−kðrÞA−1χU2 e
imϕ

−ekðrÞχD1 eiðm−nþ1Þϕ

0

1
CCA: ð38Þ

For the interval nþ 1 ≤ m ≤ 0, the zero modes are

ψn<0ð~rÞ ¼

0
BBB@

ekðrÞχU1 e
−imϕ

0

0

−e−kðrÞA−1χD2 e
−iðm−n−1Þϕ

1
CCCA: ð39Þ

Notice that the factors expð�kðrÞÞ do not affect normal-
izability of zero modes since kð0Þ ¼ 0 and kðrÞ → �n log r
when r → ∞ and the χ0s are exponentially decreasing
functions.
It is important to stress that L3 classifies zero modes

according to

L3ψn≷0ð~rÞ ¼∓ ψn≷0ð~rÞ: ð40Þ
The analysis for the case in which the background

corresponds to a vortex obeying Ansatz II goes similarly.
Instead of Eq. (24) we now have

ði∂1 þ ∂2ÞXD
1 þ ifðrÞH1e−inϕXU

2 −H2XU
1 ¼ 0;

ði∂1 − ∂2ÞXU
2 þ ifðrÞH1einϕXD

1 −H2XD
2 ¼ 0;

ði∂1 þ ∂2ÞXD
2 − ifðrÞH1einϕXU

1 þH2XU
2 ¼ 0;

ði∂1 − ∂2ÞXU
1 − ifðrÞH1e−inϕXD

2 þH2XD
1 ¼ 0; ð41Þ
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where

H1 ¼
ffiffiffi
3

p

4
ðg2 − g3Þ; ð42Þ

H2 ¼ η
ð2g1 − g2 − g3Þ

4
: ð43Þ

Notice that because of the particular scalar-fermion
interaction in Lagrangian (12) there is, in the case of
Ansatz II, an effective coupling of fermions with the
components of the scalar fields in the third direction of
the group leading to the last terms in the left-hand side of
each equation in Eq. (41). Such terms are analogous to the
type of perturbation introduced by Haldane in [21] and
discussed in [22]. They correspond to the term proportional
to L3 in the Hamiltonian. Now, because of the presence of
such terms, the Dirac operator does not anticommute with
L3, in analogy to what happens concerning chiral invari-
ance in 3þ 1 dimensions when fermions are massive and
the Dirac operator does not commute with γ5. As in the
3þ 1 dimensional case, in the present case the existence of
zero modes requires anticommutation of L3 with the Dirac
operator which otherwise would have a nonzero determi-
nant. Since our aim is to find zero modes associated with
Ansatz II, we impose a condition ensuring H2 ¼ 0, this
implies that the following relation between coupling con-
stants should hold:

2g1 − g2 − g3 ¼ 0: ð44Þ

Once condition (44) is adopted, Eq. (41) becomes

ði∂1 þ ∂2ÞXD
1 þ ifðrÞH1e−inϕXU

2 ¼ 0;

ði∂1 − ∂2ÞXU
2 þ ifðrÞH1einϕXD

1 ¼ 0;

ði∂1 þ ∂2ÞXD
2 − ifðrÞH1einϕXU

1 ¼ 0;

ði∂1 − ∂2ÞXU
1 − ifðrÞH1e−inϕXD

2 ¼ 0; ð45Þ

or, in polar coordinates ðr;ϕÞ

e−iϕ
�
i∂r þ

1

r
∂ϕ

�
XD
1 þ ifðrÞH1e−inϕXU

2 ¼ 0;

eiϕ
�
i∂r −

1

r
∂ϕ

�
XU
2 þ ifðrÞH1einϕXD

1 ¼ 0;

e−iϕ
�
i∂r þ

1

r
∂ϕ

�
XD
2 − ifðrÞH1einϕXU

1 ¼ 0;

eiϕ
�
i∂r −

1

r
∂ϕ

�
XU
1 − ifðrÞH1e−inϕXD

2 ¼ 0: ð46Þ

The adequate phase Ansatz for XD
1 ; X

U
2 is now

XD
1 ¼ χD1 e

−imϕ;

XU
2 ¼ χU2 e

ið−mþn−1Þϕ; ð47Þ

leading to

�
∂r −

m
r

�
χD1 þ fðrÞχU2 ¼ 0;

�
∂r −

ð−mþ n − 1Þ
r

�
χU2 þ fðrÞH2

1χ
D
1 ¼ 0; ð48Þ

and for the other two components

XD
2 ¼ χD2 e

imϕ;

XU
1 ¼ χU1 e

iðm−n−1Þϕ; ð49Þ

leading in this case to

�
∂r þ

m
r

�
χD2 − fðrÞχU1 ¼ 0;

�
∂r −

ð−nþm − 1Þ
r

�
χU1 − fðrÞH2

1χ
D
2 ¼ 0; ð50Þ

where we have shifted H1XU
2 → XU

2 and H1XU
1 → XU

1 .
From the first set of equations we find that the

appropriate behavior at the origin ensuring zero-mode
regularity is

χD1 ~small rr
m; r−mþnþjnj;

χU2 ~small rr
mþjnjþ1; r−mþn−1; ð51Þ

and from the second,

χU1 ~small rr
−mþjnjþ1; r−nþm−1;

χD2 ~small rr
−m; r−nþmþjnj: ð52Þ

All the solutions to these equations are regular as long as
the following inequalities hold for the first set of equations:

n − 1 ≥ m ≥ 0 ð53Þ

or

nþ 1 ≤ m ≤ 0 ð54Þ

for the second one, which are exactly the same conditions
found in the case of Ansatz I. Therefore, there are also jnj
zero modes for Ansatz II.
The explicit form of zero-energy eigenfunctions in this

case is
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ψn>0ð~rÞ ¼

0
BB@

0

e−kðrÞH−1χU2 e
ið−mþn−1Þϕ

−ekðrÞχD1 e−imϕ

0

1
CCA ð55Þ

for positive vortex numbers. Concerning negative vortex
numbers, we obtain the following zero mode:

ψn<0ð~rÞ ¼

0
BB@

ekðrÞH−1χU1 e
ið−nþm−1Þϕ

0

0

−e−kðrÞχD2 eimϕ

1
CCA: ð56Þ

Also for this Ansatz, L3 classifies the zero modes as

L3ψn≷0ð~rÞ ¼∓ ψn≷0ð~rÞ: ð57Þ

Note that the relation between the signs of L3 eigenvalues
and vortex number is inverted with respect to that arising
for Ansatz I, Eq. (40).
We end this section by analyzing explicitly the only

existing zero mode for the case n ¼ 1. For Ansatz I it takes
the form

ψ1ð~rÞ ¼

0
BBB@

0

e−kðrÞA−1χU2

−ekðrÞχD1
0

1
CCCA ð58Þ

where χU2 and χD1 satisfy Eq. (30). Concerning Ansatz II we
have

ψ1ð~rÞ ¼

0
BBB@

0

e−kðrÞH−1χU2

−ekðrÞχD1
0

1
CCCA ð59Þ

where χU2 and χD1 satisfy Es. (51).

IV. SUMMARY AND DISCUSSION

In this work we have been able to construct explicit zero
modes of the Dirac equation in the gauge and scalar fields
background of the Z2 vortices recently introduced in [18].
We have constructed the zero modes in two different
Ansätze. While for Ansatz I, zero modes exist for generic
value of the scalar-fermion coupling constants, in the case
of Ansatz II an explicit relation between coupling constants
is required [see Eq. (44)].
As discussed in [18], from an energetic point of view,

vortices of type Ansatz II are favored against those of type
Ansatz I. Also, although vortices with arbitrary n are
possible, their energy increases with n and as a result only
vortices with jnj ¼ 1 are topologically protected. So, the
zero modes of the type given by Eqs. (58) and (59) are those
that are relevant as well as the analogous ones with n ¼ −1.
One then concludes that in this SUð2Þ gauge invariant
theory there is only one zero mode with no angular
dependence associated with an jnj ¼ 1 vortex.
It can be easily seen that a simple change of the fermion

basis transforms the Hamiltonian H associated with our
problem to a Hamiltonian ~H which is of the same type of
the one considered recently by Schuster et al. [23] (see also
[24–26]).

~H ¼

0
BBB@

0 −i∇− − eA− gΔ� 0

−i∇þ − eAþ 0 0 gΔ�

gΔ 0 0 i∇− − eA−

0 gΔ i∇þ − eAþ 0

1
CCCA ð60Þ

whereΔ is related to the scalar fields of our Ansätze and can
be written in the form jΔðrÞj expðinϕÞ. The main difference
is that our backgrounds are those arising in a non-Abelian
gauge theory, and they correspond to regular solutions of
finite energy. Also, as explained before, in our non-Abelian
case topology selects automatically the jnj ¼ 1 sector,
leaving us with a single zero mode.
The vortex backgrounds considered in [18] were inspired

by global magnetic vortices appearing in antiferromagnetic
materials in the triangular lattice. In solving the zero mode
problem, the gauge potential does not play a central role as
it is in fact decoupled by the transformation given in
Eq. (20). It would be interesting to explore in such systems
if excitations coupled to the magnetization in a similar way

as in the fermion-scalar field coupling considered here do
exist. Non-Abelian gauge fields also naturally arise in
systems with spin-orbit interactions and cold atoms [27]. It
would be interesting to analyze if nontrivial field configu-
rations could be explicitly realized in such systems. We
hope to work on these issues in a future work.
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