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We develop a purely hydrodynamic formalism to describe collisional, anisotropic insta-

bilities in a relativistic plasma, that are usually described with kinetic theory tools. Our

main motivation is the fact that coarse-grained models of high particle number systems
give more clear and comprehensive physical descriptions of those systems than purely

kinetic approaches, and can be more easily tested experimentally as well as numerically.
Also they make it easier to follow perturbations from linear to nonlinear regimes. In par-
ticular, we aim at developing a theory that describes both a background nonequilibrium

fluid configurations and its perturbations, to be able to account for the backreaction of
the latter on the former. Our system of equations includes the usual conservation laws
for the energy–momentum tensor and for the electric current, and the equations for two
new tensors that encode the information about dissipation. To make contact with kinetic
theory, we write the different tensors as the moments of a nonequilibrium one-particle

distribution function (1pdf) which, for illustrative purposes, we take in the form of a

Grad-like ansatz. Although this choice limits the applicability of the formalism to states
not far from equilibrium, it retains the main features of the underlying kinetic theory. We

assume the validity of the Vlasov–Boltzmann equation, with a collision integral given by
the Anderson–Witting prescription, which is more suitable for highly relativistic systems
than Marle’s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws
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by taking its corresponding moments. We apply our developments to study the emer-
gence of instabilities in an anisotropic, but axially symmetric background. For small

departures of isotropy we find the dispersion relation for normal modes, which admit

unstable solutions for a wide range of values of the parameter space.

Keywords: Relativistic fluids; instabilities.

PACS numbers: 52.27.Ny, 52.35.−g, 47.75.+f, 25.75.−q

1. Introduction

The study of plasma instabilities is of major importance in a wide range of

areas as, e.g. astrophysics, cosmology, Tokamaks, lasers, etc. In the nonrelati-

vistic regime, there is a well-established hydrodynamic formalism, magnetohydro-

dynamics (MHDs), that consists of the Navier–Stokes equation for the momentum,

the continuity equation for the mass density and the Maxwell equations for the

electromagnetic fields, complemented with a corresponding Ohm’s law. This theory

is known as a first-order theory, as it is the result of a first-order expansion in gra-

dients of the distribution function around equilibrium. When turning to relativistic

domains, it is possible to extend the tools employed to study ideal fluids, i.e. the

Euler equation. But when dissipative processes are taken into account, the natural

generalization of Navier–Stokes equation to relativistic velocities proved to fail, as

the solutions are all unstable and noncausal.1–3 Among the relativistic first-order

theories, the Eckart4 and Landau–Lifshitz5 formulations are the best known.

Since the 1970s several theories were proposed to overcome these drawbacks,

among them the so-called second-order theories (among several possible strategies6)

as, e.g. the ones developed by Israel and Stewart.7,8 Both formalisms, first- and

second-order, are based on a gradient expansion of the one-particle distribution

function (1pdf) around equilibrium, and in this sense their applicability is limited

to small deviations from local equilibrium. There is another set of theories, not

anchored to a kinetic equation, and that are not the result of a perturbative expan-

sion, they are known as Divergence Type Theories (DTT) and were developed by

Liu and others.9–12 They are exact and thus can describe systems well away from

equilibrium, but their drawback is that they are not clearly linked to microscopic

physics.

A paradigmatic case of relativistic plasma is the nuclear matter created in the

experiments ongoing at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven

National Laboratory and at the Large Hadron Collider (LHC) at CERN. There are

clear experimental signatures that the relativistic matter created in the collisions, a

quark–gluon plasma, behaves as a strongly coupled system. Consequently RHIC’s

plasmas offer a unique scenario to test relativistic hydrodynamics. Indeed pure

hydrodynamic models proved to be very successful in describing the main features

of these plasmas, thus strongly improving the understanding of those systems. For

a comprehensive review on relativistic hydrodynamics and RHIC’s plasmas see

Refs. 13–15 and references therein.
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RHIC’s plasmas show two special features: high degree of anisotropy and quick

thermalization. In fact, the longitudinal expansion of the fireball causes the system

to be much colder in the longitudinal direction than in the transverse ones. Such

an out of equilibrium state favors the presence of instabilities and cannot be

studied with the usual hydrodynamic models based on perturbative schemes around

equilibrium configurations. Although the development of an anisotropic hydro-

dynamics16,17 is a very important step toward the understanding of those systems,

it is not clear if the resulting hydrodynamics retains enough features of the under-

lying kinetic regime to provide a satisfactory description of instabilities. Concerning

hydrodynamization, it is believed that the instabilities favored by the anisotropic

background contribute to such a process. Indeed, Mrówczyńzki showed that they

play a substantial role in the dynamics of the early stages of the evolution of quark–

gluon plasmas. For more details on this issue, see Ref. 18 and references therein.

There are experimental evidences of the presence of magnetic fields in the

RHIC’s plasmas.19 Most of the above-mentioned anisotropic hydrodynamic models

do not take into account electromagnetic fields and consequently are not suitable

to give a realistic explanation of the observations.

The main purpose of our study is to start building a consistent MHD theory

to describe strongly coupled, high energy plasmas, without having to address to

kinetic theory for each different system under study, and that includes both the

background and its perturbations in a consistent way.

To facilitate the calculations we consider a massless Abelian plasma. Although

a non-Abelian theory is needed to correctly describe the plasmas created at RHICs,

our choice has the advantage of simplifying the mathematics without depriving the

model of physical relevance.18,20–23

To give our model a kinetic theory support, we write the different tensors as

momenta of a distribution function and to obtain their evolution equations we

invoke a mean field kinetic model described by the Boltzmann–Vlasov equation.

As for the collision integral, most of the literature uses the Bhatnagar, Gross and

Krook (BGK) relaxation time model, as it allows to effectively handle distributions

other than the Maxwell–Boltzmann. Its relativistic generalization was developed by

Marle and is of the form C(f) = −m(f − f0)/τ .24,25 In the classical limit, Marle’s

formulation gives the same result for the transport coefficients as the classical BGK

model. However, in the extreme relativistic limit the results for the transport coef-

ficients with Marle’s formulation differ functionally from the ones calculated with

the relativistic Grad moment method. Anderson and Witting26–28 proposed an im-

provement of Marle’s collision integral of the form C(f) = −uµpµ(f − f0)/τ with

uµ the four velocity of the gas. In the classical limit this expression gives the same

classical results as Marle’s, since in that limit uµp
µ → m, and in the extreme rela-

tivistic limit it produces the same transport coefficients that are obtained via the

relativistic Grad moment method. Consequently, as we are dealing with a highly

relativistic system we shall adopt the Anderson–Witting (AW) prescription instead

of the BGK collision kernel in Marle’s form, generally adopted in the literature.
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We consider a model where the distribution function is the product of an equi-

librium expression times a nonequilibrium part. The former is isotropic and homo-

geneous in the momenta, and also depends on a thermal potential that accounts

for possible excess of particles over antiparticles. We specify it by demanding that

the ideal energy–momentum tensor (EMT) Tµν calculated from it, corresponds to

the Landau–Lifshitz prescription, whereby in the rest frame T 0i = 0.5 The latter

contains all the information about anisotropies and dissipation. For the collision

integral, we only demand it to be linear in the tensors that describe nonequilib-

rium features, i.e. ohmic and viscous dissipation, and possible anisotropies in the

momenta distribution. The main motivation behind this choice is to avoid mathe-

matical complexity.

Our model is not truly reliable for arbitrarily large anisotropy, as it will be

discussed below (see also Ref. 29). Within its range of validity, however, it fully

captures nonlinearities coming from the convective derivative terms and from direct

coupling of the hydrodynamic variables to the electromagnetic fields in the equa-

tions of motion. These are the only nonlinearities in the usual MHDs, where dissipa-

tive terms are assumed to be linear. For this reason, we believe the hydrodynamic

equations to be introduced below (Eqs. (42)–(47)) are a valid generalization of

MHD to the relativistic regime. Moreover, we also believe any consistent relativistic

dynamics of real fluids will converge to this formalism within its range of validity.

We build our formalism by writing the different tensors as moments of the

distribution function, and find their evolution equations by taking the corresponding

moments of the Vlasov–Boltzmann equation. By projecting those equations along

the four velocity and onto its orthogonal hypersurface we obtain five hydrodynamic

equations: for the charge density, for the energy density, for the velocity field and

for the two tensors that describe dissipation. Together with Maxwell equations they

form our MHD model.

As an application of our formalism we study the transverse instabilities that

appear in fluctuations around an anisotropic background. These were first dis-

cussed by Weibel30 in a nonrelativistic setting, and then in the relativistic regime

in Refs. 31–33 among others. In the nonrelativistic theory a purely macroscopic

approach already exists, see e.g. Refs. 34–36. Our aim is to generalize these macro-

scopic approaches to relativistic theories, accounting for dissipative effects. Of

course the Weibel instability is not the only possible instability of relativistic

plasmas, see Ref. 37 for a detailed analysis of the different kinds of instabilities

in Abelian plasmas. Moreover, when considering non-Abelian plasmas new kinds

of instabilities appear, as can be seen in e.g. Ref. 38. In order to avoid a heavy

mathematical content, we leave for forthcoming papers the analysis of the other

instabilities in Abelian plasmas, as well as the extension of our formalism to the

non-Abelian case.

The paper is organized as follows. In Sec. 2, we build the 1pdf. In Sec. 3, we

build the MHD formalism, by deducing the tensors and the equations they must

satisfy. In Sec. 4, we linearize the previously found equations around a background
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with anisotropic pressure, and find the dispersion relation for the normal modes,

consistent with the limitations of the model. For a wide range of values of the

parameter space, our model predicts the excitation of instabilities, whose features

are in agreement with results previously found in the literature. To illustrate those,

the dependence on the different parameters of the model, we plot this relation

for several values of them. Finally, in Sec. 5, we summarize our conclusions and

comment on future perspectives. We work with natural units, i.e. c = ~ = kB = 1

and with signature (−,+,+,+).

2. Kinetic Theory

In this section we shortly review some basics of kinetic theory of plasmas and build

the 1pdf of our model. In the mean field approach the kinetic equation for a plasma

with electromagnetic fields is the Boltzmann–Vlasov equation, which reads

pµ
[
∂

∂xµ
− eFµρ

∂

∂pρ

]
f(xµ, pµ) = Icol(x

µ, pµ) , (1)

where f(xµ, pµ) is the distribution function, Icol(x
µ, pµ) the collision integral (to

be defined below). Integration over momentum is done with the invariant volume

element

Dp =
2d4p

(2π)3
δ(p2) =

d4p

(2π)3p

[
δ(p0 − p) + δ(p0 + p)

]
. (2)

As stated in the Introduction, we shall deal with the massless case, whereby p2 = 0,

with p0 having either sign: positive for positively charged particles, and negative

for negatively charged antiparticles.

The current and the matter EMT are defined as usual, namely

Jµ = e

∫
Dppµf (3)

and

Tµν =

∫
Dppµpνf . (4)

Fµν in Eq. (1) is the Maxwell tensor Fµν = ∂µAν − ∂νAµ, with Aµ the electro-

magnetic four potential. Inclusion of the Maxwell field as an independent degree

of freedom is of course the main goal of this analysis. The Maxwell field obeys

Maxwell’s equations sourced by the current Jµ defined in Eq. (3)

Fµν,ρ + Fνρ,µ + Fρµ,ν = 0 , Fµν,ν = 4πJµ . (5)

Antisymmetry of Fµν demands charge conservation

Jµ,µ = 0 . (6)

Associated to the Maxwell field there is an electromagnetic EMT tensor TµνEM

(Ref. 39)

TµνEM =
1

4π

{
FµρF νρ −

1

4
ηµνF ρσFρσ

}
(7)
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ηµν is Minkowski metric. The full EMT TµνF = Tµν + TµνEM is conserved: TµνF,ν = 0.

We may also use Maxwell’s equations to compute TµνEM,ν = −FµρJρ and thus rewrite

the conservation law as

Tµν,µ = F νµJµ . (8)

The conservation laws (6) and (8) may be obtained from the zeroth and first

momenta of the Boltzmann equation, provided that∫
Dp Icol =

∫
DppνIcol = 0 . (9)

We consider a classical (i.e. not quantum) system. Then in an equilibrium state

the distribution function takes the form

feq = esign[p
0](α+βµp

µ) (10)

and the collision integral vanishes. In the previous expression βµ = βuµ, β = 1/T ,

where T is the temperature. Following Israel,7,8 we call α the thermal potential;

µ = Tα is the chemical potential that accounts for the excess of particles over

antiparticles. We choose to identify the velocity uµ and energy density ρ as the

timelike eigenvector of Tµν and its eigenvalue, i.e. Tµνid uν = −ρuµ, i.e. we work in

the Landau–Lifshitz frame.5 Also we define the charge density as ρq = −uµJµ. In

this case the ideal part of the current and EMT take the form

Jµid = ρqu
µ (11)

and

Tµνid = ρ

[
uµuν +

1

3
hµν
]
, (12)

where the fluid four velocity is normalized as u2 = −1 and hµν = ηµν +uµuν is the

projector onto hypersurfaces orthogonal to uµ. After evaluating the current and the

EMT we read

ρq =
2eT 3

π2
sinhα (13)

and

ρ =
6T 4

π2
coshα . (14)

Equation (13) shows that when α = 0, the number of particles equals the number

of antiparticles and consequently the net charge of the plasma is zero. Moreover

expression (13) and (14) show that the temperature T and thermal potential α are

univocally determined by the charge and energy densities.

Observe that we may also introduce electric and magnetic fields relative to the

fluid rest frame by writing

Fµν = uµEν − Eµuν + εµνρσBρuσ . (15)

Thus in the rest frame Ea = F 0a and Ba = (1/2)εabcF
bc.
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To describe nonequilibrium states, we choose to parametrize the distribution

function in the form:

f = feq[1 + Z] . (16)

We demand that Z satisfies the constraints∫
Dpfeq uµp

µZ =

∫
Dpfequµp

µpνZ = 0 (17)

which implies that the ideal forms (11) and (12), with (13) and (14), are preserved.

Note that in expression (16), Z is not small in front of 1. We define the entropy

flux in the usual way, i.e.

Sµ = −
∫
Dp sign[p0]pµf [ln f − 1] (18)

which satisfies the equation

Sµ,µ = −
∫
Dp sign[p0]Icol ln f (19)

showing that there is no entropy production from an equilibrium state. To enforce

positiveness of expression (19), we must choose an appropriate collision integral. In

this paper, we concentrate in writing down a simplest possible dissipative relativistic

MHD formalism to describe high energy plasma features (specially its instabilities)

without having to resource to kinetic theory for each specific problem. The straight-

forward way to do this is to linearize expression (19) to first-order in Z, i.e. to write

Sµ,µ = −
∫
Dp sign[p0]ZIcol . (20)

This expression suggests to consider a collision integral of the AW form,26–28 namely

Icol =
uρp

ρ

τ
feqZ (21)

with τ a relaxation time. This form of Icol guarantees that theH theorem is satisfied,

namely:

Sµ,µ =

∫
Dp

∣∣uρpρ∣∣
τ

feqZ
2 ≥ 0 (22)

as well as constraints (9). To account to dissipative processes in the dynamics we

split the electric current and the EMT as

Jµ = ρqu
µ + jµ (23)

and

Tµν = ρ

[
uµuν +

1

3
hµν
]

+ Πµν , (24)

where

jµ = e

∫
DppµfeqZ (25)
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and

Πµν =

∫
DppµpνfeqZ (26)

describe dissipative effects.

At this point it is necessary to provide an explicit form for Z, such that the

dissipative parts of the current and EMT may be computed. Since the EMT is

traceless, both conserved currents amount to 13 degrees of freedom, of which α, T

and uµ account for 5. It is natural to assume that Z depends on eight additional

parameters, to which we must add 5 more to have enough freedom to enforce the

constraints (17). We arrive at the right number if Z depends on a new vector field Zµ

and a tensor field Zµν such that uµuνZ
µν = 0. We further split them in longitudinal

and transverse components along uµ: Zµ = eζµ+auµ and Zµν = ζµν+bµuν+uµbν .

The simplest Lorentz invariant form for Z is the linear one

Z =
τ

2
∣∣uρpρ∣∣

[
eζρp

ρ + ζρσp
ρpσ + auρp

ρ +
1

2

(
bρuσ + uρbσ

)
pρpσ

]
(27)

hence Sµ;µ ≥ 0. Since pµ is restricted to the null cone, we may impose one further

condition on ζµν : we chose it to be traceless. The functional form (27) can also

be obtained by using a variational method to impose constraints that describe the

nonequilibrium state of the system, such as the Entropy Production Variational

Method.40–43 It can be proved that in out-of-equilibrium linear thermodynamics,

stationary states are extrema of the entropy production rate. Moreover, at linear

order in the entropy production, the results are equivalent to those obtained through

the Grad approach.23,44–46

Recalling that ζρ and ζρσ are transverse and the latter is traceless, constraints

(17) read

0 = coshαa+ 3T sinhαbρu
ρ ,

0 = sinhα

[
−e

3
ζν + auν

]
+ 4T coshαbρ

(
uνuρ +

1

3
hνρ
) (28)

whose solutions are

a = bρu
ρ = 0 , (29)

bν =
e

4T
tanhαζν . (30)

Replacing in Eq. (27), we finally obtain

Z =
τ

2
∣∣uρpρ∣∣

[
eζρp

ρ + ζρσp
ρpσ +

e

4T
tanhαζρuσp

ρpσ
]
. (31)

The tensors ζµ and ζµν are the new ones mentioned in the Introduction. They

account for the different dissipative processes: the former represents conduction

currents, while the latter is associated to viscous stresses.
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3. Building the Hydrodynamics

The different tensors that describe our hydrodynamical model are written in terms

of the distribution function in the usual way, namely

Aµ1,...,µn
s =

∫
Dp
(
sign[p0]

)s
pµ1 · · · pµnf (32)

with s = 0 or 1. The conservation laws obeyed by these tensors are obtained by

taking the corresponding moments of Eq. (1), their general form then being

Aµµ1,...,µn
s,µ − e

n∑
i=1

Fµiµ A
µµ1,...,(µi)···µn
s = −Iµ1,...,µn

s , (33)

where the notation A
µµ1,...,(µi)···µn
A means that µi is excluded, and

Iµ1,...,µn
s = −

∫
Dp
(
sign[p0]

)s
pµ1 · · · pµnIcol . (34)

Each momentum may be written as Aµ1,...,µn
s = Aµ1,...,µn

s,ideal +Aµ1,...,µn
s,dis with Aµ1,...,µn

s,ideal ,

Aµ1,...,µn
s,dis and Iµ1,...,µn

s totally symmetric and traceless on any two indices.

From expression (32), we thus obtain the different tensors of our model; in par-

ticular, the current previously introduced in Eq. (23) is Jµ = eAµ0 and the EMT

defined in Eq. (24) is Tµν = Aµν0 . As discussed above, our theory has 13 non-

trivial degrees of freedom α, T , uµ, ζµ and ζµν . The charge and EMT conservation

laws provide five equations. To obtain the necessary eight supplementary equa-

tions we will consider two more tensors Aµν1 and Aµνρ1 . The equations we seek are

hµλ
[
Aνλ1,ν + Iλ1

]
= 0 and (hµλhνσ − (1/3)hµνhλσ)

[
Aρλσ1,ρ + Iλσ1

]
= 0. The former

provides three new equations, and the latter the remaining five.

Let us now compute the relevant tensors. At first level:

Aµ0 = q1T
3uµ + ΛeτT 3ζµ , (35)

where q1 = (2/π2) sinhα, q2 = (2/π2) coshα and Λ =
(
4q22 − 3q21

)
/24q2.

The vector Aµ1 is the particle number current, which in our model is likewise

conserved. However, this is actually a drawback of the model, which is too simplistic

to account for pair creation and annihilation. We therefore pass it over and consider

other currents whose conservation laws may be expected to be less sensitive to those

effects. In other words, while charge and EMT conservation hold for any form of the

collision integral, as long as the constraints (Eq. (9)) are enforced, the conservation

laws we are writing down for the other tensors depend on the precise form of the

collision integral. In this sense, we may regard the AW collision integral as a first-

order approximation in a series expansion in which progressively more complex

interactions are taken into account. The particle number current is highly sensitive

to the higher-order terms in this expansion, because in this case the production term

computed from the AW collision integral vanishes; therefore the first-order equation

1650194-9
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is not reliable. For Aµν1 and Aµνρ1 , as we shall see presently, the AW collision integral

gives nontrivial production terms, and so the dependence on further improvements

of the collision integral may be expected to be weaker.

At second level:

Aµν0 = 3q2T
4

[
uµuν +

1

3
hµν
]

+
4q2
5
τT 5ζµν , (36)

Aµν1 = 3q1T
4

[
uµuν +

1

3
hµν
]

+ κ1eτT
4
[
ζµuν + ζνuµ

]
+ η1τT

5ζµν (37)

with η0 = 4q2/5, η1 = 4q1/5 and κ1 =
(
q22 − q21

)
/2q2. Finally, at third level

Aµνρ1 = 12q2T
5

[
uµuνuρ +

1

3
(hµνuρ + hµρuν + hρνuµ)

]
− q1

2
eτT 5

[
ζµuνuρ + ζνuµuρ + ζρuνuµ +

1

5
(hµνζρ + hµρζν + hρνζµ)

]
+ 4τq2T

6
(
ζµνuρ + ζµρuν + ζρνuµ

)
. (38)

There remains to compute the momenta of the collision integral. To do that, we

observe that Iµ1,...,µn
s = − 1

τ uµA
µµ1,...,µn
s,dis and therefore

I0 = I1 = Iµ0 = 0 , (39)

Iν1 = eκ1T
4ζν , (40)

Iνρ1 = −q1
2
eT 5

(
ζνuρ + ζρuν

)
+ 4q2T

6ζνρ . (41)

Our hydrodynamic equations for Aµ0 , Aµν0 , Aµν1 and Aµνρ1 are extracted from the

ones obtained from (33), by projecting them along uµ and onto the surfaces defined

by hµν . We define the new variables q0 = q1T
3, L0 = ΛT 3 and ρ0 = 3q2T

4. For Aµ0
we have only one equation, namely charge conservation equation (6). In terms of

hydrodynamic variables it reads

q′0 + q0u
µ
,µ + eτ

(
L0,µζ

µ + L0ζ
µ
,µ

)
= 0 , (42)

where ′ ≡ uµ∂µ. The equations for Aµν0 are the EMT conservation equations (8).

Projected along uν it gives

−ρ′0 −
4

3
ρ0u

µ
,µ −

1

2
τη0T

5ζµνσµν = e2τL0Fνρu
νζρ , (43)

where

σµν = hµρhνλ
[
uρ,λ + uλ,ρ −

2

3
hρλu

σ
,σ

]
(44)
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is the shear tensor, and the projection orthogonal to uν yields

4

3
ρ0(uν)′ +

1

3
hµνρ0,µ + τ

(
η0T

5
)
,µ
ζµν + τη0T

5hνρζ
µρ
,µ

= ehµνFµρ(q0u
ρ + eτL0ζ

ρ) (45)

Aµν1 and Aµνρ1 provide the necessary supplementary equations. For Aµν1 we only

need its spatial projection which, after a bit of algebra yields

0 =
(
q1T

4
)
,µ
hµν + 4q1T

4(uν)′ + eτ
(
κ1T

4
)′
ζν + eκ1T

4ζν

+ eτκ1T
4hνσ(ζσ)′ + eτκ1T

4ζνuµ,µ + τ
(
η1T

5
)
,µ
ζµν + τη1T

5hνσζ
µσ
,µ

+ eτκ1T
4uν,µζ

µ − eq2T 3F νµu
µ − e2τΛ1T

3hνρF
ρ
µζ
µ . (46)

If we only keep the last term in the first line and the term involving the electric

field in the last line we see this is a generalized Ohm’s law.

Finally, the traceless, doubly transverse projection of the equation for Aµνρ1

reads

−4q2T
6ζαβ = 4q2T

5hρβhαν
[
uν,ρ + uρ,ν −

2

3
hρνu

µ
,µ

]
− eτ

10
η1,µ

[
hµαhβρζ

ρ + hµβhαν ζ
ν − 2

3
hαβζµ

]
− eτ

2
q1T

5hανh
β
ρ

[
6

5
uν′ζρ +

6

5
uρ′ζν − 4

5
hνρuµ′ζµ

+
1

5

(
hµνζρ,µ + hµρζν,µ −

2

3
hνρζµ,µ

)]
+ 4q2τT

6hανh
β
ρ

[
ζµνuρ,µ + ζρµuν,µ −

2

3
hνρζµσuσ,µ + ζνρuµ,µ + ζνρ′

]
− e2τκ1T 4hανh

β
ρu

µ

[
F νµζ

ρ + F ρµζ
ν − 2

3
hνρFσµζ

σ

]
− 4

5
eq1T

5τhανh
β
ρ

[
F νµζ

µρ + F ρµζ
µν
]
. (47)

This may be converted into a Maxwell–Cattaneo equation47 for Πµν ; we do not need

to go into this conversion in detail, as we shall adopt ζµν as a degree of freedom on

its own.

Equations (42), (43), (45), (46) and (47) together with the Maxwell equations

(5) constitute our MHD model. They break down for large anisotropies, as they do

not ensure that the pressures remain positive, but within its range of validity they

fully capture nonlinearities coming from the convective derivative terms and from

direct coupling of the hydrodynamic variables to the electromagnetic fields in the
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equations of motion. These are the only nonlinearities in the usual MHDs, where

dissipative terms are assumed to be linear.

4. Perturbation Theory

To test the power of the formalism, we focus on the specially important case of

transverse perturbations of a homogeneous anisotropic background. The motivation

behind this choice is that, since Weibel’s seminal paper30 transverse instabilities

were widely studied and consequently we can easily compare our results with the

ones from different approaches to the problem. Another reason we can mention is

that those instabilities are found in the RHIC’s experiments, where the background

configuration is extremely oblate. As we are considering an Abelian plasma, we

shall not be rigorously describing RHIC’s instabilities, but show that it is possible

to consistently study them without having to start from kinetic theory.

To implement our perturbative scheme, we write uµ = uµ0 + vµ and ζµν =

ζµν0 + zµν ; besides we consider Fµν and ζµ to be zero in the background, i.e. the

electromagnetic variables are pure perturbations. To study the emergence of trans-

verse instabilities we assume that the space–time dependence of all quantities is of

the form est+ikz and that ζµν0 = diag
(
ζ0, ζ0,−2ζ0

)
, i.e. we consider that the pressure

is the same along x and y but different along z.

For an anisotropic but axisymmetric state, anisotropy is described by a dimen-

sionless parameter τTζ0, where τ is a characteristic relaxation time, T is the tem-

perature and ζ0 is an eigenvalue of the tensor ζµν introduced in Eq. (27) above. We

see from expression (36) that our formalism breaks down unless −5/4 ≤ τTζ0 ≤
5/8, as it predicts negative pressures when those limits are breached. However, pre-

liminary calculations show that it remains reliable almost up to those boundaries.29

For this reason, we believe these hydrodynamic equations are a valid generalization

of MHD to the relativistic regime, and that any consistent relativistic dynamics of

real fluids will converge to this formalism within its range of validity.

For the transverse waves, the only nonzero quantities are va, ζa, za3, F a0 and

F a3, with a = x, y. Observing that [τ ] = T−1, [va] = [za3] = T 0, [s] = [k] = [ζa] = T

and
[
F a0

]
=
[
F a0

]
= T 2, there is no loss of generality in setting T = 1. We also

write all the coefficients in terms Q = q1/q2. Replacing the above defined quantities

into Eqs. (42), (43), (45), (46) and (47) and supplementing the system with the

Maxwell equations (5), we obtain to first-order in the perturbations:

sva +
1

5
ikτza3 +

1

4
eQF a0 = 0 , (48)

4Qsva + e
1

2
(1−Q2)(τs+ 1)ζa +

4

5
ikQτza3 + eF a0 = 0 , (49)

4ik(1− 2τζ0)va − eτ

10
Qikζa + 4(1 + sτ)za3 +

12

5
eτQF a3ζ0 = 0 , (50)

−4πeQva − 1

6
πe2τ [4− 3Q2]ζa +

1

q2
sF a0 +

1

q2
ikF a3 = 0 , (51)

ikF a0 + sF a3 = 0 . (52)

1650194-12
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Using the first equation we transform the second into a covariant Ohm’s law

e(1−Q2)

[
1

2
(τs+ 1)ζa + F a0

]
= 0 . (53)

We use Faraday’s law (52) and expression (53) to write the electric field F a0 and

ζa in terms of the magnetic field F a3. The above system then reduces to

sva +
1

5
ikτza3 +

ieQs

4k
F a3 = 0 , (54)

4ik(1− 2τζ0)va + 4(1 + sτ)za3 +
e

5
Q

{
τs

(1 + τs)
+ 12τζ0

}
F a3 = 0 , (55)

4πieQva +
1

q2k

{
1

3
πe2q2

[
4− 3Q2

] τs

1 + τs
+ [s2 + k2]

}
F a3 = 0 . (56)

The normal modes are obtained in the usual way, by setting the determinant of

the coefficients of system (54)–(56) equal to zero. Considering the variables in the

order
(
va, za3, F a3

)
, multiplying the resulting determinant by q2 and by τ3, calling

πe2τ2q2 = $, τs = σ and τk = κ, the dispersion relation reads

0 = σ5 + 2σ4 +

{
4$

3
+ 1 +

κ2

5
(6− 2τζ0)

}
σ3

+

{
4$

3
+
κ2

5
(11− 2τζ0) +$Q2

}
σ2

+

{
$κ2

15

(
4− 3Q2

)
(1− 2τζ0) + κ2

+
κ4

5
(1− 2τζ0)− $κ2Q2

25
(1 + 12τζ0) +$Q2

}
σ

+
κ4

5
(1− 2τζ0)− 12

25
$κ2Q2τζ0 . (57)

To avoid the possibility of an unphysical background with negative pressures we

assume τζ0 � 1, whereby this relation simplifies to

0 = σ5 + 2σ4 +

{
1 +

4$

3
+

6κ2

5

}
σ3 +

{
4$

3
+

11κ2

5
+$Q2

}
σ2

+

{
4$κ2

15
+ κ2 +

κ4

5
− 6$κ2Q2

25
+$Q2

}
σ

+
κ4

5
− 12

25
$κ2Q2τζ0 . (58)

Since Q2 ≤ 1 the linear term is always positive. Therefore, the necessary and

sufficient condition for the emergence of instabilities is the independent term to be

negative. This gives the condition for unstable modes

κ2 ≤ κ2max =
12

5
$Q2τζ0 (59)
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which is only within the range of validity of our model provided that

κ2

$Q2
� 1 . (60)

We must now find the interval of possible values of σ consistent with the bounds

found above. To this purpose, we first discuss the dependence of the solution with

respect to κ2. If σκ is the value of the root for a given value of κ2 we rewrite

expression (58) as a polynomial in κ as

a[σκ]κ4 + b[σκ]κ2 + c[σκ] = 0 , (61)

where

a[σκ] =
1

5
(1 + σκ) ,

b[σκ] =
6

5
σ3
κ +

11

5
σ2
κ +

[
1 +

4

15
$ − 6

25
$Q2

]
σκ −

1

5
κ2max ,

c[σκ] = σκ

[
σ4
κ + 2σ3

κ +

[
1 +

4

3
$

]
σ2
κ +

[
4

3
+Q2

]
$σκ +$Q2

]
.

(62)

It is easily seen that σκ = 0 corresponds to either κ = 0 or else κ = κmax. Observe

that a[σκ] and c[σκ] are always positive definite, while b[σκ] is negative at σκ = 0

and then grows, eventually reaching 0. Therefore at σκ = 0 we have that b[σκ]2 >

4a[σκ]c[σκ] but there exists a critical value σκc such that b[σκ]2 = 4a[σκ]c[σκ] and

for which there is only one possible value of κ2, namely

κ2c =

√
c[σκc]

a[σκc]
. (63)

Clearly, σκc must be smaller than the root of b[σκ], which in turn is smaller than

κ2max/5. In this way, we obtained an upper bound for the possible values of σ,

namely

σ ≤ 1

5
κ2max . (64)

We must now perform a similar analysis with respect to the parameter $. For

a given κ, we have

S[σ]$ +R[σ] = 0 (65)

with

S[σ] =
4

3
σ3 +

[
4

3
+Q2

]
σ2 +

[
4

15
κ2 − 6

25
Q2κ2 +Q2

]
σ − 12

25
κ2Q2τζ0 , (66)

R[σ] = σ5 + 2σ4 +

[
1 +

6

5
κ2
]
σ3 +

[
κ2 +

κ4

5

]
σ +

κ4

5
. (67)

As R[σ] is clearly positive, S[σ] must be negative for Eq. (65) be zero. For a given

κ, the instability exists only if $ exceeds the value for which κ2 = κ2max. When

$ →∞, σ approaches the lowest positive root of S[σ].
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As the derivatives of R[σ] and S[σ] are both positive, the roots of the polynomial

(65) are growing functions of $. For this reason, the asymptotic limit of $ → ∞
provides an upper bound for the roots at finite values of $. We thus obtain a more

strict bound on σ, namely

σ ≤
12
25κ

2Q2τζ0
4σ2

3 +
[
4
3 +Q2

]
σ + 4κ

2

15 − 6κ
2Q2

25 +Q2
≤ 18Q2τζ0 . (68)

Since within the range of validity of our model this implies that σ � 1, it is enough

to keep only the independent and linear terms in expression (58). Therefore, we

obtain the following dispersion relation

σκ =

(
κ2max − κ2

)
κ2

4
3$κ

2 + 5κ2 + κ4 − 6
5$κ

2Q2 + 5$Q2
(69)

which also gives an upper bound for the exact time constant. Observe that for

Q2 = 0 there are no unstable modes, i.e. all values of s are negative. For Q2 6= 0,

instabilities, namely s > 0 will exist only for 0 < κ2 < κ2max, since the denominator

of Eq. (69) is positive. In the following figures we plot the dispersion relation for

different values of the parameters Q, τ and ζ0, consistent with the above quoted

intervals of validty and with bound (68). In Fig. 1 we plotted σκ as a function of

κ, for fixed values of ζ0 and Q, and three different values of τ . It is clearly seen

that larger values of the relaxation time allow for more unstable modes. Figure 2

shows the same plot but for fixed τ and ζ0 and three different values of Q, and

it is seen that a larger excess of particles over antiparticles also allows for more

unstable modes. In Fig. 3 we plotted again σκ as a function of κ, for fixed τ and Q

and three different values of the background anisotropy ζ0 and we observe that for

larger background anisotropies more instabilities are expected. These features are

in agreement with previous results found in the literature.48–51

Fig. 1. (Color online) Plot of σκ as a function of κ from expression (69), for fixed values ζ0 =
0.004, Q = 0.999, and τ = 85 ($ = 62, 459.5) (black, short-dashed), τ = 90 ($ = 70, 023.8) (red,

medium-dashed) and τ = 95 ($ = 78, 020.3) (blue, long-dashed). Larger values of τ allow for
more unstable modes, as expected.
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Fig. 2. (Color online) Plot of σκ as a function of κ from expression (69), for fixed values τ = 90,

ζ0 = 0.004, Q = 0.997 ($ = 35, 011.9) (black, short-dashed), Q = 0.998 ($ = 46, 682.5) (red,
medium-dashed) and Q = 0.999 ($ = 70, 023.8) (blue, long-dashed). As expected, a larger excess

of particles over antiparticles allows for more unstable modes.

Fig. 3. (Color online) Plot of σκ as a function of κ from expression (69), for fixed values τ = 90,

Q = 0, 997 ($ = 35, 011.9) and ζ0 = 0.002 (black, short-dashed), ζ0 = 0.003 (red, medium-

dashed) and ζ0 = 0.004 (blue, long-dashed). Again, larger values of the background anisotropy
allow for more unstable modes.

One last consideration concerns the fact that the magnetic field grows when the

system is in the only unstable mode. This can be seen from Eq. (56), because if

F a3 would be zero, then so is va, and all amplitudes would vanish.

5. Conclusions

In this paper, we have built a minimal MHD formalism to describe highly relati-

vistic dissipative plasmas and their instabilities in a unified way. For consistency

at microscopic and macroscopic levels, we anchored the hydrodynamics to kinetic

theory by writing all tensors of the model as moments of a 1pdf, and their corre-

sponding evolution equations as moments of a Vlasov–Boltzmann equation. For the
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collision integral, we used the AW prescription, which is a linear function of the

nonequilibrium part of the 1pdf. This choice proved to describe more accurately

highly relativistic systems than the BGK ansatz, as explained in Sec. 1. We built

the nonequilibrium 1pdf by introducing two new tensors, ζµ and ζµν in such a way

that the conduction currents and viscous stresses are linear on them. This simpli-

fies the mathematics at the price of enforcing positivity of the pressures; however,

the resulting formalism contains all the nonlinearities already present in the usual

MHD, namely those coming from convective terms and from the coupling to the

electromagnetic fields.

We applied our formalism to analyze transverse normal modes around an

anisotropic background. We found a dispersion relation, Eq. (69) consistent with the

approximations made. This relation describes instabilities in the long wavelength

range, with features that are in agreement with those found in previous works.48–51

Our model is robust in the sense that no fine-tuning was needed to get these results.

In other words, we provided a check that pure hydrodynamic schemes are rich

enough to describe the essential features of a anisotropic instabilities. We observe

that there are in the literature mixed analyses in which the linearized fluctuations

around an anisotropic solution to kinetic theory are described in hydrodynamic

ways.52

To the best of our knowledge, this is the first time a set of hydrodynamic equa-

tions is presented that describe both the background and the fluctuations. In last

analysis, the usefulness of having a purely hydrodynamic theory is that it should

make much easier to test it against experimental results, to implement numeri-

cal simulations and to follow the evolution of the instability beyond the linearized

approximation.53–62 We expect to report on this last issue in the near future as

well as on the extension of our formalism to non-Abelian relativistic plasmas and

also a full comparison between hydrodynamic instabilities and the more detailed

description that follows from kinetic theory with an AW collision term.26–28,46,49
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6. P. Ván and T. S. Biró, Phys. Lett. B 709, 106 (2012).
7. W. Israel, Covariant fluid mechanics and thermodynamics: An introduction, in Rela-

tivistic Fluid Dynamics, eds. A. Anile and Y. Choquet-Bruhat (Springer, New York,
1988).

8. W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976).
9. I. S. Liu, Arch. Rat. Mech. Anal. 46, 131 (1972).

10. I. S. Liu, I. Müller and T. Ruggeri, Ann. Phys. 169, 191 (1986).
11. R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990).
12. R. Geroch and L. Lindblom, Ann. Phys. (N.Y.) 207, 394 (1991).
13. T. Schaefer, Annu. Rev. Nucl. Part. Sci. 64, 125148 (2014), doi:10.1146/

annurevnucl102313025439, arXiv:1403.0653 [hep-ph].
14. S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015), doi:10.1142/

S0218301315300106, arXiv:1503.03931 [hep-ph].
15. P. Romatschke, arXiv:1609.02820.
16. L. Tinti, R. Ryblewski, W. Florkowski and M. Strickland, Nucl. Phys. A 946, 29

(2016).
17. M. Strickland, Acta Phys. Pol. B 45, 2355 (2014).
18. S. Mrówczyński, B. Schenke and M. Strickland, arXiv:1603.08946.
19. X. G. Huang, Rep. Prog. Phys. 79, 076302 (2016).
20. J. Peralta-Ramos and E. Calzetta, Phys. Rev. D 80, 126002 (2009).
21. J. Peralta-Ramos and E. Calzetta, Phys. Rev. C 82, 054905 (2010).
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