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A B S T R A C T

We report a new theoretical and experimental study on hologravures, as holographic computer-generated laser-
engravings. A geometric theory of images based on the general principles of light ray behaviour is shown. The
models used are also applicable for similar engravings obtained by any non-laser method, and the solutions
allow for the analysis of particular situations, not only in the case of light reflection mode, but also in
transmission mode geometry. This approach is a novel perspective allowing the three-dimensional (3D) design
of engraved images for specific ends. We prove theoretically that plane curves of very general geometric shapes
can be used to encode image information onto a two-dimensional (2D) engraving, showing notable influence on
the behaviour of reconstructed images that appears as an exciting investigation topic, extending its applications.
Several cases of code using particular curvilinear shapes are experimentally studied. The computer-generated
objects are coded by using the chosen curve type, and engraved by a laser on a plane surface of suitable material.
All images are recovered optically by adequate illumination. The pseudoscopic or orthoscopic character of these
images is considered, and an appropriate interpretation is presented.

1. Introduction

Thin scratches on surfaces have interesting optical properties. In
1992, Plummer and Gardner [1] reported the discovery of holographic
behaviour in lap abrasion, with three-dimensional effects; mechanically
produced scratches acted as a reflection hologram.

Different approaches to a technique for obtaining images from
regular scratches were reported in 1995 by Beaty [2], referring to some
previous works mentioning the synthesis of 3D images [3–5]. Beaty
developed the circular-scratch technique into a method for creating
three-dimensional images. Scratch holography has been the usual
name for describing these displays. In [6], Abramson affirms that for
the first time, these 3D displays by scratch techniques were obtained by
Weil, who introduced its patent in December 1934 in the UK [7], and
referred to the technique as incoherent holography [8,9]. Others
similar techniques in copper or aluminum metal are described in
[10,11].

Some elements of the theory for such a “scratch” technique, and
how scratches work in the formation of 3D images, have been discussed
and explained from different particular viewpoints by Plummer and
Gardner [1], Eichler et al. [12], and also by Beaty [13]. These

theoretical analyses consider only the circular geometry of scratches.
More recently, Brand [14] analysed geometrically, in a more general
way, the shape of the surfaces for constructing specular holograms to
be formed by fabrication techniques such as milling, grinding, stamp-
ing, ablation, etc. Duke [15] used hand-made and mechanical engraves
of some particular curvilinear geometries to form abrasive holograms
on aluminum plates and by an etching press.

Hologravures as computer-generated holographic laser-engrav-
ings using circular-arcs as code curves were presented by Augier and
Sánchez [16–18]. This approach is a generalisation of the scratch-
holographic record. Engravings and technology were created in order
to allow the competitive use of these displays and to widen its
applications, scope and quality by making computer-generated en-
gravings directly by a laser. This technique allows reproduction of
hologravures from an original computerised design. As in [16], we
have conserved the general use of the term “holography” when
referring to this technique of “scratches”, able to encode three-
dimensional information, and to the corresponding reconstructed
images. Although these displays are not holographic in the strict and
original sense of that term, they possess a group of optical properties
in common with conventional holograms [1,2,8,13]. Consequently, a

http://dx.doi.org/10.1016/j.optcom.2016.11.018
Received 8 July 2016; Received in revised form 8 November 2016; Accepted 11 November 2016

⁎ Corresponding author.
E-mail address: aaugier@fisica.uh.cu (Á.G. Augier).

Optics Communications 389 (2017) 212–223

Available online 27 December 2016
0030-4018/ © 2016 Elsevier B.V. All rights reserved.



hologravure is also considered as a holographic-engraving process to
record directly by laser an encoded "virtual-scene" from a 3D
computer-generated world onto a 2D engraving, and to recover
optically the original scene as a 3D reconstructed image from the
real world, by means of appropriate illumination. Thus, for a
determined size of the plate, undistorted stereo images can be
observed for a wide range of viewpoints under an adequate position
of the light source. Hologravures have been exhibited in public art
exhibits, in conditions of standard gallery illumination. An example in
the transmitted light mode, showing photographs of appropriate
quality, can be found in [19].

In these engravings, two-dimensional representations on the re-
cording material are considered as a 2D code that allows the corre-
sponding 3D object image to be recovered. When the engravings are
recorded in transparent materials, the reconstructed images can be
observed in both the transmitted and reflected illumination modes.
Some interesting applications are shown in [16–18].

Considerations about the internal shape of scratches, as grooves,
are not usually found in the thematic literature, although in isolated
cases we can find some remark. For example, in [1] the circular
scratches made by a lap on nickel plated aluminum piece was analised
as curved line-scatterers reflecting the light equally in all radial
directions, where each incoming ray is scattered as a hollow cone of
rays. The line-scatterer is represented in [13] as a bent rod, and each
ray from the point source produces conical sets of scattered rays. It is
shown not rigorously how the images are formed; the circular line-
scatterer produces both a reflection-mode image sent to one side of
reference plane, and a transmission-mode image sent to the other. In
[12] the intensity distribution of the fan beam produced by circular
scratches is considered experimentally. This paper shows photographs
from positions of a possible observer, of a single circular broad scratch
with a semicircular profile produced by a turning lathe, illuminated by
a light point-source in transmission mode. From each position, one can
see two light spots at opposite sites on the scratch. In [16] the quality of
the lines traced by the CO2 laser on some materials, as acrylic,
polycarbonate, acetate and glass was considered. Microphotographs
of the scratches drawn by steel point or laser traces on these materials
and measurements of scratch average width are shown. Except in the
case of engravings on common glass sheets, where can be observed that
the grooves are broken, the reconstructed images from hologravures on
other materials were qualitatively satisfactory.

The purpose of this work is to construct a basic theory of
hologravures founded on general principles of the light ray behaviour.
This approach is a new theoretical and experimental study on general
curvilinear-encoding of image information as a novel perspective,
allowing the design of engraved images for specific ends. Curves of
very general geometric shapes can be used for encoding 3D image
information from virtual models onto a 2D engraving. The experi-
mental study of particular cases of curvilinear codes, showing their
influence on the 3D reconstructed images, is developed by means of the
same CO2 laser-engraver used in [16]. This technique allows an
adequate comparison with theoretical analysis.

A sufficiently broad theory allowing the analysis of general curvi-
linear scratch-codes and its influence on the 3D images obtained from a
holographic engraving has not been previously available in the
thematic literature. This work contributes to a more complete back-
ground of this theory.

2. Hologravures as computer-generated laser-engravings

According to Caulfield [20], the first computer-generated hologram
known was made by Kozma and Kelly in 1965. Indeed, it was not used
as a hologram, but as a complex spatial filter [21]. Pioneering work in
this direction was also developed by Lohmann et al. [22].

Standard computer-generated holograms are usually of reduced
dimensions and their use mostly restricted to work as diffractive optical

elements in optical information processing. In other types of digital
holography, information is typically recorded and recovered by a
computer, with applications in areas like interferometry, microscopy,
and data encryption [23]. Ordinary techniques for making computer-
generated holograms [24] use a mathematical description of a virtual
transparency. Typically, the calculated diffraction pattern first has to be
plotted on an expanded scale and later photographically reduced. Other
non-standard techniques, supporting computerised models and colour
integral-holograms have been developed, including integral or stereo-
graphic holography, or similar technologies, and large format pieces, as
for example in [25]. We will not mention here the numerous non-
holographic computerised techniques to obtain 3D images that can be
found in the Web.

Unlike the aforementioned techniques, a hologravure [16–18] is an
engraving and an image reconstruction process. In the first step, by
using a laser-engraver, an encoded 3D computer-generated virtual
scene is recorded on a suitable 2D medium, recovering later optically,
in a second step, the original scene as a three-dimensional image. The
light source is required to have very limited spatial extension. These
processes are schematically shown in Fig. 1.

However, by using the same type of computer-generated code a
similar holographic-engraving could be obtained by another process,
able to record it on the medium, and obtaining the same 3D image by
using the appropriate illumination. As the computer-generated scene is
directly encoded, and reconstructed later optically, neither complex
mathematical description, nor elements of standard computer-gener-
ated techniques are needed, and no characteristic technology of the
integral stereographic holograms is used. The maximum size of these
engravings is limited only by the dimensions of the work space of the
laser engraver; therefore, it can generate pieces of large format. This
technique also allows 3D images to be obtained by means of engrav-
ings, requiring very low resolution. The typical spatial frequency of the
laser traces on the material is on the order of one or two lines per
millimetre, although this number can be increased, depending on the
application, the recording medium, and the characteristics of images
and laser used to engrave.

Next we show, for circular scratch encoding, the basic correspon-
dence between the points of the 3D model and the points of the
hologravure in the 2D plane. It was established in a very simple way in
[16]. Note that these basic rules are contained in Fig. 1.

• Each point of the 3D model is coded as a segment of a circular curve
in the hologram plane. The top of the curve matches the respective
object point projection on that plane. (Observe 2D-encoded image
from 3D model, to the left in Fig. 1a).

• For all the points of the 3D model that are at equal distance from the
hologram plane, all the circular curve segments have the same
radius.

• The distance between each point of the 3D model and the hologram
plane is directly proportional to the radius of the corresponding
coded circular curved segment. In this way, information about object
depth is recorded.

Any available 3D virtual model computer generated could be
represented in a 2D code by using some adequate encoding software
and a CO2 or other type of laser, as a tool for directly drawing the
calculated scratch-codes on the suitable material. The power of the
focused laser beam and its speed of movement on the material should
be carefully adjusted.

Since the virtual depth of an image-point is proportional to the
scratch radius, then the aperture angle of the circumference-arc is like
the limit of a certain viewing angle, so that image only becomes visible
at viewing angles.

Here, to appreciate the effects of depth, we show photographic
stereoscopic pairs obtained from reconstructed 3D images. We use the
illumination modes by either reflection or transmission. All images
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were obtained using a 20 W halogen lamp.
In order to observe these photographic stereoscopic pairs, the

reader should accommodate vision and convergence at an appropriate
distance from the figure, or if necessary, use a simple stereoscope. The
detailed observation of the three-dimensional images from the stereo-
scopic pairs is necessary for a clear understanding of the ideas
expressed in this work.

2.1. Observing 3D images from engraved scratches

When a point from the virtual model has been encoded by a
curvilinear laser-scratch on the suitable material, and a tiny straight
segment of scratch is observed from a single point, as illuminated by a
point like source, a bright, sometimes achromatic small region, due to
scattering, reflection, and/or diffraction, can be observed. Other
regions of the scratch are not seen as bright but for eventual stray
light. Let us consider that a fine scratch curved segment, tangential to a
unit vector T, is observable as a bright spot by an observer in O, under
illumination from the light point-source in S, as shown in Fig. 2.
Observe that points O and S could be either in the same side of the
plane π, or on the opposite side of it, which keeps in mind the
possibility of both modes: reflection and transmission of light. The
bright spot can be observed from a particular point of view O, due to
the light coming from each point P acting as a secondary light source.

If each point of a 3D virtual-object is coded with a different curve,
for the observer's eyes and for a fixed light source position, a
stereoscopic set of points forming a three-dimensional image of the
original 3D model is obtained. The type of curve C belongs to a wide
class of possible functions, defined on the plane, encoding the three-

dimensional image information of model. Note that segment O´S´ is
the projection on plane π of line OS. Both lines also belong to the
plane Ω.

Next we use Fermat's Principle to find the location of the bright
spots on scratches of plane shapes used as codes, showing that the
position of stereoscopic points can be predicted in a general way.

Fig. 2. Simple encoding with in-plane closed curved code. Light rays are represented as
straight lines between the connecting points O, P and light-source S. The point P belongs
to the curve C in the plane π of the engraving. A general study of this problem can be
carried out by starting from the general principles of physics. In particular, Fermat's
Principle in Optics [26,27] has been used in many cases for obtaining the laws of light
behaviour.

Fig. 1. Hologravure process using circular-arcs like curved codes, as is presented in [16]. (a) Step 1. Encoding and laser engraving process from a 3D-model, previously constructed by
computer software. (b) Step 2. Image reconstruction from hologravure of recorded virtual original object.
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3. Fermat's principle and the observation of 3D images from
holographic engravings

If an arbitrary type of curve is chosen to encode the points of the
virtual object, each point of the 3D model can be coded with a segment
of this curve in the hologram plane. In the step of image reconstruction,
in adequate conditions for each position of the observer's eyes and for a
fixed light source, a stereoscopic three-dimensional image of the
original 3D model is obtained.

In the encoding step of the virtual object points, each closed curve
used as code gives rise to two conjugated image-points. To avoid the
duplication of reconstructed images, it is generally convenient to use an
open segment of curve, allowing a single image to be obtained.
Nevertheless, to carry out the theoretical studies of the image of
stereoscopic points, it is appropriate to consider the complete closed
curve to obtain the behaviour of the two conjugate points. In practice,
different scales and lengths of the code-curve segments are taken.

Let us consider a geometric model to find the locus of the bright
points P on the curves in the engraving plane, for each position of the
observer's eyes O and for a fixed light source S.

Next, several geometric conditions are considered:

• The light source is given as a point-source.

• The observer's eyes are considered as observation points.

• The scratches are given as closed curves or curvilinear segments,
without thickness.

• The engraving is considered a two-dimensional plate, like a defined
region on the plane.

• Each observable bright curvilinear tiny-scratch-segment, tangential
to a unit-vector T, is regarded as a bright point-spot.

• The three-dimensional reconstructed image is considered to be
formed by a set of stereoscopic bright points.

According to Fermat's Principle, the optical path of a light ray
moving with velocity v(x, y, z) in an inhomogeneous medium between
two points is an extremal of a functional, being necessary to find the
extremal curves using the calculus of variations. A variational approach
of this problem allows the most general and complex cases of non-
plane scratch-curves and holographic surfaces to be solved. However,
in our case, in a isotropic and homogeneous Cartesian space, it is well
justified to affirm that the speed of light v is the same everywhere, and
that light rays are straight lines along the paths between the connecting
points. Under these circumstances, the problem reduces to the condi-
tions of extremum (maximum, minimum or stationary estate) for the
light ray path, taking as the investigated function the sum of Euclidean
distances from the point-source S to observation point O, passing
through a point P belonging to the curve C in the plane π of the
engraving. The position and shape of the curvilinear scratch reduce the
possible points P (x,y) of the plane to those satisfying the equation of
the curved code Ψ(x,y)=0. To facilitate this mathematical work, we
consider the engraving located on the plane z=0.

Let the arbitrary closed curve C be a scratch-code in a reference
system of Cartesian coordinates, on the plane z=0. In this case, we have
a problem of conditional extremum, which can be solved by using
Lagrange's indeterminate multiplier method.

Given the curve Ψ(x,y)=0 as a constraint in the plane z=0, we need
to find the necessary extremum condition of the sum of the Euclidean
distances SP and PO, being P(x,y) a generic point on this curve.

Let us consider the following affirmation:

Light coming from a point-source at S, passing through the point P
belonging to a curve C on the plane π, will reach the observer's eye
in O only when the sum of the Euclidean distances SP and OP
between these points is a maximum, a minimum or, in general, a
stationary value.

Light travelling along a straight line can be dispersed, reflected,

refracted or diffracted at the point P. The mathematical function whose
extremum we want to find is the sum of the Euclidean distances L =
L(x,y) and D = D (x,y) between the considered points.

f x y L x y D x y( , ) = ( , ) + ( , ) (1)

where we define:

L SP L x s y u h
D OP D x x y y z

= ; = ( − ) + ( − ) +
= ; = ( − ) + ( − ) +

2 2 2

0 2
0

2
0
2

The coordinates of points S and O correspond to those shown in
Fig. 1.

In order to find the solution with a conditioned extremum, we build
the auxiliary function

F x y f x y λ Ψ x y( , ) = ( , ) + ( , ) (2)

where from (1)f(x,y) is the sum of L and D, the constraint equation is
Ψ(x,y)=0, and λ is a Lagrange's undetermined multiplier.

3.1. System of equations for finding the image point

Considering the necessary extremum condition, the solution can be
obtained from the following general system of equations:

λ

λ
x y

+ = 0

+ = 0
Ψ( , ) = 0

f
x x
f
y y

∂
∂

∂Ψ
∂

∂
∂

∂Ψ
∂

(3)

In order to solve the system (3), eliminating λ from the first two
equations, we define a family of vectors U=U(x, y) that in matrix form
can be written as:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥U =

+
+

x s
L

x x
D

y u
L

y y
D

− −

− −

0

0
(4)

Taking into consideration that the direction of gradient∇Ψis the
direction of vector N, normal to curve x yΨ( , ) = 0, if T is the tangent
vector to this curve, then for all the points P perceived by the observer's
eye in O, system (3) can be written in equivalent vector form as:

T U
x y

• = 0
Ψ( , ) = 0 (5)

where the first equation in (5) is the scalar product of the two vectors.
If the vectors T= T(x, y) and U = U(x, y) are written in matrix form

⎡
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y

1
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1 +

dy
dx
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dy
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2

2

(6)

then the previous system of Eq. (5) can be written as

U U
x y
+ = 0

Ψ( , ) = 0
x y

dy
dx

(7)

where Ux, Uy are the components of vector U in the x and y directions
respectively, and the derivative is

dy
dx

ψ x y
ψ x y

=
− ( , )

( , )
x

y

∂
∂

∂
∂

Notice that, for single-eye observation, a bright spot P is located at
the point of the scratch where the tangent to the curve is perpendicular
to vector U.

Each eye can see separately a different bright point on the open
scratch. Thus, as each eye observes the engraving plane under different
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parallax, the two required points of view for forming the stereoscopic
image are obtained.

The relations (5) and (7) indicate that for each point P(x,y), the
solution of the system (3), the tangent vector T to the curve C is
perpendicular to each vector U=U(x,y) of a family satisfying (5). It can
be proven that a common spatial direction exists for the vectors U, and
that they are in the direction O´S´ for any curve C.

Thus, the previous statement can be expressed for any curveΨ(x, y)
=0, and for any real number β, as:

U Ux y β( , ) = 0

We will take a vector of this family; the constant vector U0 defined
in the form

⎡
⎣⎢

⎤
⎦⎥U

x s
y u= −

−0
0
0

Thus the system (3) becomes:

T U
Ψ x y

• = 0
( , ) = 0

0
(8)

where the vector U0 is contained in the plane Ω.
Although system (8) is expressed in Cartesian coordinates, by

having the scalar product of vectors, the fundamental property of
being independent of the system of coordinates specific to which the
space is referred, the Eq. (8) have general validity and constitute the
expression of a geometric condition. For the relative positions of the
point-source and observer, at S and O respectively, the bright spot P is
located at the point of the scratch where the tangent vector T to the
curve Ψ is perpendicular to vector U0. The solution is determined by
the geometric model's conditions defined above.

Notice that, according the theoretical results obtained by using the
Fermat Principle the point P on any arbitrary curved code is situated at
the point where the vector T, tangent to the curve, is also perpendicular
to the plane SPO, called Ω in Fig. 2. The mathematical form of this
statement is expressed by the equations system in form (8).

In the solution of system (3), no approximation has been made.
Observe that, as a consequence of the geometric relationships among
the source, the observer's position and the bright spots on curve C,
system (8) is useful, not only in the case of light-reflection mode, but
also for light-transmission mode geometry.

It can be verified directly that for our reference frame, the previous
system of equations can be written in the following simple general
form:

x s y u
Ψ x y
( − ) + ( − ) = 0

( , ) = 0

dy
dx0 0

(9)

Note that:

• All points P(x,y) obtained as solutions lie on the curve x yΨ( , ) = 0
• All observers situated in the line OS will see the same bright points P

on the closed curve C.

• The Euclidean 3D distance from the source S to the observer O is a
constant, and also the projection O´S´ of this line on plane π. To
find the bright points on the curve C, we need the projections O´S´
on the plane π of the engraving.

• The code-curve C can be a simple closed curve of arbitrary shape,
being relevant for obtaining special behaviours of the reconstructed
images.

Bearing in mind the aforementioned remarks, we can see that there
are several ways to change the location of the bright point for an
observer: by changing the source and/or observer position, by changing
the shape of the curve C with the corresponding local orientation of the
vector T, and by tilting the plate in different ways.

4. Study and comparison of some simple cases

The use of non-circular codes in the engraving can modify the
stability and spatial position of the observed images. This analysis is
useful for all "scratch" holographic engravings. Both the circumference
and ellipse are some of the conic sections. A case of particular interest
is the elliptic code. Parabola and hyperbola, as plane codes of conic
sections are not studied here.

4.1. Elliptical arcs as segments of conic sections

When the curve C is a canonical ellipse, to find the bright points we
need solve system (9) with the constraint:

x y x
b

y
a

Ψ( , ) = + − 1
2

2

2

2 (10)

where a and b are the semi axes of the ellipse.
The solutions are two bright points for each position of the source S

and the observer's eye O. The direction O´S´ on plane π is the same as
that considered before.

We obtain:

⎛
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⎝⎜

⎞
⎠⎟
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⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
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x b

a b
y

a

a b
= ±

+
= ±

+y u
x s

y u
x s

y u
x s

1
2

2 −
−

2
2

1/2 1

2 −
−

2 −
−

2
2

1/2
0
0

0
0

0
0 (11)

In Fig. 3 are represented the projections on the plane of the
observer's eye at coordinates O ′1 and O ′2 and of the light point-source
at coordinate S´. Each eye can see separately two bright points P on the
ellipse. The observer's eyes can only see the represented spots on the
curve. In Figs. 3 and 5 we will suppose that the units of length are given
in cm.

Notice that in Fig. 3, the bright spots observed by each eye lie on
two different lines belonging to the plane of engraving. For the eye at
O1 they are represented as dotted lines parallel to direction O S′ ′1 . Thus,
the observer's eye at O1(2, −8, h) can see only the points on these
dotted lines. For the eye at O2(9, −8, h), the two corresponding parallel
lines to direction O S′ ′2 are not represented.

Fig. 3. Elliptic code in the case of a =4, b =6, and source S located at height h, with
coordinates on the plane π at s=0, and u =0, and the bright spots observed from points
O1 and O2, with in-plane projections O´1 and O´2. For this ellipse is b/a =1.5.
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4.2. Circular code as a particular case

In [1], Plummer and Gardner analysed a simple case, in reflection
mode, for a circular scratch. This is a particular geometric study,
approaching the solution to the case of a far source and vertical
illumination.

Next, we consider the circular geometry, comparing our results
using system (9) to those obtained in [1].

If curve C is a circumference of radius R, then to solve the system of
Eq. (9), for every position of the source S and the observer's eye O, we
have the constraint

x y x y RΨ( , ) = + −2 2 2 (12)

The slope of a straight line in direction O´S´ of plane π is m = y u
x s

−
−

0
0

.

The straight line, perpendicular to this direction, being tangential to
the scratch curve can be obtained; the solutions are two bright points,
(x1, y1) and (x2, y2), for each position of the source S and the
observer's eye O. Fig. 4 shows the source S over the centre of the
circumference, coinciding with the origin of coordinates, at height h.

The projection of the point-source S on the plane is at the origin of
coordinates. We can solve Eq. (9) with constraint (12), for s=0, u =0. In
this case, we obtain the same result more easily by taking a = R, b = R
in (11).

⎛
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⎜⎜

⎛
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⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
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⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

x R y y R

x
= ±

+ 1
= ±

+ 1y
x

y
x

1 2 1/2 1
0

0

2 1/2
0
0

0
0 (13)

The bright points perceived by the observer's eyes at O1 and O2 are
shown in Fig. 5. The straight lines in directions containing the
projections O1´S´ and O2´S´ on the plane π pass through the origin.
The straight lines perpendicular to these directions are also repre-
sented.

From the above example, for a circumference of radius R =4, and
the points at O1´(−3.5, 8) and O2´(3.5, 8), the eye at O1 can see the
points (−1.603, 3.665); (1.603, −3.665), on the line O1´S´ while the
eye at O2, can see the points (1.603, 3.665); (−1.603, −3.665), on the
line O2´S´.

5. Stereoscopic effect

We are able to perceive depth in 3D space because we have two eyes
separated horizontally by a certain distance. The stereoscopic vision is
possible when each eye of a binocular observer watches the same scene
from a slightly different perspective.

5.1. Coordinates of stereoscopic points

If each eye of the binocular observer sees the bright spot on the
curved scratch at a different place, and if both positions of the bright
points are observed adequately displaced in the direction of the eyes’
separation, a single stereoscopic point is perceived as floating in front
or behind of the scratched plate, depending on the sign of the
curvature. The observation of the stereoscopic effect by a binocular
observer is also called stereopsis.

The position of stereoscopic points in the case of circular scratches
and frontal illumination was considered in [1,12].

A more general study shows that there are two possible models to
explain stereoscopic images from holographic engravings. These mod-
els would be appropriate, depending on interior profile of scratches and
physical phenomena that give rise to images. Each model gives the two
possible image configurations; in front and behind the reference plane.

The observation of the stereoscopic points for bright spots on an
ideal circular scratch is shown in Fig. 6a, according to model described
in [1].

The observation of the stereoscopic effect according to the alter-
native model presented in this work is shown in Fig. 6b, where we can
see the stereoscopic images in front or behind the engraving plane, but
they have been inverted or changed in their relative position with
respect to the engraving plane.

In a general case, by using the solutions to system (9), and
considering the rectilinear propagation of the light, we can obtain the
coordinates of the stereoscopic points by solving a system of two linear
equations in three dimensions for each pair of points (x1,y1), (x2,y2)
having parallax. In vector form, the two straight lines from each
observer's eye to the bright spots at curve C, as a linear system of
parametric equations, is given as:

t
t

r r S
r r S

= +
= +

01 1

02 2 (14)

where t is a parameter; t1 ≥ ≥ 0.
By representing the vectors in matrix form we have

Fig. 4. Particular geometry with a circle as the curvilinear "scratch-code" and the light
source located at height h from the centre, coinciding with the origin of coordinates.

Fig. 5. The projections of the observer's eyes on the plane π are at the points O1´ and
O2´, in such a way that at a particular instant each eye can see, separately, only two
bright points P on the circumference.
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where we suppose that the reference plane is z=0 and that symmetry
exists in the "x" axis respect the origin for the observer's eyes.

In this way the solution for the stereoscopic image point (x, y, z) in
front of the engraving is

x x x x
x x x

y y x y x x y
x x x

z z x x
x x x

= − ( + )
( − 2 − )

= ( − − 2 )
( − 2 − )

= (− + )
( − 2 − )0

1 2

2 0 1

0 2 0 1 0 1

2 0 1
0

1 2

2 0 1

(15)

And the stereoscopic image point (x, y, z) behind the engraving is

x x x x
x x x

y y x y x x y
x x x

z z x x
x x x

= ( + )
( + 2 − )

= ( − + 2 )
( + 2 − )

= (− + )
( + 2 − )0

1 2

2 0 1

0 2 0 1 0 2

2 0 1
0

1 2

2 0 1

(16)

where 2×0 corresponds to the inter-pupillary distance.
Note that for the particular symmetrical circular conditions and

from the position of the observer's eyes and the light source, the

coordinates of bright spots on the circle satisfy x1=-x2; y1= y2; and
y0/x0= y1/x1.

In this particular case, we have two possible solutions.
First, for x=0; y=0, we can find and writing for the points of the

stereoscopic images the z-coordinate solutions:

z z x
x x

= ±
( ± )± 0

2

0 2

From aforementioned symmetrical circular conditions, these solu-
tions can be written in this case as:

x y z z R
x y R

= 0 = 0 = ±
+ ±

± 0
0
2

0
2

(17)

In Eq. (17), the sign (+) corresponds to the image in front of the
engraving and the sign (-) to that behind the engraving. This result is in
good agreement with the solutions obtained in [1] from geometrical
considerations for this particular case.

From the same system of Eq. (14) we have the possibility to obtain a
different images configuration.

The second solution we can find for x=0;y ≠ 0

x y y R
x y R

z z R
x y R

= 0 = ± 2
+ ±

= ±
+ ±

± 0
0
2

0
2 ± 0

0
2

0
2

(18)

Observe the representation of stereoscopic effect according this
model in Fig. 6b.

Notice that in both models, for the same conditions of illumination
and observation, and equal radius of scratch, the stereoscopic image-
points appear at the same z-coordinates.

5.2. A graphical geometric approach from the solution of system of
equations

As a consequence of the general validity and geometric sense of (8),
we can approach to solutions of system of Eq. (9) in graphic form,
finding the locus of the bright spots. In the same way, by taking like
data the solutions from (9), the locus of stereoscopic points can be
obtained considering the rectilinear propagation of the light.

Such a graphic representation would be adequate, in certain cases,
to describe the geometry of a complex system of specific encoding
curves or when a rigorous solution is not necessary. It would be also
convenient as a reference, before or after solving the corresponding
system of equations.

Next we describe a set of geometric steps, valid for arbitrary
shape plane codes. The stereoscopic point can be found by means of
step 4 after finding the position of the bright spots on a code-curve
by steps 1–3.

1. Find the straight line segments from the point-source S to the
observation point O, for each observer's eye.

2. Find the projections on the plane π of the straight line segments
obtained above. These lines will be considered as a reference.

3. Determine the perpendicular to each segment of straight line O´S´
projected on the plane, so that they are also tangents to curve C. The
points of tangency on C are the coordinates of the bright spots
observed from each point O.

4. Find the straight lines from the points O of each eye to the spots
found in step 3 on the plane, and draw these lines connecting the
considered points in the 3D space. Determine the stereoscopic
points at the intersection of the straight lines. In the case of model
described in [1], if the bright spots on curve C are observed from the
concave curvature side, the lines cross before the spots and the
stereoscopic point is "in front". If the bright spots on curve C are
observed from the convex curvature side, the lines cross behind the
spots and stereoscopic point is "behind". In the case of the
alternative model presented here, this rule is inverted.

Fig. 6. Stereoscopic points perceived by a binocular observer in the circular-scratch
geometry. a) As is considered in [1]. Stereoscopic points at x=0; y=0; and z-coordinates
in front and behind of the engraving plane. b) According to alternative model considered
in this paper. Stereoscopic points at x=0; y≠0; z-coordinates also in front and behind the
plane.
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Observe the two cases of the stereoscopic effect shown in Fig. 6a
and b.

5.3. Experimental study of stereoscopic image

For the experimental study of image characteristics, we used the 3D
image of a polyhedron obtained from hologravure shown in [19]. This
polyhedron is engraved on a transparent 27.94×35.56 cm acrylic sheet.
This study is useful to understand how the 3D images are perceived by
the observer in front or behind of the scratched plate.

A polyhedron is a relatively simple geometric figure that allows its
three-dimensional form and possible deformations to be easily appre-
ciated. A photograph from the corresponding 3D image, in front of the
engraving, is shown in Fig. 7, where the geometry for reconstructing
the image is similar to that shown in Fig. 4, but the used code-shapes
are segments of circumferences of variable radius, opening upward.

The results show that both the conditions of illumination and
observation are relevant with respect to the relative position of the
curve-code curvature. According to these conditions, the 3D image can
be observed in front or behind the engraving plane. The results are
summarised in Table 1, where we considered concave (curving
inwards), and convex (curved outwards), regarding the relative posi-
tion of the circular-segments to the source of light, or to the observer.

5.4. Observation of orthoscopic or pseudoscopic images

Three-dimensional images optically reconstructed from hologra-
vures can be observed as orthoscopic or pseudoscopic images.

An image is orthoscopic or pseudoscopic, “correct” or "incorrect”,
with respect to a certain reference object. In the case of these
computer-generated engravings, this reference is the image that the
user of the computer software builds in the 3D image editor. This
original image, located in a reference screen, is our “object”, which is,
in the “computerised” sense of the term, virtual. To this image it is
necessary to refer to any correctness or incorrectness.

Usually, when we consider open curves as scratches, and the
engraving is illuminated in reflection mode, from the concave side of
the engraved curves, a 3D image will be observed in front of the
engraving plane. If, under the same conditions, the engraving is
illuminated from the convex side of the curves, the observed image
will be behind the plane. A similar analysis can be made when images
in the transmission mode are obtained.

Thus, when the reconstructed image from the hologravure is like
our “virtual-object”, it is correct, and we call it orthoscopic. In the case
of depth inversion, the optically reconstructed image is incorrect (i.e.
depth reversed), and we call it pseudoscopic. The 3D image from the
polyhedron, in front of the plate, which is shown in Fig. 7 is an
orthoscopic image, because it is like the original virtual object: a
computer-designed convex polyhedron. We obtain a more complex
case if the image contains several objects. Fig. 8 shows two stereoscopic
photographic pairs obtained from the 3D reconstructed images of a
complex scene. Note that when the light source is above the level of the
engraving plate (Fig. 8a), we observe in front of the plate, for the
corresponding stereoscopic image: first, the cube; secondly, the face on
the right; and finally the face on the left. As a result of the previously
obtained computer-generated virtual model, the author of the designed
scene has defined this display as the orthoscopic image.

If for the same engraving the light source is below (Fig. 8b), the
reconstructed scene appears to be inverted with respect to the distances
from the plane of the engraving to the viewer, being then observed
behind the plate. The author of the designed scene has defined this
inverted display as the pseudoscopic image.

A similar effect happens to images of objects from the real world
obtained in conventional holography, by using as a reconstruction

Fig. 7. Photograph from 3D image of a polyhedron engraved on acrylic plate, obtained in
reflexion mode. The plate was rotated 180° in-plane for obtaining the adequate
conditions of illumination and observation from the concave or convex curvatures of
the codes mentioned in Table 1.

Table 1
Experimental study of the stereoscopic image position from hologravure with respect to the curve-code curvature for reflection mode, according to the conditions of observation and
illumination.

Case Curvature illumination Curvature observation 3D-image position

concave convex concave convex behind Infront

1 x x x
2 x x x
3 x x x
4 x x x

Fig. 8. Photographic stereoscopic pairs from a 3D complex scene, laser engraved on
thermo-resistant acetate piece. Reconstructed 3D image was obtained in reflection mode.
a) Orthoscopic image. b) Pseudoscopic image.
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beam the reference beam or its conjugate.

6. Study of some curved-code shapes

We have seen how the geometric theory obtained from the
fundamental laws of light rays behaviour leads to formation of
holographic-engravings images. We concern with a very general shape
of scratches, different scales, and resolution. Such a general theory does
not concern a specific physical process, but only the ability of the
possible processes so that the light arrives from the spots to the
observer.

When a curved scratch is observed with both eyes, different light
spots are seen on it with the right and the left eye, so that each eye sees
separately images from a slightly different perspective, independently
of the physical process used to obtain them. Stereopsis leads observers
perceiving both images to observe the combined stereoscopic spot
appears in front or behind of engravings plane.

6.1. Interior profile of the grooves

In the space allowed for this paper, we have only been able to
introduce the geometric theory for plane-shape coding scratches,
obtaining the tree-dimensional images and discussing the conceptual
models. The problem considering the internal shape of scratches as
grooves is far too from our objectives to allow a complete analysis here.
We may, however, consider a few remarks concerning some of the
simpler aspects of this problem.

We can see that according to the specific physical process and the
observation mode required for a type of image, a certain technological
process and an engraving material will be more appropriate to record
image information, and the grooves would have a different interior
geometry. So, the interior shape of the grooves could have a different
profile for different technological processes. This profile and the
involved physical phenomenon and technology determine the image
quality and contribute to its behaviour.

The quality of the lines traced on some materials, as acrylic,
polycarbonate, thermo-resistant acetate sheets and glass were studied
by us in [16], where there are presented measurements of average
width of scratches for several representative engravings, as well as
microphotographs of engraved grooves.

When one draws directly with steel needle on an appropriate
material a hand-made hologram,

-simpler version of the scratch technique- the produced drawn
grooves conserve in their interior profile a similar form to the road left
by the tip of the needle moving on the material. In this case we haven’t
a previous computerised drawing. The final result obtained by the tip of
the needle in a continuous curved form and the grooves take a
continuous profile depending only of the hand movement of the
draftsman. In our present paper, stereoscopic images from Fig. 9a, b
and Fig. 11b were coded hand-drawn, directly with steel point on
acetate sheet.

In the case of hologravures, they are computer-generated and laser
engraved scratch holograms, made by a cw CO2 laser focused beam
[19]. In [16] it is described how the engraver-laser system uses a lens
forming a focal spot of a few micrometers in diameter. It is well known
that in these cases the profile of power in the focused region could
approaches to Airy-Disk of the Function of Airy, due the diffraction
process of the light in the focusing lens. In consequence, the cw laser
heats and softens the material. The intensity of the focused laser beam
and his speed of movement on material are carefully adjusted for just
slightly vaporizing the surface of the material, leaving a groove on it.

The experimental evidence in [16] suggests that in the cases
considered, due to the nature of the processes used to record, scratched
grooves of usual holographic engravings made on adequate materials
could have internal profile approaching to the road left by the
engraving tool on the material; the top of the needle or steel point,

or the focused laser region.
It is an experimental fact that engravings made by certain mechan-

ical processes [1,10,11] or by a needle or steel point [13,16]; or the
hologravures, made by a focused laser beam [16–19]; or engravings
made by others fabrication techniques [14,15], they produce 3D images
of appreciable good visual quality.

Nevertheless, it is appropriate to stand out that the question of the
efficiency of the grooves profile, as well as the related problem of how
obtaining an optimal quality of holographic engraving images by
scratch techniques, it is an open and not yet solved problem constitut-
ing itself a topic for a new research. In all the cases, it will be necessary
to verify rigorously any hypothesis or result experimentally deter-
mined, however, what is firm evidence is that the holographic engrav-
ings, as they are described in our paper, are able to obtain good images,
and that our model is able to describe rigorously its behaviour.

An optimal image quality is a concept depending on the type of
image considered and observation mode, and deserves a special study
including the internal profile of the grooves, the relief and character-
istics of the engraving material and recorded surface, and the detailed
analyses of involved technological processes, and its consequences.

It is remarkable that our geometric approach in this work doesn't
consider any of these questions in explicit form; however, based on the
Fermat Principle and the behaviour of the rays of light we have
demonstrated that it can describe rigorously the position of the light
spots on scratches perceived by observers, the locus of the stereoscopic
image-points and the behaviour of these 3D images regarding their
relative position, behind or in front the reference plane. The commen-
ted facts show that the results obtaining from any physical process and
technology allowing to the light rays to satisfy the Fermat Principle
could be described.

In the case of circular codes (see Fig. 6a and b), a simple example
shows an adequate model to describe these images, by using as
solutions either expression (17) or (18); for the case of pitch lap
(polishing disk) engraving image-process on a nickel plated aluminum
flat, described in [1], or for the case of hand-drawn scratch holograms
made by steel tip on acrylic [13,16], or for engravings made by a
focused laser on some plastic materials [19].

6.2. Experimental study of some plane curvilinear codes

We have seen that a simple type of plane curve can be used to code

Fig. 9. Photographic images obtained by using simple geometrical shape codes. a) Letter
B, obtained by using a triangular form code. b) Letter A is encoded by an "undulated"
code.
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the image of a computer-generated “virtual” object on the engraving
plane. Fig. 9 shows the use of simple geometrical forms for encoding
the image information. The open curves as scratches are drawn on.

We show encoded letter images by using two simple geometrical
shapes. The letter B was obtained by a triangular code, and an
“undulated” code was used to codify the image of the letter A. For
the undulated code, we observe two reconstructed images of the
original letter. The appearances of the position and depth of these
images of letters depend on the relative size and inclination of each
lump-wave form; the image is repeated according to the number of
crests in the undulation. Consequently, each lump from the encoded
curve-shape acts as a separated single curve, giving a resulting image.

A closed “undulated” code is represented in Fig. 10, where the
bright image spots on curve C have been found theoretically from the
set of practical geometrical steps shown above. The corresponding open
code allows two images to be obtained, according to the number of
“crests” in the undulation, as shown in Fig. 9b.

6.3. Codification by elliptical arcs

The size of the curve used as code determines the visual effect of
depth in the 3D image points; however, if the curve is an ellipse, their
eccentricity determines other effects. In order to describe the form of
the curve for elliptical codification, we need a geometric parameter.
Although the usual parameter for describing an ellipse is its eccentricity
ε, which is in the interval, ε1 ≥ ≥ 0, for us a more useful parameter can
be defined as the ratio r = b/a;r ≥ 0.

The elliptical geometry described by the relative parameter r is
shown in Fig. 11a. In a more general case, the ellipse could be inclined
in a plane with respect to the rectangular Cartesian axes. In this case, if
"x" is the abscissa axis, we also take as a parameter the angle α with
respect to this horizontal axis. Fig. 11b shows a photographic stereo
pair from a 3D image of the letters A, B, and C coded by a steel point on
an acetate sheet. Observing the 3D image, we can see that the letters
appear in planes of different depth, in front of the scratched plate. A
small rotation of the letter C is observed, which changes between the
two angular positions of the pair, when the observation point moves in
a horizontal direction. The letters A and B show a better stability. They
were encoded using ellipses of different sizes but identical parameter r
=0.595. The letter C was obtained by circular encoding (r =1).

Fig. 12a and b show photographic stereoscopic pairs from images of
two letters A obtained by using computer-generated elliptical segments
as codes. The reconstructed 3D images are observed behind the
scratched plate, in transmission mode. For these plane letters, the

codes were designed by means of a version of the graphic design
software CorelDraw. Hologravures were laser-engraved on thermo-
resistant acetate pieces. Note the different effects of “stand up” of 3D
images from stereopairs and spatial inclination of the letters. The
spatial inclination of the 3D-plane of the flat letters is produced by the

Fig. 10. Closed "undulated" code, where the bright points have been found theoretically.
The points S´ and O´ are respectively the projections of point-source and observation
point on the plane. The tangent vectors to the curve, and perpendicular to the direction
S´O´, are represented.

Fig. 11. Codification by elliptical arcs; a) Elliptic geometry described by the relative
parameter r. b) Stereoscopic pair from scratch-holographic image of the letters A, B, and
C engraved directly hand-drawn by a steel point on acetate sheet. Reconstructed image
was obtained in reflection mode.

Fig. 12. Stereoscopic pairs containing two flat letters A. a) both encoded letters are
vertical, but the elliptic codes of the letter appearing below are inclined at the angle
α=45° with respect to horizontal axis “x”, b) both encoded letters are at different angle,
but the elliptic codes of the letter appearing below are inclined at the angle α=450 with
respect to letter axis. In all the cases stereoscopic images of the letters appear in planes
with different spatial orientation.

Á.G. Augier et al. Optics Communications 389 (2017) 212–223

221



inclination of elliptic axes. In Fig. 12a, the upper letter is upright but
the lower is inclined by α=45° with respect to the vertical axis of the
elliptical code. In Fig. 12b, the long axes of the elliptic codes coincide
with the symmetry axes of each letter.

The application of symmetric or asymmetric codes provides inter-
esting 3D effects, because in a simple way it is possible to change the
inclination of a flat stereoscopic image regarding the engraving plane.
Symmetric elliptic code changes this inclination in uniform way, but
asymmetric codes "twist" the plane.

6.4. Elliptic codes and image stability

When the observer's eye position shifts parallel to the abscissa axis
from left to right and conversely, with constant interpupillary distance,
the image undergoes an angular change with respect to the holo-
engraving plane.

In Fig. 13 the theoretical scheme is presented, which shows the
relative stability of bright points on a pair of elliptic code-curves when
the observer's eyes move along the abscissa axis. Note the small vertical
right-segment that joins the projections of stereoscopic points on the
plane in each case. L and R are the positions of the left and right eyes,
respectively. Fig. 13a shows this effect when the curves are ellipses with
parameter r > 1, while Fig. 13b shows the effect when the curves are
circumferences (r =1). Fig. 13c shows it when the curves are ellipses
with r < 1. The shape of the encoding curve and the position of these

bright points on the scratches determine the corresponding coordinates
of the stereoscopic point. When the spots are on an ellipse, the image
points are more or less stable, depending on the shape of the ellipse
(parameter r). If the curve is a circumference a small rotation of the
image-point is even appreciable. The best stability is obtained for
ellipses with a > b, which means the parameter r < 1. Consequently,
for elliptical encoding, an improvement of the stability of the images
can be appreciated when the codification parameter r is smaller.

A photographic arrangement from optically reconstructed images of
a letter A, corresponding to the scheme above, is shown in Fig. 14.
Elliptical arcs, as curvilinear codes with different r parameters, were
used in the process of virtual model encoding. The columns correspond
to different positions of the observer's eyes moving horizontally along
the abscissa axis. An advanced version of the “3D Silhouette” software
[16], allowing the elliptic encoding, was used. Each hologravure was
constructed on a separated acrylic piece. Note the change in inclination
observed in each column.

Note in Fig. 14a that, in correspondence with the previous results, a
code with a relatively longer vertical elliptical axis produces more
stable images, under lateral displacements of the observer. The best
stability is observed for ellipses with parameter r < 1. The instability of
images coded by elliptic arcs with parameter r > 1 can be used to
produce additional effects of movement.

Other conical sections, or very general functions defined on the
plane, can be used as codes with particular effects on the images.

7. Applications

As mentioned before, scratch holographic laser-engravings could be
competitive in numerous fields, where diverse types of materials can be
used to record the engravings. A very wide range of applications is
found in Art, Graphic Design and Visual Media for Education,
Information Processing, mapping and contour maps, teaching of
Optics, Science, Geometry, and others, which can be broadened with
the results obtained here. In [16] we can find examples of geometrical
designs and the use of hologravure as a multiple information storage
medium; a three-image computer-generated hologram was engraved
by varying the inclination angle of the laser-traces corresponding to
each object. In [18], some interesting geometric images and applica-
tions in 3D Design area are shown.

Fig. 13. Scheme for three positions of a pair of vertical encoding curves showing the
observer's eyes moving horizontally on abscissa axis; a) elliptic curved codes with r > 1,
b) circular curved codes with r =1, c) elliptic curved codes with r < 1.

Fig. 14. Photographs of reconstructed images of a letter A; a) different codification
parameter rin elliptical codes. b) image of the computer-generated pattern correspond-
ing to codification of the letter A and a polygonal reference frame by using vertical elliptic
arcs with parameter r =0.80.
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Among the applications appears the possibility of performing
minimum animations. In the engravings with open circular codes,
the three-dimensional images show a well-defined rotation effect
around the vertical direction. Also, movement effects can be obtained
by varying the form of the encoding curves, or by using slightly
different curves and moving the light source or the observation point.

The use of general geometrical code shapes and our results give rise
to new choices in the design of engraving-codes for specific purposes,
with curves described by different symmetrical or asymmetric func-
tions. Interesting behaviours of three-dimensional images could be
obtained, giving a new and useful meaning to holographic engravings,
for extending their applications and potential utility.

8. Conclusions

Based on the general principles of light ray behaviour, a geometrical
theory of images was obtained. We have reported a new theoretical and
experimental study on encoding image information from hologravures,
by using as codes plane curves of very general geometric shapes. This
study is a contribution to a more complete background theory allowing
the analysis of general curvilinear scratch-codes and their influence on
3D reconstructed images.

A variational approach of this problem allows complex cases of
scratch-curves on holographic surfaces in non-homogeneous spaces to
be solved. From Fermat's Principle in Optics, we proved theoretically
that plane curves of general geometrical shapes can be used as
curvilinear codes onto two-dimensional engravings, and the observa-
tion conditions of these images were obtained. Our model and results
are applicable for other similar types of flat holographic engravings
obtained on adequate materials by any non-laser method. Systems of
equations allow cases of image observation to be analysed in modes of
reflection and transmission of light. This point of view allows the
design of engraving codes for specific purposes, making it possible to
widen diverse applications. Notable effects on the images recovered
optically from the engravings were observed, in agreement with
theoretical results, and appropriate interpretations were considered.
Image distortion was not analysed, but is the subject of future work.
Particular cases of circular and elliptical codes were studied; however, a
more complete and detailed theoretical study of the possibilities of the
conic sections, polynomial systems, or other sets of functions, each
considered as a set of particular curvilinear codes, as well as complex
cases of curved surfaces, the internal profile of the grooves, the surface
relief form, or the detailed analyses of possible technological processes,
and its consequences, would also be of interest enough and of practical
utility to be considered in forthcoming works.

Due to the reduced resolution requirements of this type of record-
ing, and cheap support, images of relatively large size, with varied

spatial effects, could be observed from greater distance, by using the
appropriate illumination.
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