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Using direct numerical simulations of three-dimensional magnetohydrodynamic turbulence, the

spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small,

medium, and large values of a mean background magnetic field are considered. The (wavenumber)

scale dependent time correlation function is directly computed for different simulations, varying

the mean magnetic field value. From this correlation function, the time decorrelation is computed

and compared with different theoretical times, namely, the local non-linear time, the random

sweeping time, and the Alfv�enic time, the latter being a wave effect. It is observed that time decor-

relations are dominated by sweeping effects, and only at large values of the mean magnetic field

and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfv�enic

effects. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4968236]

I. INTRODUCTION

It is known that in the linear approximation the magne-

tohydrodynamic (MHD) equations can sustain Alfv�en waves.

The simplest case corresponds to incompressible MHD

with a uniform background magnetic field B0, for which the

linear dispersion relation (in the ideal non-dissipative case)

describes waves with frequency w ¼ k � vA, for wavevector

k, Alfv�en velocity vA ¼ B0=
ffiffiffiffiffiffiffiffi
4pq
p

, and density q. Also, the

complex Fourier components of the velocity vðkÞ and of

magnetic field fluctuations bðkÞ are transverse to the wave-

vector, i.e., vðkÞ � k ¼ bðkÞ � k ¼ 0. Interestingly, these

waves when considered in isolation are exact nonlinear solu-

tions of the MHD equations.

However, when non-linear terms are taken into account,

the system can also develop far from equilibrium dynamics,

with the waves coexisting with eddies in a fully developed

turbulent flow.1 In this turbulent regime, one does not neces-

sarily expect a direct or explicit relation between frequency

and wavenumber, such as the dispersion relation for waves.

This regime is characterized by interactions of several types,

such as local-in-scale nonlinear distortion of eddies,2–4 and

non-local effects5–8 the most extreme of which is transport

or “sweeping” of small eddies by large eddies.9–12

Furthermore, for MHD turbulence,13,14 in addition to the

global nonlinear time snl, there are also time scales associ-

ated with scale-dependent (local) nonlinear effects, nonlocal

sweeping, and wave propagation.14

In the early 70s, investigation of hydrodynamic turbu-

lence was directed to study the decorrelation time of the

velocity field.10,15–18 The main conclusion was that the

sweeping dominates the temporal decorrelation in the inertial

range.19,20 Recently, a similar study has been implemented

in magnetohydrodynamics.21–23 One difference with the

hydrodynamic case is the presence of other non-local phe-

nomena (besides the sweeping), such as the Alfv�enic propa-

gation or Alfv�enic distortion, namely, “magnetic sweeping.”

The main result of Servidio et al.21 on the temporal decorre-

lation for isotropic turbulence was that, as in hydrodynamics,

the temporal decorrelation in MHD is governed by nonlocal

interactions (in this case, sweeping and Alfv�en decorrela-

tion). However, they were not able to distinguish between

the effect of sweeping and Alfv�enic distortion. In this paper,

our main objective is to extend this analysis and generalize it

to magnetized plasmas at large scales where the MHD

approximation is valid.

In this work, we study the different decorrelation times

through the various scales in the inertial range for MHD

turbulence with a guide field. The main objective is to under-

stand the temporal decorrelation of the fluctuations, by

studying the relative value of decorrelation times for the dif-

ferent scales. Thus, we will be able to relate the scaling

laws of the decorrelation times to the different contributing

physical effects: non-linear distorsion, random sweeping,

and Alfv�en wave propagation. In other words, we will study

the characteristic memory timescale for each spatial scale, in

order to identify the mechanisms of temporal decorrelation

and to see whether they are local or non-local. For this pur-

pose, we will consider the fluctuations at more than one

length scale, to discern between the different phenomena

that are associated with temporal decorrelation, in particular,

Alfv�en wave propagation and random sweeping. This

method, based on the computation of spatio-temporal spectra

and on correlation functions, was proposed and implemented

in rotating fluids by Clark di Leoni et al.24 (see also Ref. 25

for a general description of the method). Meyrand and

Galtier recently used the spatio-temporal spectrum to study

the transition from weak to strong turbulence in MHD26 and

intermittency in weak MHD turbulence.27 Here, we considera)Electronic mail: rlugones@df.uba.ar

1070-664X/2016/23(11)/112304/11/$30.00 Published by AIP Publishing.23, 112304-1

PHYSICS OF PLASMAS 23, 112304 (2016)

http://dx.doi.org/10.1063/1.4968236
http://dx.doi.org/10.1063/1.4968236
http://dx.doi.org/10.1063/1.4968236
mailto:rlugones@df.uba.ar
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4968236&domain=pdf&date_stamp=2016-11-23


the strong turbulent regime and compute both spectra and

decorrelation times.

II. EQUATIONS AND NUMERICAL SIMULATIONS

A. The MHD equations

The incompressible MHD equations (momentum and

induction equations) in dimensionless units are

@v

@t
þ v � rv ¼ � 1

q
rpþ j� Bþ 1

R
r2v; (1)

@b

@t
¼ r� v� Bð Þ þ 1

Rm
r2b; (2)

where v is the plasma velocity; B ¼ bþ B0 the magnetic

field, with a fluctuating part b and a mean DC field

B0 ¼ B0x̂; j ¼ r� b the current density; p the pressure, and

q the plasma density. The units are based on a characteristic

speed v0, which for MHD is chosen to be the typical Alfv�en

speed of the magnetic field fluctuations, v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2i=ð4pqÞ

p
,

where h:i denotes a spatial average. The dimensionless

parameters appearing in the equations are the kinetic and

magnetic Reynolds numbers, R ¼ v0L=� and Rm ¼ v0L=l,

respectively, with � the kinematic viscosity, l the magnetic

diffusivity, and L the characteristic length scale (the simula-

tion box side length is defined as 2pL). The unit time is

t0 ¼ L=v0, which for MHD becomes the Alfv�en crossing

time based on magnetic field fluctuations.

B. Wavenumber-frequency spectrum and correlation
functions

From Eqs. (1) and (2) and simple scaling arguments,

one can estimate different characteristic times. The local

eddy turnover time can be defined as snl � ½kvðkÞ��1
, where

k is the wave number and v(k) is the amplitude of velocity

due to fluctuations at scale �1=k. For a Kolmogorov-type

prediction of the velocity scaling, v � vrmsðkLÞ�1=3
, the non-

linear time scales in the inertial range can be approximately

written as snl ¼ Cnl½vrmsL
�1=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
? þ k2

k

q
Þ2=3��1

, where Cnl

is a dimensionless constant of order unity. In the latter, vrms

¼ hjvj2i1=2
is a global quantity, typically dominated by con-

tributions from the large scales. For discussion of nonlinear

time scale estimates, see Ref. 14; for more detailed discus-

sion of anisotropic cases, see Ref. 28.

The physics of time decorrelation depends on other

effects and therefore other available MHD time scales. One

example is the sweeping characteristic time at scale �1=k,

which may be expressed as ssw ¼ Cswðvrms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
? þ k2

k

q
Þ�1

.

This time corresponds to the advection of small scale struc-

tures by the large scale flow. Analogously, a characteristic

Alfv�en time can be defined as sA ¼ CAðB0kkÞ�1
. Here, Csw

and CA are other dimensionless constants of order unity. All

these timescales depend on the wave vector, and assuming

the shortest timescale dominates the dynamics, different

regions in k-space in the energy spectrum can be defined.

The statistics of, for example, the magnetic field may be

characterized by the spatio-temporal two-point autocorrela-

tion function

Rðr; sÞ ¼ hbðx; tÞ � bðxþ r; tþ sÞi=hb2i: (3)

Note that this expression contains both the energy spectrum

and the Eulerian frequency spectrum (Wiener-Khinchin the-

orem); however, it contains much more information which

allows us to make a more subtle analysis of the spatio-

temporal relations. Fourier transforming in r leads to a time-

lagged spectral density which may be further factorized as

Sðk; sÞ ¼ SðkÞCðk; tÞ, where k is the wave vector. The func-

tion Cðk; sÞ, the scale-dependent (or filtered) correlation

function,15,17,18 represents the dynamical decorrelation

effects describing the time decorrelation of each spatial

mode k.

The function Cðk; sÞ is thus the temporal correlation

function of the Fourier mode k. Using this, we will be able

to identify the characteristic decorrelation time for each

mode k and therefore the loss of memory of 3D-fluctuations

whose characteristics lengths are of order k�1
x ; k�1

y , and k�1
z .

When there is no guide field, we usually expect the flow to

be isotropic both in real space and in Fourier space, and

therefore it is sufficient to study the function Cðk; sÞ that

depends only on k ¼ jkj. On the other hand, in the presence

of a guide field, the turbulence is anisotropic; therefore, it is

reasonable to use C ¼ Cðk?; kk; sÞ where k? and kk are the

perpendicular and parallel (to the mean magnetic field)

Fourier wave numbers.

The function Cðk?; kk; sÞ can help us to understand the

dynamics of different regions in Fourier space. For example,

the function Cðk? ¼ 0; kk; sÞ gives us information about fluc-

tuations that vary only in the parallel direction. In the same

way, Cðk?; kk ¼ 0; sÞ gives information about fluctuations

that vary only in the perpendicular direction. Also of interest

is the information obtained from the Cðk? ¼ k0; kk; sÞ and

the Cðk?; kk ¼ k0; sÞ functions, when one of the Fourier

wavenumbers (the parallel or the perpendicular) is set to a

fixed value k0. For example, studying the decorrelation time

for Cðk? ¼ k0; kk; sÞ as a function of kk would be useful to

see the memory loss over time of fluctuations whose perpen-

dicular characteristic length is �k�1
0 (a fixed selected length),

as a function of its parallel scale �k�1
k . This would give us

information on two important issues: how the memory in

one direction affects the other, and more importantly, how

to distinguish between random sweeping and Alfv�en

propagation.

C. Numerical simulations

We use a standard pseudospectral code to solve numeri-

cally the incompressible three-dimensional MHD equations

with a guide field.29,30 All results reported here are from runs

with a resolution of N3 ¼ 5123 grid points. A second-order

Runge-Kutta time integration scheme is used. We use weak,

moderate, and strong external magnetic fields, B0 ¼ 0:25, 1,

and 8 (in units of the initial r.m.s. magnetic fluctuations

value). We also consider the case B0 ¼ 0 for reference with

112304-2 Lugones et al. Phys. Plasmas 23, 112304 (2016)



previous studies.21 Periodic boundary conditions are

assumed in all directions of a cube of side 2pL (where L¼ 1

is the initial correlation length of the fluctuations, defined as

the unit length). Aliasing is removed by a two-thirds rule

truncation method. The initial state consists of nonzero

amplitudes for the vðkÞ and bðkÞ fields, equipartioned in the

wave numbers within shells 1:1 � k � 4, with k ¼ jkj (in

units of 2pL=‘ with ‘ the wavelength). Random phases have

been chosen for both fields. To achieve a statistically steady

state, we consider a driving which consists of forcing terms

added to Eqs. (1) and (2) in a fixed set of Fourier modes in

the band 0:9 � k � 1:8. The forcing has a random and a

time-coherent component, so that the correlation time of the

forcing is sf � 1 (of the order of the unit time t0).

The temporal range used to analyze the results is over

20 unit times for B0 ¼ 0 and B0 ¼ 0:25, over 25 unit times

for B0 ¼ 1, and over 10 unit times for B0 ¼ 8. All these time

spans are considered after the system reached a turbulent

steady state, and we verified that they were enough to ensure

convergence of spectra and correlation functions.

III. RESULTS

A. Energy spectra and dominant time scales

The axisymmetric energy spectrum eðjk?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y þ k2
z

q
;

kk ¼ kx; tÞ, defined as

eðk?; kk; tÞ ¼
X

k? � jk� x̂j < k? þ 1

kk � kx < kk þ 1

jûðk; tÞj2 þ jb̂ðk; tÞj2

¼
ð
ðjûðk; tÞj2 þ jb̂ðk; tÞj2Þjkj sin hk d/k; (4)

provides information on the anisotropy of the turbulence rel-

ative to the guide field.31 In this study, the guide field is cho-

sen along the x axis, and thus the wave vector components

kk and k?, and the polar angles in Fourier space hk and /k,

are relative to this axis. In other words, in Eq. (4) hk

¼ arctanðk?=kkÞ is the co-latitude in Fourier space with

respect to the axis with unit vector x̂ (that is, in the direction

of the guide field), and /k is the longitude with respect to the

y-axis. The first expression involving the summation in Eq.

(4) is the definition of the axisymmetric energy spectrum for

a discrete Fourier space (i.e., as used in the simulations),

while the second expression with the integral corresponds to

the continuum limit. In the following, we treat both expres-

sions as equivalent, replacing integrals by summations when

required for the numerics.

From the axisymmetric spectrum above, one can define

the time averaged reduced perpendicular energy spectrum

Eðk?Þ31 as

E k?ð Þ ¼
1

T

ð ð
e jk?j; kk; t
� �

dkk dt; (5)

where we integrated over parallel wave numbers to obtain a

spectrum that depends only on k?. Equivalently, the isotro-

pic energy spectrum E(k) can be obtained from Eq. (4) by

integrating over hk in Fourier space. Figure 1 shows the

isotropic energy spectrum E(k) for the run with B0 ¼ 0 and

the reduced perpendicular energy spectrum Eðk?Þ for the

runs with non-zero guide field.

Figure 2 shows contour plots of eðk?; kkÞ= sinðhkÞ, that

is, the axisymmetric spectrum (averaged in time), for the

runs with B0 ¼ 0; B0 ¼ 1, B0 ¼ 4, and B0 ¼ 8. For an isotro-

pic flow (B0 ¼ 0, see Fig. 2(a)), contours of eðk?; kkÞ=
sinðhkÞ are circles as expected.31 As the guide field intensity

increases, energy becomes more concentrated near the axis

with kk ¼ 0, evidencing the formation of elongated struc-

tures in the direction of the guide field (or, in other words, of

the relative decrease of parallel gradients of the fields with

respect to perpendicular gradients).

The characteristic times defined in the Introduction, sA,

ssw, and snl, divide the Fourier space in Fig. 2 in regions

depending on how the time scales are ordered

sA < ssw ) k? <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0

vrms

� �2

� Csw

CA

� �2

� 1

s0@
1
Akk; (6)

sA < snl ) k? <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0

vrms

� �3 Cnl

CA

� �3

Lkk � 1

s0@
1
Akk; (7)

snl < ssw ) k2
? þ k2

k

� �1=6

<
Csw

CnlL1=3
: (8)

In Figure 2, we also indicate the curves corresponding to the

modes that satisfy the relations sA�ssw and sA�snl, for

B0 ¼ 1, 4, and 8 (assuming, to plot all curves, that Csw � Cnl

� CA � 1; this choice will be later confirmed by the analysis

of the correlation functions). It must be mentioned that the

sA � snl curve also occupies an important role in the theory

of critical balance.32

As we can see from Eq. (8), the region where snl � ssw

is a small circle around the origin, where k2
? þ k2

k
� ðCsw=L1=3CnlÞ6 � 1, and is not shown in the figure. Modes

outside the region with snl < ssw should decorrelate with the

sweeping time or the Alfv�en time, depending on which one

FIG. 1. Reduced perpendicular energy spectra Eðk?Þ for the simulations

with B0 ¼ 0:25, 1, 4, and 8, and isotropic energy spectrum E(k) for the simu-

lation with B0 ¼ 0. Kolmogorov scaling, �k
�5=3
? , is shown as reference.
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is fastest. Equation (6) tells us that in the area to the left of

the curve sA � ssw we have sA < ssw, while Eq. (7) tells us

that in the area to the left of the curve sA � snl we have sA

< snl (see Fig. 2(b)). For the largest value of B0 considered

(i.e., the simulation with B0 ¼ 8), most of the modes have

the Alfv�en period as the fastest time (i.e., the largest area in

the plot is above and to the left of the curve sA � ssw)

although a significant fraction of the energy in the system is

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Isocontours of the axisymmetric energy spectrum eðk?; kkÞ for B0 ¼ 0, 1, 4, and 8. The cases with B0 ¼ 4 and 8 are also plotted in a log-log scale to

show with more detail the inertial range. In all cases, dark means larger energy density (in logarithmic scale). The lines indicate the modes for which sweeping

time or local non-linear time becomes equal to the Alfv�en time. For large B0 the isocontours change shape as they cross each of these lines. Note also the stron-

ger anisotropy of the spectrum as B0 increases, as well as the increase in the surface covered by modes which have the Alfv�en period as the fastest time.
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not in these modes as it concentrates instead near the axis

with kk ¼ 0.

B. Spatio-temporal spectra

Figures 3 (for the simulation with B0 ¼ 0:25), 4 (B0 ¼ 1),

and 5 (B0 ¼ 8) show the wave vector and frequency spectrum

Eðk;xÞ=EðkÞ for modes k with k? ¼ 0, where

EðkÞ ¼
ð

Eðk;xÞdx (9)

is the total energy spectrum. With this choice for the normal-

ization, the frequencies that concentrate most of the energy

for each k are more clearly visible. For B0 ¼ 0:25 (Fig. 3),

we observe a spread of the energy concentration clearly

below the sweeping relation line (i.e., we see excitations in

all modes with frequency equal or smaller than x ¼ vrmskk,
indicating that small scale structures are advected by all

velocities equal and smaller than vrms). A weak accumulation

near the Alfv�enic dispersion relation x ¼ B0kk is also visible

for small wavenumbers kk although the broad spectrum (in

the frequency domain) suggests sweeping is dominant in this

case.

As the mean field increases to B0 ¼ 1 (Fig. 4), some of

the energy is concentrated above the sweeping line and starts

to follow the Alfv�enic dispersion relation, although the spec-

trum is still broad in frequencies, with a large fraction of the

energy below the sweeping relation. This behavior changes

drastically for larger values of B0. In Figure 5 (B0 ¼ 8), we

can see energy clearly concentrating around the dispersion

relation of Alfv�en waves, with the power sharply peaked

around the wave modes up to kk � 10, and then suddenly

broadening towards the sweeping relation for larger wave-

numbers. Note that this indicates a competition between the

magnetohydrodynamic sweeping time and the Alfv�en time,

with the former becoming dominant at large scales for large

values of B0. These results support and enhance the ones

obtained by Dmitruk and Matthaeus1 and are compatible for

small wavenumber and large B0 with those recently obtained

in Refs. 26 and 27. In particular, Ref. 26 also reported a tran-

sition from a narrow wave spectrum to a broader spectrum,

although the scale and mechanism responsible for the transi-

tion were not studied. As will be confirmed next from the

correlation functions, the competition between sweeping

and the Alfv�en time as the dominant decorrelation time is

responsible for the change observed in the behavior of the

spectrum.

FIG. 3. Normalized wave vector and frequency spectrum Eðk;xÞ=EðkÞ for

the run with B0 ¼ 0:25, for modes with k? ¼ 0, and thus as a function of kk.
Lighter regions indicate larger energy density. The spectrum corresponds to

the power in the time and space Fourier transform of the fields, such that

accumulation of energy in modes near the dispersion relation (or in all modes

below the sweeping curve) indicates dominance of a physical effect (i.e., of

its associated frequency) in the dynamics of a given scale �1=kk. The dashed

(blue) line indicates the dispersion relation for Alfv�en waves, and the contin-

uous (green) line indicates the sweeping relation. A broad excitation of

modes is observed for all modes with x � vrmskk (sweeping), while only a

very weak accumulation at small kk can be seen for x ¼ B0kk (Alfv�en).

FIG. 4. Normalized wave vector and frequency spectrum Eðk;xÞ=EðkÞ for

the run with B0 ¼ 1, for modes with k? ¼ 0, and thus as a function of kk and

x. Lighter regions indicate larger energy density. The dashed (blue) line

indicates the dispersion relation for Alfv�en waves and the continuous (green)

line indicates the sweeping relation.

FIG. 5. Normalized wave vector and frequency spectrum Eðk;xÞ=EðkÞ for

the run with B0 ¼ 8, for modes with k? ¼ 0, and thus as a function of kk and

x. Lighter regions indicate larger energy density. The dashed (blue) line

indicates the dispersion relation for Alfv�en waves and the continuous (green)

line indicates the sweeping relation. Note in this case power is concentrated

in a narrow region near the wave dispersion relation up to kk � 10, corre-

sponding to Alfv�enic excitations.
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C. Correlation functions and decorrelation times

In order to discern between the different phenomena

(and relevant time scales) acting in magnetohydrodynamic

turbulence, we studied the correlation functions Cðk; sÞ as

explained in detail before in Sec. II B. Since we focus on tur-

bulence with a guide magnetic field, we use Cðk?; kk; sÞ and

consider several values of ðk?; kkÞ to study the decorrelation

as a function of the time lag s at different scales. In Fig. 6, the

correlation functions Cðk? ¼ 0; kk ¼ k0; sÞ and Cðk? ¼ k0;
kk ¼ 0; sÞ are shown for different values of k0 for the moderate

external magnetic field B0 ¼ 1. Here, we can see the typical

behavior of correlation functions, with the largest scales

(smallest k) taking longer time to decorrelate. Similar results

were found for the other external magnetic field considered,

B0 ¼ 0, 0.25, 4, and 8.

To understand which of the different times (non-linear

time, random sweeping, and Alfv�en propagation) are control-

ling the temporal decorrelation, we need to compare the

scaling of the decorrelation time with the theoretical scale

dependence expected for each physical process. In order to

do this, we use the fact that the mode with wave vector k

should be decorrelated after a time sDðkÞ following an

approximate exponential decay

Cðk; sÞ � e�s=sDðkÞ: (10)

For simplicity, we will evaluate sDðkÞ as the time at which

the function C decays to 1=e of its initial value.

As a first example, Fig. 7 shows the decorrelation time sD

obtained from Cðk; sÞ in the isotropic case with B0 ¼ 0. We

can see that the decorrelation time scales in good agreement

with the sweeping time, except perhaps at the largest wave-

numbers (smallest scales). These results are consistent with the

ones obtained by Servidio et al.21 in the isotropic case.

As mentioned before, in the general case it can be difficult

to differentiate between the effects of sweeping and Alfv�en

propagation, as both timescales vary as k�1. However, in the

anisotropic case (i.e., in the presence of the guide field) we

can use the scaling observed with respect to parallel and

perpendicular wavenumbers to make the distinction possible.

In Fig. 8, we employ results from the B0 ¼ 0:25 run to com-

pute decorrelation times for Fourier modes as a function of kk,
for several fixed values of k?. Already for this relatively small

value of B0, it can be seen that the observed correlation times

are closer to the theoretically expected sweeping time than to

all the other times (local nonlinear time or Alfv�enic time). This

is consistent with the results of the wavenumber and frequency

energy spectrum shown previously in Fig. 3. A complementary

view of the same run with B0 ¼ 0:25 is given in Fig. 9, which

shows the decorrelation time s as a function of k? for several

fixed values of kk. The conclusion is once again that the

sweeping time is controlling sD at all but the largest scales, as

only for k? ¼ 0 and for kk between �1 and �4 sD is closer to

the Alfv�en time.

The tendency for time decorrelation to be controlled by

sweeping is again seen in the run with the somewhat stronger

mean field B0 ¼ 1. These results for the correlation time are

shown in Figs. 10 and 11. Again, only at low values of kk
and for k? ¼ 0, it can be seen that the decorrelation time is

FIG. 6. Correlation functions Cðk? ¼ 0; kk ¼ k0; sÞ and Cðk? ¼ k0; kk ¼ 0; sÞ as a function of the lag time s, for k0 ¼ 5, 10, 15, and 20, in the simulation with

B0 ¼ 1. The value of s for which C ¼ 1=e (horizontal dotted line) corresponds to the decorrelation time sD for each value of k.

FIG. 7. Decorrelation times as a function of k ¼ jkj for the isotropic case

B0 ¼ 0. The straight lines indicate the theoretical predictions corresponding

to the sweeping time and the nonlinear time. Except at the largest wavenum-

bers, the decorrelation time seems to be dominated by sweeping.
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closer to the Alfv�enic time. This tendency was also observed

in the wavenumber and frequency spectrum of Fig. 4.

Finally, we analyze the behavior of the decorrelation

time s for the run with the largest mean magnetic field value

that we considered, B0 ¼ 8. The results are presented in

Figs. 12 and 13, analyzed in the same way as in the previous

two cases. For low values of k?, one finds that the Alfv�enic

time dominates the decorrelations (approximately up to

kk ¼ 10, see Fig. 13). For larger values of k?, however, the

decorrelation time departs from the Alfv�en time and slowly

approaches the sweeping time scale. This is consistent with

(a)

(b)

(c)

FIG. 8. Decorrelation times sD for the run with B0 ¼ 0:25. In each panel, k?
is held constant and kk is varied; (a) k? ¼ 0, (b) k? ¼ 10, and (c) k? ¼ 20.

The lines indicate theoretical predictions for the scaling of several physical

time scales. The measured value of sD is always close to ssw, except for

k? ¼ 0 and kk between �1 and 5 for which the dominant time scale is the

Alfv�en time.

(a)

(b)

(c)

FIG. 9. Decorrelation times sD for the run with B0 ¼ 0:25. In each panel, kk
is held constant and k? is varied; (a) kk ¼ 0, (b) kk ¼ 10, and (c) kk ¼ 20.

The straight lines indicate theoretical predictions for the scaling of the rele-

vant physical time scales. The measured value of sD is always close to ssw.
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the spatio-temporal spectrum in Fig. 5, which concentrated

energy near the Alfv�en dispersion relation for small wave-

numbers, but broadened towards the sweeping frequencies for

large wave numbers. As a result, it is the competition between

these two time scales that for large values of B0 seems to

be responsible for the broadening of the spatio-temporal

spectrum. As long as the Alfv�en time is much faster than other

time scales in the system, the flow excites Alfv�en waves which

dominate the mode decorrelation. But as other time scales

approach the time scale of the waves (or become faster, as it

happens for smaller values of B0), the system switches the

dominant time scale in the decorrelation.

IV. CONCLUSIONS

In this paper, we have studied the time correlations that

enter into magnetohydrodynamics in the incompressible

approximation. Even in the simpler case of hydrodynamics,

one expects both space and time correlations to be relevant

to the physics of turbulence, as these independent properties

can be embodied in the two point, two time correlation

Rijðr; tÞ tensor, e.g., a straightforward generalization of

Eq. (3). Analogous correlations may also be written for the

components of vector fluid velocity u and other quantities.

The spatial transform of the correlation (or, equivalently the

second order spatial structure functions) at zero time lag s
provides information about the spatial distribution of energy

over scales. Accordingly, the zero spatial lag correlation,

evaluated at varying time and transformed to frequency, pro-

vides analogous information about the distribution of energy

over time scales. Here, we studied the correlations in time

for a given wavenumber or spatial scale for the magnetohy-

drodynamics model.

The MHD case is more complex than hydrodynamics

because two basic fields are involved—velocity and mag-

netic field. Also because a mean magnetic field is not

removed by a Galilean transform, while a mean velocity can

be removed in this way. The mean magnetic field therefore

imposes a preferred direction. In addition, MHD possesses a

new and anisotropic wave mode, the Alfv�en mode, that intro-

duces the possibility of spectral and correlation anisotropy,

as well as a new times scale, the Alfv�en time. Because of

these effects, the analysis of time decorrelation also becomes

more complex, with at least three time scales to examine—

Alfv�en, sweeping, and nonlinear scales—as well as potential

for anisotropy of the decorrelation rate.

Both random sweeping and Alfv�enic correlation are

non-local effects, in the sense that they couple the large

scales with relatively smaller length scales. The results

shown here support the conclusion that non-local effects (in

spectral space) play an important role in MHD turbulence (in

agreement with studies considering shell-to-shell transfers5–8

and that decorrelations are mainly dominated by the sweep-

ing and Alfv�enic interactions, confirming previous studies of

isotropic MHD.21

However, compared with the previous studies, the anal-

ysis presented here can further distinguish between sweeping

and Alfv�enic effects, and the results support the conclusion

that the sweeping interaction dominates the decorrelation for

moderate values of B0, while for large values of the mean

field B0 and at large scales (low perpendicular wavenumbers)

the decorrelations are more controlled by the Alfv�enic inter-

actions. The relevant interactions are the Alfv�en waves, and

as such it can be concluded that waves are still present in

MHD turbulence and dominate the decorrelations essentially

(a)

(b)

(c)

FIG. 10. Decorrelation times sD for the run with B0 ¼ 1. In each panel, k? is

held constant and kk is varied; (a) k? ¼ 0, (b) k? ¼ 10, and (c) k? ¼ 20.

The straight lines indicate theoretical predictions for the scaling of the rele-

vant physical time scales.
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for parallel wavenumbers (aligned with the mean field, see

also Refs. 26 and 27). Our results further indicate that the

system selects, in effect, the shortest decorrelation time

available. A simple and relevant construct is that the rate of

decorrelation is the sum of the rates associated with each

relevant time scale (see, e.g., Refs. 13 and 14). As a result,

even for large values of the guide field B0, for sufficiently

small scales in which the sweeping time becomes faster than

the Alfv�enic time, after a broad range of scales dominated

by Alfv�en waves the system transitions to a sweeping domi-

nated behaviour.

A compelling conclusion of the present work is that the

influence of sweeping decorrelation extends over a wide

range of global parameters. Even if sweeping is not the dom-

inant time-decorrelation mechanism throughout the entire

system, its importance relative to decorrelation via Alfv�enic

propagation persists in certain subregions of k-space. This is

found to be the case for moderate values of applied mean

magnetic field B0, as seen in Figs. 10 and 11. This influence

of sweeping is even found for cases with very strong applied

mean magnetic field (B0 ¼ 8) as seen in Figs. 12 and 13.

Accordingly, one is also driven to the conclusion that the

effects of Alfv�enic decorrelation are very important at least

at strong B0 and in certain regions of wave vector space.

While it is difficult to extrapolate such conclusions in any

precise way to applications in space and astrophysics, we

could apply the present results in a qualitative way. For

example, the solar wind typically admits order-one dB=B0 at

the outer scale. Even if this ratio is somewhat smaller, for

example, at smaller scales in the inertial range, the present

results suggest that the sweeping effect may remain important

in establishing the rate of time decorrelation in the interplane-

tary environment. This could have diverse implications, for

example, in quantifying prediction, in particle scattering, and

in understanding the realm of applicability of weak turbu-

lence theory. In this regard, observational techniques have

begin to extract approximate measures of solar wind and

magnetospheric time decorrelation in the plasma frame33,34

but have not yet attained the precision to distinguish sweep-

ing and Alfv�enic effects as the present study has done using

MHD simulation.

It is of interest to recall that the relevant time decorrela-

tion associated with energy transfer in turbulence is not the

Eulerian time correlation that we have considered (fixed spa-

tial point, varying time), but rather the Lagrangian time

decorrelation, computed following a material fluid element.

In this regard, it is well known that neither sweeping nor

Alfv�enic wave propagation can directly produce spectral

transfer in idealized homogeneous models. In part due to

these complications, no complete theory exists at present

that links the spatial correlation and the time correlations in

MHD or hydrodynamic turbulence. On the other hand, it is

clear that in MHD, both sweeping and Alfv�en wave propaga-

tion contribute to the total time variation at a point (Eulerian

frequency spectrum) and are therefore influential in limiting

prediction. These time scales are also important features in

understanding the scattering of charged test particles, such as

low energy cosmic rays,35 as well as in accounting for the

distribution of accelerations, which is related to

intermittency.12

The observed behavior of MHD time decorrelation,

exemplified by the new results presented here, thus has appli-

cations in a number of subjects, including charged particle

scattering theory,12,36 interplanetary magnetic field and

(a)

(b)

(c)

FIG. 11. Decorrelation times sD for the run with B0 ¼ 1. In each panel kk is

held constant and k? is varied; (a) kk ¼ 0, (b) kk ¼ 10, and (c) kk ¼ 20. The

straight lines indicate theoretical predictions for the scaling of the relevant

physical time scales.
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magnetospheric dynamic,37 and interpretation of spacecraft

data from historical and future missions.33 Looking towards

future prospects, we note that there has been some success in

establishing empirical connections between the sweeping

time scale to the observed Eulerian time decorrelation in

hydrodynamics.11 Similar ideas for MHD (e.g., Ref. 38)

might be exploited to better understand, or at least empiri-

cally model, the relationship in MHD between the spatial

structure and time decorrelation, an effort that would directly

benefit from the novel results presented here.

(a)

(b)

(c)

FIG. 12. Decorrelation times sD for the run with B0 ¼ 8. In each panel, k? is

held constant and kk is varied; (a) k? ¼ 0, (b) k? ¼ 10, and (c) k? ¼ 20.

The straight lines indicate theoretical predictions for the scaling of the rele-

vant physical time scales. In this case, the Alfv�en time controls the decorre-

lation at multiple wavenumbers.

(a)

(b)

(c)

FIG. 13. Decorrelation times sD for the run with B0 ¼ 8. In each panel kk is

held constant and k? is varied; (a) kk ¼ 0, (b) kk ¼ 10, and (c) kk ¼ 20. The

straight lines indicate theoretical predictions for the scaling of the relevant

physical time scales. The Alfv�en time controls the decorrelation up to

kk � 10.
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