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Summary

1. Information on resource selection by a species is essential for understanding the species’ ecology, distribution

and requirements for survival. Research on habitat selection frequently relies on animal detection at point loca-

tions to determine which resource units are used. A variety of approaches and statistical tools can be employed

for assessing selection based on habitat variables measured in those units. The aim of this work was to evaluate

the reliability of common sampling designs and statistical methods in detecting habitat selection at fine scales

based on point data

2. We reviewed literature on microhabitat selection to determine characteristics of typical studies and analysed

simulated small-mammal live-trapping data as a case study. We considered various scenarios differing in the

number of sampled units and sampling duration. For each scenario, a set of simulated surveys was analysed

through two univariate tests (Welch’s t- andMann–WhitneyU-test), generalized linear models (GLMs), mixed-

effectmodels (GLMMs) and occupancymodels (OMs).

3. Analysis of simulated data revealed that overall performance of all statistical methods improved with

increased trapping effort. Univariate tests were especially sensitive to the number of sampling units, while mod-

elling methods took also advantage of longer trapping sessions. Univariate tests and GLMs provided partially

correct information in most cases, whereas GLMMs and OMs offered higher probabilities of fully describing

simulated habitat preferences.

4. With typical sampling efforts, appropriate statistical analysis of point data is able to provide a moderately

accurate description of habitat selection at small scales, in spite of the violation of closure and independence

assumptions of applied models. Modelling approaches are proliferating; we encourage using models that can

deal with multiple sources of variability, such as GLMMs and OMs, when data are hierarchically structured.

There is no a priori best survey design; it should be chosen according to the scope and goals of the study, environ-

ment heterogeneity, species characteristics and practical constraints. Researchers should realize that sampling

design and statistical methods likely affect conclusions regarding habitat selection.

Key-words: generalized linearmodel, live trapping,mixed-effectmodel, occupancymodel, trapping

effort, univariate test

Introduction

Knowing how species use different resources is essential to

understanding patterns of abundance and distribution. In par-

ticular, management of wildlife populations generally entails

habitat management and it presupposes some understanding

of species needs (Garshelis 2000;Manly et al. 2002). Research-

ers commonly infer species needs based on studies of habitat

selection, which is determined on the basis of the ratio between

use and availability (Manly et al. 2002). Therefore, how both

use and availability are determined is crucial, especially for spe-

cies that are not readily observed (Garshelis 2000).

A broad class of techniques employed in habitat selection

studies is based on point data of animal presence or abun-

dance: individuals are captured, observed or otherwise

detected at fixed locations in different resource units, previ-

ously defined within the study area. Resource units are charac-

terized by habitat variables related to food or shelter*Correspondence author. E-mail: iree26@gmail.com
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availability, measured at each location. Statistical analyses are

then performed in order to find significant relationships

between environmental variables and animal presence or

abundance.

The description of the pattern of habitat use of a species

depends on sampling design and statistical methods employed.

Key features of the sampling design are as follows:

1. Spatial scale and dimensionality should be chosen accord-

ing to species characteristics (e.g. home range size, arboreality),

resource distribution (heterogeneity and aggregation), as well

as the scale of selection studied (ranging from microhabitat to

geographical distribution).

2. The temporal scale of the study affects detection probabili-

ties and the range of movements during the study. Whether a

unit is classified as used/not used may depend on sampling

length (Boyce et al. 2002). Patterns of use may change season-

ally and differ among sexes, age classes, etc., the proportions of

which could change temporally (Bilenca&Kravetz 1998).

3. Sampling effort is commonly reported as an important fac-

tor inmost point data-based studies. However, the distribution

of sampling effort between replicates and survey duration is

highly variable throughout the literature and may also affect

results (Jorgensen 2004).

4. Detection methods may convey different information. For

example, radiotracking or spool-and-line tracking, tracks and

live trapping may provide different conclusions about micro-

habitat selection (Douglass 1989; Prevedello, Garcia Rodri-

gues &Leite deAraujoMonteiro-Filho 2010).

A common issue in resource-use studies is that, while use

can generally be detected, it is difficult to demonstrate non-

use (Boyce et al. 2002). An increasing amount of literature

describes the effect of imperfect detection on conclusions

concerning resource use, especially when detection varies

among resource units (MacKenzie 2006). Various

approaches and statistical tools can be employed for assess-

ing selection based on habitat variables: from comparing

values of each variable between used and non-used/avail-

able units by univariate tests to modelling resource selection

functions (Manly et al. 2002) using regressions or general-

ized linear models (GLMs). Emerging occupancy models

(OMs) incorporate imperfect detection, preventing other-

wise biased conclusions (MacKenzie et al. 2006). In particu-

lar, N-mixture OMs (Royle & Nichols 2003) additionally

account for intensity of use instead of simply use/non-use.

Advantages of detailed models over simpler ones have been

claimed by many authors, but such advantages cannot gener-

ally be taken for granted (Banks-Leite et al. 2014; Ives 2015).

Moreover, studies dealing with microhabitat characteristics

(i.e. factors that change within the home range of a single indi-

vidual [Morris 1987]) require multiple sampling units within an

area similar to the target species’ typical home range size. As

each individual is likely to be found at alternate sampling units

during the observation period, sampling units are not closed

(animals can enter or exit each unit) and spatially correlated

(the same animal can be detected in neighbouring units). This

sampling design explicitly violates unit-level closure and inde-

pendence assumptions of many resource-use models. Is the

violation of these assumptions a serious concern for the relia-

bility of the results provided by various models of fine-scale

habitat selection assessment?

Computer simulations have been employed to assess the per-

formance of field and statistical methods used to study various

ecological features (e.g. Alldredge & Ratti 1986; Efford 2004;

Heithaus et al. 2006). Simulations are based on simplified

models not reproducing all aspects of field surveys, but allow

comparing posterior analyses of simulated data sets with

known habitat preferences. The aim of our work was to evalu-

ate the reliability of common sampling designs and statistical

methods in detection of habitat selection at fine scales based on

point data. For this evaluation, we simulated small-mammal

live trapping as a case study and reviewed literature on micro-

habitat selection to discuss requirements and limitations of

typical studies.

Materials andmethods

L ITERATURE SURVEY

We conducted a systematic search of literature describing studies on

microhabitat selection by small mammals which relied primarily on

point data obtained through trapping methods (live, snap and/or pit-

fall).We looked for articles containingmicrohabitat, habitat use, habitat

selection, small mammal, live trapping, resource use or resource selection

in either the abstract, title or keywords, using search engines in 38 jour-

nals. We discarded search results of studies not fitting in the adopted

definition ofmicrohabitat or based on other techniques than trapping.

For each article, we extracted sampling design characteristics and

analysis methods applied. In some cases, part of the information was

absent or not clearly stated and had to be deduced or estimated from

available data. Further details on the survey are in Appendix S1, Sup-

porting Information.

SIMULATED DATA

We simulated live-trapping surveys of small mammals in longitudinal

habitats through a simple model specially developed for emulating

movements and captures of small mammals on fine spatial and tempo-

ral scales. Ecologically important longitudinally shaped habitats are

found along field edges in agroecosystems, along river margins and

along railway embankments (Bennett 1990; Ellis et al. 1997; Yl€onen

et al. 2002). In these habitats, most movements are basically con-

strained to a single dimension and thus are easier to handle computa-

tionally than in two- and three-dimensional spaces. We based our

simulations on available data for the Pampean grassland mouse Ako-

don azarae Fischer 1829, which inhabits mainly field borders (Bilenca

&Kravetz 1998;Hodara et al. 2001;G�omez et al. 2011).

Simulations were run in GNU/OCTAVE 3.0 (Octave development com-

munity 2012) using ad hoc code for a modified version of an algorithm

given by Efford (2004). Our simulation approach was more complex

than assuming a stationary distribution, but accounted for drastic

small-scale and short-time fluctuations that may be important in field

surveys. A brief description of the methods used to simulate move-

ments and captures of small mammals is provided below. Details are in

Appendix S2.

We modelled hypothetical longitudinal habitats as arrays of 75 10-

by-10-m cells representing adjacent resource units, with traps placed

only in 25 central adjacent cells to avoid edge effects (Fig. 1). This
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design sets ~5 traps within the extent of individual home ranges with

each transect covering a broad range of microhabitats. The quality of

each resource unit (cell) as perceived by animals was determined by a

linear combination of three continuous variables quantifying local

microhabitat features (such as proportion of bare soil ormean vegetation

height).We named these variables hp (high preference, cells having high

values of this variable are strongly preferred), sp (slight preference, cells

having high values of this variable are slightly preferred) andma (mod-

erate avoidance, cells having high values of this variable aremoderately

avoided). We added a fourth variable ci (completely ignored) which

had no effect on the preference of a cell to test for type I errors.

We first assigned random values to habitat variables and then intro-

duced spatial correlation at two levels. For each longitudinal habitat,

one of the three relevant variables (either hp, sp or ma) was randomly

increased in every cell to represent variability between transects. Then,

values obtained for each cell were averaged with both neighbouring

cells to prevent sharp differences between adjacent cells, simulating

small-scale spatial correlation.

We simulated a total of 4500 transects, each having mean animal

densities between 0�2 and 3�2 rodents/cell. These densities are in agree-

ment with estimates forA. azarae, based on home range size and over-

lap data (Priotto & Steinmann 1999) and an ongoing mark–recapture

study (Gorosito, in preparation). Density dependence was introduced

in the model as a penalty term (equal to minus the number of individu-

als in excess of the first individual in the cell) to perceived habitat qual-

ity, representing intraspecific competition. The inclusion of this term

imitates setting local carrying capacities proportional to cell qualities.

Trapping simulations were run for 7 days. Captures at each cell were

recorded for each day and animals were released at the cell of capture

at the beginning of the next day. Movement and capture of animals

were considered to be stochastic processes. At any time during the sim-

ulation, animals could remain in the current cell, move to a neighbour

cell to the right/left or enter a trap (if there was one active in the cell).

Movement rates were based on the penalized habitat quality so that

animals stayed longer in higher-quality and less populated cells. The

expected mean squared displacement of each individual was in the

order of the home range size of small mammals (Mendel &Vieira 2003;

Abramson et al. 2006).We adopted a capture rate per individual which

led to an average number of captures per night at each 25-trap transect

ranging from 0 to 4�57, in agreement with values reported in the litera-

ture for field studies (Hodara et al. 2001; Gomez et al. 2011) using live

traps baited with rolled oats and peanut butter. For simplicity, we did

not consider social behaviour and assumed uniform animals’ tendency

to enter traps, which may not apply in general (Jorgensen 2002;

MacKenzie et al. 2006).

ANALYSIS

We applied commonly used statistical tools to our simulated data to

find associations between capture locations and environmental vari-

ables, for which animals’ habitat preferences assigned by us in the vir-

tual system were known. In order to test the effect of the number of

transects surveyed, we chose random subsets comprising various quan-

tities of transects (NT) from the 4500-replicate pool so that each of these

subsets would correspond to a single microhabitat study with a certain

number of replicates. We refer to each of these subsets as a survey. A

total of 500 surveys were analysed for each NT, with the number of

transects ranging from 5 to 100 at intervals of 5 from 5 to 60 and at

intervals of 10 from 60 to 100 (i.e. NT = 5, 10, 15,. . ., 55, 60, 70,. . .,

100). Likewise, to test the effect of survey length, we evaluated capture

data up to the third and the seventh day separately. In consequence,

total trapping effort ranged between 375 and 7500 trap nights (tn) using

three-day data, and between 875 and 17 500 tn using seven-day data.

These figures are consistent with real field studies listed in our literature

sample (Appendix S1).

Capture data from each survey were analysed by means of three

types of statistical methods as described below. Characteristics of these

methods and examples of use are provided in Appendix S3. All statisti-

cal analyses were conducted using the software R version 3.0.1 (R Core

Team 2013).

Univariate tests

All sampled cells were classified in two groups: those with and without

any capture. Distributions of each resource variable were compared

between groups bymeans of two frequently used tests:Welch’s unequal

variances t-test (Ruxton 2006) and Mann–Whitney U-test (Zar 2010).

We considered that an association between habitat variables and ani-

mal presence was found by the t-test (U-test) when the null hypothesis

of equal means (medians) for the corresponding variable was rejected,

that is P < 0�05. The sign of the difference between means (medians)

was used to determine whether the variable was positively or negatively

associatedwith animal presence.

Resource selection functions via generalized linearmodels

(GLM/GLMM)

Capture frequencies per trap were related to environmental variables

by means of a binomial logit-linked GLM and a binomial logit-linked

mixed-effect GLMM (Zuur et al. 2009). In the latter, a random

explanatory term was included to account for among-transect variabil-

ity (e. g., sites placed closer or further from awater body, with northern

or southern slopes, etc.) modelled in our simulations as varying average

population densities and environmental variable profiles. GLMMs

were evaluated using the LME4 package (Bolker 2013). For both GLMs

and GLMMs, we followed two methods to estimate the coefficients

that relate environmental variables with capture success. First, we per-

formed a stepwise elimination of non-significant terms after Zuur et al.

(2009), starting with a linear combination of the four environmental

variables. At each step, the likelihood ratio method was used to test the

significance of removing each variable from the model; the environ-

mental variable forwhich its removal led to the highestP-valuewas dis-

carded. The elimination process was repeated until the removal of any

remaining variable led to a P-value <0�05. Remaining variables in the

Fig. 1. (Top) Representation of the linear

habitat by an array of 75 cells, 25 of which

have traps. (Bottom) Detail of the section

marked with a brace in top figure. Arrows

indicate the three possible transitions associ-

atedwith the 26th cell.
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final model were considered associated with animal presence. The sec-

ond method consisted of ranking all candidate models, that is the full

model and all its nestedmodels, based on Akaike information criterion

(AIC), as described by Burnham & Anderson (2002), using the MUMIN

package (Barto�n 2013).Models withDAIC < 4 with respect to the best

(lowest AIC) model were considered to have enough support and were

averaged. An environmental variable was considered associated with

animal presence when scoring 0�7 or higher relative importance (i.e. the

sum of Akaike weights of all models containing the corresponding

regression coefficient). For both methods, the sign of regression coeffi-

cients indicated positive or negative associations.

Resource selection functions via OMs

We selected anN-mixturemodel among otherOMs because it connects

local abundance of unmarked animals (intensity of use) to detection

probability at the corresponding unit (Royle &Nichols 2003), account-

ing for heterogeneous densities. Wemodelled the abundance at the j-th

cell of the i-th transect as a Poisson-distributed random variable Aij,

with mean kij log-linked to a linear combination of the environmental

variables at that cell plus a normally distributed random effect ~ai, with

zero mean and variance 1/s, that represented transect-to-transect vari-

ability. The resulting likelihood functionwas

Lðak; r; sjyijÞ ¼ P
i
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eqn 1

where yijwas the total number of captures at the j-th cell of the i-th tran-

sect duringY trapping occasions (nights) and

pij ¼ pðAij; rÞ ¼ 1� ð1� rÞAij eqn 2

was the success probability at the corresponding trap, assuming homo-

geneous individual detection probability r. The integral over ~ai and the

infinite sum over Aij constitute mixture distributions for the mean

abundance kij and the probability of success pij, respectively. Truncat-

ing the infinite sum up to an arbitrary bound may lead to unrealistic

estimations (D�enes, Silveira & Beissinger 2015). We avoided this issue

by evaluating the sum analytically, which results in a finite sum

X1
Aij¼0

p
yij
ij ð1� pijÞY�yij

kAij

ij e
�kij

Aij!
¼

�
Xyij
xij¼0

ð�1Þxij yij!
xij!ðxij � yijÞ! expf�kij½1� ð1� rÞY�yijþxij �g:

eqn 3

Parameters were estimated using Markov chain Monte Carlo

method, as implemented in WINBUGS 1.4.3 (Lunn et al. 2000), with the

aid of the package R2WINBUGS 2.1-19 (Sturtz, Ligges & Gelman 2005).

To avoid numerically integrating on ~ai, wemodelled the random effects

as stochastic nodes with their normal distribution as prior. For all other

parameters, non-informative priors were assumed. Our non-standard

likelihood function was introduced into the model using the zeros trick

(WINBUGS help). Due to the higher computational cost of this method,

500 surveys were analysed using three-day data and 200 surveys were

analysed using seven-day data, withNT = 25 and 50 only.

We classified the results for each survey and by each statistical

method as perfect when all relevant variables (highly preferred, slightly

preferred and moderately avoided) were identified as significant and

with the correct sign (no errors), good when at least one relevant but

not the completely ignored variable was identified as significant and

with the correct sign (type II error on some but not all relevant vari-

ables, but no type I error), null when no significant relationships were

found (type II error on all relevant variables, but no type I error) and

badwhen either the completely ignored variable was identified as signifi-

cant (type I error) or relevant variables were identified as significant but

were given wrong signs. Then, we tallied the frequencies of perfect,

good, null and bad results for each sampling design (number of tran-

sects and number of days) and statistical analysis (t-test,U-test, GLM,

GLMMandOM).

Results

L ITERATURE SURVEY SUMMARY

We reviewed 152 articles on microhabitat selection based on

live trapping (see Appendix S1). Total trapping effort varied

in a wide range, with median 7740 (Q25% = 3496, Q75% =
17 660), and showed no trend along years. Most studies col-

lected data during 3 (= mode) consecutive nights, with 47�6%
of the studies trapping for at least five consecutive nights per

session. Typical designs involved 2–12 (Q25%–Q75%) trapping

sessions and 2–12 (Q25%–Q75%) grids/transects.

Overall, in 35�5% of the cases, selection was assessed only

by means of hypothesis tests (e.g. t-tests, analyses of variance),

in 20�4% by ordination methods (e.g. discriminant analysis,

canonical correspondence analysis) and in 23�7% by fitting

regressions and generalized linear models (GLMs). In 13�2%
of the cases, combinations of more than one of these methods

were used. Methods based on detailed modelling, such as

mixed-effect models (Zuur et al. 2009) and OMs (MacKenzie

et al. 2006), were used in only eight articles in our survey.

However, modelling approaches are steadily adopted: in 2000–
2004, 41% of papers applied GLMs; in 2010–2015, 63%

appliedGLMs,GLMMs orOMs.

ANALYSIS OF SIMULATED DATA

The proportion of perfect, good, null or bad results varied depend-

ing on both the statistical method and the sampling design. A

comparison among all statistical methods applied for NT = 50

and seven-day data (8750 tn) is shown as an example (Fig. 2).

Generally, both univariate tests (t-test andU-test) performed sim-

ilarly and yielded perfect results less frequently than modelling

methods. Amongmodellingmethods, GLMMs andOMs yielded

a higher proportion of perfect results than GLMs. Bad results

were more frequent for GLMs than for univariate and other

modelling methods. There were no practical differences in the

outcomes of GLMs or GLMMswhen model selection was based

either on a stepwise regression (SW) or on model averaging

(MA) using Akaike’s information criterion weights.

SAMPLING DESIGN

Due to the strong similarities found throughout all scenarios

between the performance of t- and U-tests, and between step-

wise and model-averaging approaches, we next examined the

effect of sampling design on the outcome of t-tests and model-

averaged GLMs and GLMMs only. Note that the same

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 1316–1324

Evaluation of methods for microhabitat studies 1319



conclusions apply for their corresponding counterparts (i.e.

U-tests and stepwiseGLMs andGLMMs, respectively).

Frequencies of perfect results obtained by t-tests (Fig. 3a)

increased with trapping effort from less than 2% to about

74% in the range from 375 to 17 500 tn. In addition, for a

given trapping effort, perfect results were slightly more fre-

quent with three-day data, indicating that increasing the

number of transects yields better results than increasing trap-

ping duration when data are analysed through univariate

tests. Null results comprised 39% of the total at the lowest

trapping effort, but decreased and eventually vanished at

4000 tn. Bad results appeared between 5% and 11% of the

surveys and showed no apparent trend with respect to trap-

ping effort. However, seven-day data seemed more prone to

errors than three-day data.

Outcomes of model-averaged GLMs (Fig. 3b) were similar

to those of t-tests for the lowest trapping efforts, but improved

faster reaching about 87% perfect results at 17 500 tn. Seven-

day data gave perfect results somewhat more often than three-

day data for trapping efforts only below 3000 tn. The rate of

null results, starting from 37% at 375 tn, was slightly lower

than for the t-test. For a given trapping effort, three-day data

from more transects yielded a lower frequency of bad results

(5–10% of the surveys) than seven-day data from fewer tran-

sects (up to 14%of the surveys for some trapping efforts.)

Model-averaged GLMMs (Fig. 3c) had the best perfor-

mance, with up to 95% perfect results at the highest trapping

efforts and less than 8% of bad results for all trapping efforts.

Approximately 31% of the surveys gave null results at the low-

est trapping effort, and no null results appeared above 1750 tn.

Seven-day data produced slightly better outcomes than three-

day data, with a higher rate of perfect results and lower null

results whichmostly occurred at the lowest trapping efforts.

METHOD–VARIABLE SPECIF IC ITY

Frequencies of correct associations for each variable obtained

by different methods were plotted as functions of trapping

effort using three- and seven-day data. For the sake of clarity,

U-tests and stepwise regressions were excluded as before. How-

ever, we included OMs in these comparisons to demonstrate

similarities withGLMMs.

The highly preferred variable (hp) was correctly associated

with animal presence for all data sets with trapping efforts

above 1800 tn by GLMMs and OMs, and above 4000 tn by

t-tests and GLMs (Fig. 4a). Frequencies of correct

Fig. 2. Frequencies of perfect, good and bad results obtained using dif-

ferent statistical methods forNT = 50 and seven-night data (8750 tn): t-

test, U-test, generalized linear models (GLMs) and mixed-effects

GLMs (GLMMs) using stepwise regressions (SWs) and model-aver-

aging (MA), and occupancymodels (OMs).

Fig. 3. Stacked frequencies of perfect, good, null and bad results

obtained using t-test (a), GLMswithmodel averaging (b) andGLMMs

with model averaging (c), for different trapping efforts. White symbols

correspond to three-day data and black symbols correspond to seven-

day data. Colour areas are visual aids.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 1316–1324
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associations decreased at lower trapping efforts, with GLMMs

always performing better thanGLMs and t-tests. In particular,

for a given trapping effort, t-tests were more effective with

three-day data from more transects than with seven-day data

from less transects.

Frequencies of correct associations for the slightly preferred

variable (sp) were lower than for hp and increased faster when

using GLMs, GLMMs or OMs than t-tests (Fig. 4b). No dif-

ferences between GLMMs and OMs were apparent, and

GLMs only showed slightly lower performance at the highest

trapping efforts. For a given frequency of correct associations

of sp, univariate tests would require about twice the trapping

effort than modelling methods. t-tests were also less effective

with seven-day data from fewer transects than three-day data

frommore transects for the slightly preferred variable.

Overall, the moderately avoided variable (ma) was correctly

associatedmore often than sp, but less than hp (Fig. 4c). Using

GLMMs or OMs led to correct results more frequently than

univariate tests, while GLMs had the poorest performance.

For a given trapping effort, both GLMMs and GLMs seemed

to work better employing seven-day than three-day data. On

the contrary, t-tests were more effective with three-day data, as

was the case for sp and hp.

ABUNDANCE AND DETECTABIL ITY ESTIMATION

Occupancy models allow the estimation of both detectability

and the relation between abundance and environmental vari-

ables. The fraction of cells where fitted abundance was overes-

timated, that is ‹nij› laid below the 95% confidence interval of

the corresponding kij, increased with trapping effort. To illus-

trate this effect, we plotted medians of kij/‹nij› (mean and 95%

confidence interval) evaluated over all cells with ‹nij› > 0 in

function of trapping effort (Fig. 5). Confidence intervals

shrink with more data, as expected, but do not converge to

actual abundances, indicating that abundance estimates are

biased.

Discussion

According to our review, an increasing proportion of studies

employed modelling methods in recent years. Our study sug-

gests that modelling approaches are expected to yield accurate

results regarding habitat selection at small scales more often

than univariate tests. This may not be a novel statement

(Garamszegi et al. 2009), but we hope illustrating this point

Fig. 4. Frequencies of correct significant associations between rodent

presence and environmental variables: hp = highly preferred (a),

sp = slightly preferred (b) andma = moderately avoided (c), using dif-

ferent statistical methods and trapping efforts.

Fig. 5. Cell abundance estimates kij (mean and 95% CI) provided by

occupancymodels normalized by corresponding mean cell abundances

at each cell ‹nij›. Themedianwas calculated over all simulated cells with

‹nij› > 0. Colour lines are visual aids.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 1316–1324
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will encourage further development and adoption of detailed

modellingmethods.

Performance of all statistical methods improved with

higher trapping effort, as more transects were included in the

analysis. This result implies that no bias occurred in detected

preferences although the assumption of independence was not

met because animals moved between neighbouring sample

units. Stronger simulated animal preferences were more fre-

quently detected, while weaker preferences required larger

samples to be detected. Thus, while correct partial informa-

tion was obtained in most cases, a complete picture of animal

preferences (i.e. what we called perfect in our analysis) was

uncommon unless very large samples were analysed (about

10 000 tn). Jorgensen (2004) already noted the need for larger

sampling efforts based on a literature survey up to year 2000,

having a median effort of 5000 tn. Although our survey med-

ian is slightly larger, only about 47% of the studies conducted

in the period 2001–2015 reached efforts above 10000 tn. Fre-

quencies of correct and wrong associations are intimately

related to the model used to generate the data sets and cannot

be extrapolated directly to field situations. Yet, our results

suggest that typical trapping efforts might not suffice for

properly assessing microhabitat selection. Selection in two-

and three-dimensional habitats was not addressed in our

study and might be even more challenging: extra degrees of

freedom for animal movements could increase probabilities

of detecting animals in not selected places as a consequence of

spillover from good sites (Morris 1997).

Model selection through stepwise and model-averaging

approaches led to similar frequencies of correct/wrong

results. Nevertheless, we must note that we classified hun-

dreds of simulated data sets automatically while a unique

data set is available in real cases. Therefore, a single model

obtained through stepwise selection may leave important

associations out, especially weaker ones. Conversely, AIC-

based selection of multiple candidate models offers a broader

perspective (Burnham & Anderson 2002).

For a given trapping effort, univariate methods performed

better with three-day data than seven-day data because the lat-

ter reduce the number of transects (and so presence/absence

points) in exchange for more trapping nights. In addition, long

surveys of abundant and highly detectable species could lead

to too few absence points and lack of contrast between pre-

ferred/not-preferred habitats for univariate tests. On the con-

trary, modelling methods, which account for use intensity,

were less sensitive to how total trapping effort was distributed

among days and transects. Yet, for a given trapping effort,

seven-day data yielded slightly better results likely because

including less transects reduced the variability in population

abundance and distribution of habitat variables. Despite statis-

tical methods, effects of sampling duration and number of sites

may vary according to species abundance and behaviour: rare

or trap-shy species may be captured only after several days

while others are likely to be captured earlier (Webb 1965).

Variability between transects was detrimental for the perfor-

mance of GLMs, which did not include random effects. On the

other hand, OMs and GLMMs provided better and similar

results, likely due to their having the same hierarchical structure

to accommodate replication (Zuur et al. 2009) and the adop-

tion of constant detectability in simulations (MacKenzie 2006).

Non-uniform detectability, which may be caused by terrain

slope, weather, illumination, trap odour, etc., could blur the

connection between captures at a site and use of that site, lead-

ing to biased results (MacKenzie 2006; Perea et al. 2011; Kajin

& Grelle 2012). In such situations, OMs including covariates

for detectability could offer advantages over GLMMs.

OMs overestimated abundance, with the subsequent under-

estimation of detectability. This bias may be due to the viola-

tion of the model’s closure assumption which, however, did

not prevent microhabitat use to be properly assessed as long as

abundance estimates are treated as relative intensities of use

(Kajin & Grelle 2012). Spatially explicit models incorporating

marked animals to assess resource selection accounting for

imperfect and correlated detection have been recently devel-

oped (Royle et al. 2013) and are worth being explored for

small-mammalmicrohabitat use.

EXAMPLES FROM REAL SURVEYS

To exemplify some points discussed above, we picked four

papers from our literature review that studied microhabitat

selection by the rodent Akodon montensis in subtropical South

American forests using different approaches. The comments

below are hypothetical and not meant to criticize cited

authors.

P€uttker et al. (2008) compared habitat variables between

used and not used units in six plots through ANOVAs and

Goodin et al. (2009) applied a stepwise GLM to find associa-

tions between captures and habitat variables in four plots, both

in the Atlantic Forest. Captures were negatively related to

canopy cover in both works, but Goodin et al. (2009) also

found significant relations with forbs, shrubs, bromeliads and

bamboo. P€uttker et al. (2008) measured bamboo too, but did

not make conclusions about it due to significant bam-

boo 9 plot interactions in their ANOVA. Perhaps, a GLMM

might have allowed P€uttker et al. to account for variability

among plots explicitly and tell whether there was an overall

preference for bamboo-rich sites or not. On the other hand,

Melo et al. (2013) conducted a correspondence analysis that

associated A. montensis with cover-providing ferns, which

Goodin et al. excluded in their stepwise approach; a model-

averaging analysis might have considered ferns as an alternative

predictor of use. Other variables quantifying cover-providing

plants in Goodin et al.’ work had weaker effects on selection

(|estimate| < 1�4) than the strong avoidance of sites having high

proportion of bare ground (estimate = �3�1). Ferns are likely

to have also a weak effect, therefore being hard to detect.

Dalmagro & Vieira (2005) studied a single plot in the Arau-

caria Forest where A. montensis was positively related to

canopy cover, contrary to above studies. Although microhabi-

tat requirementsmay be specific to eachmacrohabitat and can-

not be generalized (Jorgensen 2004), this contrast may also

result from different detectability instead of different selection.

An explicit analysis of detectability, which could have
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distinguished between these two possibilities, was likely possi-

ble since all cited studies trapped for ≥6 consecutive days. For
instance, Kajin & Grelle (2012) applied OMs to their 5-day

data of an arboreal species in the Atlantic Forest, which com-

prised similar total trapping effort, and successfully found that

terrain slope affects detectability.

RECOMMENDATIONS

• We encourage using modelling approaches instead of uni-

variate tests. Models should incorporate hierarchical structure

if present in sampled data (as we did inGLMMs andOMs).

• Strength of selection affects the probability of detecting dif-

ferential use.Model-averaging approachesmay offer a broader

perspective than stepwise selection, whichmay discard biologi-

cally important variables.

• Non-uniform detectability should be dealt withOMs includ-

ing appropriate covariates, which in turn require more trap-

ping nights at each site, especially for rare or cryptic species.

However, if detectability is uniform, GLMMs are a simpler

alternative. Whenever possible, sources of variability on

detectability should be controlled through careful sampling

design (Banks-Leite et al. 2014).

• Our simulation results support Jorgensen’s (2004) call for

larger sampling efforts. Using modelling approaches, there is

no a priori best distribution of sampling effort between number

of transects/grids vs. number of trap nights in each tran-

sect/grids. Survey design should be chosen according to the

scope and goals of the study, heterogeneity of the study area

(which determines the number of replicates) and characteristics

of studied species (abundance, behaviour, detectability, sea-

sonality). Logistical and practical constraints such as accessi-

bility, funds and manpower are also to be taken into account

when planning a research study (Banks-Leite et al. 2014).

• Researchers should be aware of the variability in conclusions

induced by the choice of sampling design and statistical meth-

ods when discussing results from various sources regarding

habitat selection by a species.
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