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Using missing ordinal patterns to detect nonlinearity in time series data
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The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series
after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated
as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically
different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that
the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model
and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity.
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I. INTRODUCTION

Characterizing the dynamics of a system from time series
data is an important problem in time series analysis. Properly
characterizing the dynamics of a system requires the ability
to distinguish between both determinism and stochasticity as
well as linear and nonlinear dynamics. Sometimes it is useful
to pair a test for nonlinearity with a test for determinism. For
example, the 0 - 1 test for chaos [1] can be used to distinguish
chaotic dynamics from regular dynamics, as long as the time
series is measured from a deterministic series. In [2], it was
shown that pairing the 0 - 1 test with a test for determinism
can prevent false positives for chaotic dynamics. In this paper,
we demonstrate the use of a test statistic, called the number
of missing ordinal patterns, which can be used to test for both
determinism and nonlinearity in model data and nonlinearity
in experimental data.

There are many tests in the literature for both determinism
and nonlinearity. Some tests for determinism, such as those
presented in Refs. [3,4], use symbol spectra to identify
recurring patterns in symbolized time series data. While
symbol spectra-based methods work well in discriminating
determinism from stochasticity, it has been the authors’
experience that they can be cumbersome to use when ana-
lyzing a large number of series. Other methods for detecting
determinism, such as noise titration [5,6], involves a technique
for detecting nonlinearity and adding noise to the series until
the nonlinearity can no longer be detected. The noise titration
technique is mainly focused on detecting low-dimensional
chaos, however, the presence of low-dimensional chaos would
then imply determinism. Noise titration has also been shown
to struggle with series which are contaminated with colored
noise [7] and more complicated deterministic systems [8].
One of the most common tests for nonlinearity involves the
generation of surrogate time series from the series to be tested.
We will discuss surrogate methods in more detail below.
Additional methods for detecting nonlinearities include using
a “representation space” [9], “permutation slopes” [10], and

multiscale symbolic approaches [11]. The aforementioned list
of tests for determinism and nonlinearity is not intended to be
comprehensive, but rather, is intended to give the interested
reader a brief survey of some of the methods in the literature
developed over the last 20 years.

One of the simplest tests for determinism involves sym-
bolization of the time series using the Bandt and Pompe
(BP) methodology [12]. The BP methodology partitions the
series into embedding delay vectors, similar to phase space
reconstruction, and then maps each of the partitions into a
permutation of the set {1,2, . . . ,D}, where D is called the
embedding dimension, and is not necessarily the same as the
embedding dimension used in phase space reconstruction. The
result is a series with D! possible symbols called ordinal
patterns. In a stochastic series, all possible ordinal patterns
will occur, if the series is long enough. However, certain
ordinal patterns will not occur in deterministic series. Those
patterns are called forbidden patterns and correspond to states
inaccessible to the dynamics governing the system. Hence the
presence of forbidden patterns is a sign of determinism [13,14].
Using forbidden patterns is an easy method of detecting
determinism because all one needs to do is simply count
the number of different patterns that occur in the series. The
number of forbidden ordinal patterns (NFP) is then D! minus
the number of occurring patterns. A nonzero value for the
NFP means that the system is deterministic. The NFP has
been shown to be an effective measure for determinism, even
in irregularly sampled time series [15–17].

One challenge to using the NFP as a means of detecting
determinism is that it requires time series that are long enough
to sample all possible ordinal patterns. Essentially, the length
of the series N should satisfy N � D!, which can be an
issue for series requiring large embedding dimensions, such
as D = 7 or D = 8. While model data sets can be as long
as one has the computational power and time to produce,
experimental data is often short and may not be long enough to
sample all possible patterns. Furthermore, correlations in the
time series may also require longer data sets in order to sample
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all possible ordinal patterns [18]. The reason for the increased
length needed for correlated series is because in correlated
stochastic series, some ordinal patterns are more probable
than others due to the correlations. Whereas in random series,
all ordinal patterns are equally probable. The difference in
probabilities in correlated stochastic series means that longer
series are needed in order for all ordinal patterns to be realized.

Ultimately, the question is that if the number of forbidden
ordinal patterns NFP �= 0 for short series, how confident can we
be that the system is deterministic as opposed to the nonzero
NFP being due to small sample effects? The ordinal patterns
that are not present in the time series due to small sample
effects are referred to as missing ordinal patterns. In other
words, how can one be sure missing patterns are actually
forbidden patterns and are those missing patterns a useful
means of detecting nonlinearity?

In this paper, we will address the issue of using the number
of missing ordinal patterns (NMP) to detect determinism
and nonlinearity in time series data. This will be done by
using the NMP in a standard surrogate framework [19] (and
references therein). For each series to be studied, we produce
a particular number of iterative amplitude adjusted Fourier
transform (IAAFT) surrogates which will have the same power
spectrum and amplitude probability distribution as the original
series. Each series (original and all surrogates) will then be
symbolized using the BP methodology and the NMP will be
calculated. If the NMP of the original series is outside of the
range of the NMP of the surrogates, then the null hypothesis
(that the data is a rescaled Gaussian linear stochastic process)
has been rejected up to a confidence level determined by the
number of surrogates produced (see below). Through this
analysis we will show that the NMP for nonlinear series
will be statistically significantly different from those of the
surrogates, even in very short time series data (where the
condition N � D! is not upheld). Furthermore, the NMP can
be used as a test for determinism by finding whether or not
the NMP of the series converges to that of the surrogates
as the series length increases. To demonstrate the efficacy of
the analysis, both model and experimental time series will be
studied.

The work presented here was motivated by issues arising
through the practice of using the BP methodology on real-
world data. Part of the motivation was to better understand
how to choose an embedding dimension D in order to avoid
small sample effects but still have a large enough embedding
dimension in order to capture the necessary dynamics. In
past experience, the authors have found that the NMP can
be zero for high dimensional deterministic systems if D is
chosen to be too small. This is believed to be due to projecting
the dynamics onto too small of a subspace. However, if an
embedding dimension of say, 7, needs to be used to capture
the appropriate dynamics but the time series is less than 1000
elements long, how can we be certain that the nonzero NMP
is indicative of determinism and/or nonlinearity and not finite
size effects?

The rest of this paper will be structured as follows. In
Sec. II the BP methodology will be discussed as will be the
procedure for finding the number of missing ordinal patterns.
Section III contains a brief discussion of the IAAFT surrogates.
Sections IV and V present the results of our analysis on model

and experimental time series, respectively. Finally, we make
concluding remarks in Sec. VI.

II. MISSING AND FORBIDDEN ORDINAL PATTERNS

The Bandt and Pompe (BP) method [12] for symbolizing
time series has been widely used in a variety of applications
as an alternative means to threshold-based symbolization
techniques. There are many advantages of the BP method-
ology including its simplicity, speed, and noise robustness.
Additionally, the method is invariant to nonlinear monotonous
transformations. As opposed to using an amplitude-based
threshold, the BP methodology is based on partitioning the
series and then using the relative amplitude of the values in
the partition to produce the symbol for the partition.

As a demonstration of the BP methodology, consider the
series {x1,x2, . . . ,xN }. The first step is to create embedding
vectors similar to those used in phase space reconstruction.
An embedding delay τ and dimension D must be chosen. The
embedding delay can be chosen using methods such as the first
zero crossing of the autocorrelation or the first minimum of the
mutual information. However, the authors have had success in
past work (see, for example, [4]) simply by choosing τ = 1.
In this paper, we will use τ = 1 and we will see that we will
get good results with that choice. Using τ = 1 can be very
convenient when analyzing a large number of data sets where
computing a value of τ for each series can be prohibitive. The
choice of D has been traditionally made keeping in mind that
D! � N . However, as discussed in Sec. I, such a restriction
on D can be problematic for short series. In this paper, we will
perform our analysis on several different values of D to show
that the NMP can be an effective measure even for short series
analyzed with large values of D. It is worth noting that Bandt
and Pompe [12] suggest that τ = 1 and 3 � D � 7 be chosen
for the purposes of computational efficiency and practicality.

Once a value for τ and D are chosen, the next step is
to create ordinal patterns from the embedding vectors. This
is done by mapping each vector to a permutation of the set
{1,2, . . . ,D} by using the rank of each value in the sequence.
For example, the sequence {10,5,11,13} would be mapped
to {2,1,3,4} because x2 < x1 < x3 < x4. In the case where
two or more elements are equal, the element with the lowest
index would come first in the permutation. For example,
{5,10,11,10} would map to {1,2,4,3}.

The measure used in this paper as a test statistic is called the
number of missing ordinal patterns (NMP). Missing patterns
are ordinal patterns that do not occur in the ordinal pattern
series. If the series is long enough to sample all possible
patterns (N � D!), and there are still ordinal patterns that
do not occur in the series, then those patterns are referred to as
forbidden patterns. Deterministic series will have forbidden
patterns [13,14] which represent states inaccessible to the
dynamics. However, for short series, one cannot be certain
whether a particular set of patterns are forbidden or only
missing due to small sample effects. The number of missing
ordinal patterns is found by counting the number of observed
patterns (NOP), simply the number of different ordinal patterns
appearing in the symbolized series, and computing, NMP =
D! − NOP. Because we will be comparing the NMPs of a
system using a variety of embedding dimensions, we will
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measure the ratio of the NMP to the number of possible
patterns, RMP = NMP/D!, as was done in Ref. [16].

III. SURROGATE TIME SERIES

As mentioned in Sec. I, the goals of this work are to test
the reliability of the number of missing patterns (NMP) as a
metric for nonlinearity in time series and to better understand
how to use NMP to detect determinism in short time series. In
this case, short time series means that the length of the series N

does not satisfy N � D!. Although a nonzero NMP value for
a short series is not a guarantee for determinism (the patterns
could simply be missing due to small sample effects), it is still
possible that the number of missing patterns can be used as a
measure of nonlinearity.

To address the above issue, we can compare the NMP of
a series (the one being analyzed) to the NMP of a random
series, called a surrogate, with the same length. In this case,
using the same values of τ and D for the original and random
series. The simplest way to generate a random series would
be to generate a list of pseudorandom numbers with the
same length as the series to be analyzed. Then one could
compute the NMP of the pseudorandom list and compare that
to the original series. Of course for better results, one could
generate an ensemble of pseudorandom series and find the
range of NMPs for the ensemble. The result would be a type
of confidence interval for how significantly different the NMP
of the original series is to the ensemble, the idea being that
if all of the pseudorandom series had an NMP = 0, then one
could be confident that the choice of D was appropriate for the
original series and a nonzero NMP would not be due to small
sample effects. The problem with this technique, however, is
that other than length, the pseudorandom series shares nothing
in common with the original series. Hence such a comparison
might not be appropriate.

A more sophisticated surrogate would involve a random
shuffling of the series before symbolization. In this case,
the amplitude probability distribution of the surrogate would
match that of the original series. However, the temporal
relationship between the values will be destroyed. This means
that any linear correlations or other linear properties (such as
the power spectrum) of the series will not be preserved in
the surrogate. It has been the authors experience that strongly
correlated stochastic processes, such as fractional Gaussian
noise (fGn) with a large Hurst exponent, require longer series
to sample all possible ordinal patterns than independent and
identically distributed (iid) sequences. Hence, a nonzero NMP
for the series may result if the series is stochastic with strong
linear correlations.

Therefore, an even more sophisticated surrogate generating
method is needed, one that preserves the power spectrum of
the original series. One of the earliest methods for this type of
surrogate was introduced by [20]. By preserving the original
series’ power spectrum, the surrogate will also possess the
same linear correlations. In addition to preserving the power
spectrum, it is possible to preserve the amplitude probability
distribution. The result is the so-called iterative amplitude
adjusted Fourier transform (IAAFT) scheme which produces
surrogates with the same amplitude probability distribution
and power spectrum with potential higher order correlations

being randomized. The IAAFT was introduced in Ref. [21],
and the interested reader is directed there and to Ref. [19] for
more details on the algorithm. Modifications to the IAAFT
method have been developed [22]. Furthermore, a surrogate
method specifically directed towards series with a strong
periodic component has also been developed [23,24]. Finally,
it is worth remarking that high frequency components are
spuriously added to the surrogates if there is a mismatch in the
beginning and end of the series (in both value and derivative).
Consequently, an end-to-end mismatch criterion needs to be
satisfied to avoid false rejections of the null hypothesis [19]. In
this paper, IAAFT surrogates, as presented in Ref. [21] will be
used and computed via the TISEAN surrogates algorithm [25].

When working with surrogates, it is necessary to identify a
null hypothesis. With the IAAFT surrogates the null hypothesis
is that the original data is a rescaled Gaussian linear stochastic
process. If the null hypothesis is rejected, then the system
is considered to be nonlinear with a confidence level α. The
confidence level is determined by the number of surrogates M ,
analyzed using the relationship M = 2/α − 1. The decision
to accept or reject the null hypothesis is made by choosing
a value of τ and D and computing the RMP of the IAAFT
surrogates and the original series. If the RMP of the series
lies outside the range of RMPs obtained for the surrogates,
then the null hypothesis has been rejected with a significance
level α, and the series is determined to be nonlinear. In the
language of surrogate testing, the RMP is the test statistic that
is compared to the original series and its IAAFT surrogates
through a two-sided rank order test of size α.

In the next two sections, the surrogate analysis is applied
to model and experimental data in order to demonstrate the
efficacy of the analysis on time series data.

IV. APPLICATION TO MODEL SYSTEMS

In this section, the RMP surrogate analysis is performed on
several model systems, an AR(1) process, a fractional Gaussian
noise (fGn) process, the Lorenz equations, and a nonlinear
correlated stochastic process. To demonstrate the efficacy of
the analysis, it must be shown that the test does not reject
the null hypothesis of a linear stochastic system AR(1) and
for a linearly correlated stochastic system (fGn). In addition
it must also be shown that the test rejects the null hypothesis
for nonlinear systems (Lorenz equations and the nonlinear
stochastic correlated process).

A. AR(1) process

The first model system studied is a first-order autoregressive
process AR(1), xi = axi−1 + εi , where ε are pseudorandom
values from a standard normal distribution and the parameter
a ∈ {0.05,0.1, . . . ,0.95}. This system is studied in order to see
if the RMP analysis correctly fails to reject the null hypothesis
for a linear stochastic system.

One hundred realizations of the AR(1) process were
produced for each value of a. Each realization consisted
of N = 1024 data points after discarding 10 000 previous
elements in order to discard transients. Then, for each
realization, M = 199 surrogates were generated, producing a
confidence level, α = 0.01. The fraction q of rejections of the
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FIG. 1. The fraction of rejections q as a function of parameter
a for an AR(1) process for several embedding dimensions D and
τ = 1. The graph is made using M = 199 surrogates producing a
significance level of α = 0.01.

null hypothesis were found by counting the number of times
the RMP of the series was outside the range of those of the
surrogates. The results are shown in Fig. 1.

Notice that in Fig. 1, the value of q is very low, less
than 4% for all embedding dimensions. Hence, the RMP

analysis correctly fails to reject the null hypothesis at worst,
96% of the time in the case of this linear stochastic system.
Notice, however, that for D = 4 the test fails to reject the null
hypothesis 100% of the time. The difference in performance
for the different values of D is due to the short length of
the series, N = 1024. Next, a linearly correlated stochastic
process is studied.

B. Fractional Gaussian noise

A fractional Gaussian noise (fGn) process is a stochastic
process for which the null hypothesis should not be rejected.
Fractional Gaussian noise is derived from fractional Brownian
motion (fBm), a generalization of Brownian motion, which
is a linearly correlated stochastic process. The degree of
correlation is measured by the Hurst exponent, H ∈ (0,1).
If H = 0.5, the fBm processes is actually Brownian motion,
whereas if H < 0.5, then the process is negatively correlated,
and if H > 0.5, then the process is positively correlated.
Fractional Gaussian noise is the difference in successive values
of a fBm process. In other words, if f (H ) = {x1,x2, . . . xN+1}
is a fBm process with Hurst exponent H , then the fGn pro-
cess is g(H ) = {x2 − x1,x3 − x2, . . . ,xN+1 − xN }. Fractional
Gaussian noise processes are used in this work instead of
fractional Brownian motion because fBm processes are nonsta-
tionary, unlike fGn processes which are stationary. Surrogate
realizations for nonstationary processes are difficult to obtain,
hence the focus on fGn processes. In the work presented
here, fGn processes were produced using MATHEMATICA’s
FractionalGaussianNoiseProcess command.

In this work, H = 0.9 was used to generate the fGn
process. When H = 0.9, there is a very strong positive
linear correlation in the time series. It has been the authors’
experience that fGn processes with H = 0.9 require the most
amount of data in order to sample all possible ordinal patterns.

Therefore, the fGn analysis begins with H = 0.9 and should
serve as a difficult test case on which to apply our analysis.

To analyze the fGn data, series of length N were produced
from N = 50 to N = 1000 in steps of 50. Then M = 199
surrogates were produced for each series of length N ,
providing a significance level of α = 0.01. We then used the
BP methodology to symbolize each series and each surrogate
using τ = 1 and D = 4, 5, 6, and 7. The results are displayed
in Fig. 2. Each graph consists of a box and whisker plot and
a scatter plot, which provides a clear visual demonstration of
whether or not the RMP of the series falls within the range of
RMPs of the surrogates. The box and whisker plot shows the
range of values of the RMP for the IAAFT surrogates and the
scatter plot (blue dot) represents the RMP of the original series.

Notice that in Fig. 2, for D = 4 (a) to D = 6 (c), the RMP

for the series is consistent with that of the surrogate at all
lengths. In particular, for D = 4, the RMP quickly reaches 0.
Hence, the test is correctly failing to reject the null hypothesis
at level of α = 0.01 for 4 � D � 6. The same is generally
true for D = 7 [Fig. 2(d)], except for N = 350, 850, and 950
and in each case, the RMP of the series is less than that of the
range of the surrogates. For example, for N = 950, the RMP

for the fGn process is 0.8341 and the surrogates have RMP

values ranging from 0.8377 to 0.8474. The percent difference
between the series RMP and the surrogate minimum is 0.43%,
which is negligible. However, the result suggests that the series
are too short to be analyzed reliably with D = 7.

In addition to the analysis for H = 0.9, multiple realiza-
tions of fGn processes with a variety of Hurst exponents were
analyzed. For H = {0.1,0.2, . . . ,0.9}, 100 realizations were
produced, each with N = 1000 elements. For each realization,
M = 199 surrogates were generated for a confidence level of
α = 0.01. The NMP analysis was then performed and the
fraction of null hypothesis rejections q for each value of H

were found. The results of this study are shown in Fig. 3.
We see that for all values of H , the number of rejections
remains quite small, demonstrating that the NMP analysis
again appropriately fails to reject the null hypothesis of a linear
stochastic system.

Next, data generated from the Lorenz equations are an-
alyzed in order to understand under what conditions the
null hypothesis is correctly rejected. Furthermore, the Lorenz
system can demonstrate the use of NMP to identify not only
nonlinear but also deterministic dynamics.

C. The Lorenz equations

The Lorenz equations,

ẋ = σ (y − x), ẏ = x(ρ − z), ż = xy − γ z, (1)

are well known to be an example of a nonlinear deterministic
system. Here, initial conditions (x0,y0,z0) = (1,5,10) and
parameter values (σ,ρ,γ ) = (10,28,8/3), for the chaotic case,
and (σ,ρ,γ ) = (100,200,8/3) for the periodic case were used.
Equation (1) was numerically solved using MATHEMATICA’s
NDSolve command and the solution was sampled using
sampling periods of �t = 0.15 for the chaotic case and
�t = 0.01 for the periodic case. In each case, we allowed
transients to decay before sampling the solution and we
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FIG. 2. Results of the surrogate analysis of an fGn process with H = 0.9 using M = 199 surrogates producing a significance level of
α = 0.01. The box and whisker plot shows the range of values of the RMP for the IAAFT surrogates and the scatter plot (blue dot) represents
the RMP of the original series. Results for embedding dimensions D = 4 (a), 5 (b), 6 (c), and 7 (d), and τ = 1 have been included.

produced time series of various lengths starting with N = 50
and ending with N = 1000 in steps of 50 elements.

For each series, M = 199 IAAFT surrogates were gener-
ated for a significance level of α = 0.01. The BP methodology
was then used to symbolize the series with τ = 1 and D = 4,
5, 6, and 7. The results are displayed in Fig. 4 for the periodic
case and in Fig. 5 for the chaotic case; both are similar to Fig. 2
in format.

FIG. 3. The fraction of rejections of the null hypothesis q for
fGn systems as a function of the Hurst exponent. One hundred
realizations with N = 1000 for each value of H were produced, and
for each realization M = 199 surrogates were generated leading to
a significance level of α = 0.01. Results for embedding dimensions
D = 4, 5, 6, and 7, and τ = 1 have been included.

In Fig. 4, where the periodic case was studied, the RMP of
the series is greater than that of the surrogates for all lengths
of data and all embedding dimensions. Hence, the RMP is able
to reliably reject the null hypothesis for the periodic Lorenz
equations, even in the cases where N � D!.

In Fig. 5, where the chaotic case was studied, the RMP of the
original series is outside the range of values for the surrogates
for all data lengths except for N = 50 in the cases of D = 6 and
D = 7 [Figs. 5(c) and 5(d), respectively]. This results tells us
that the RMP of the original series is statistically significantly
different for almost all values of N and D, suggesting that
although the surrogates have missing ordinal patterns (missing
not forbidden; missing patterns simply have not been sampled,
yet), the number of missing ordinal patterns in the surrogates
are significantly fewer than those of the original series. Hence,
the NMP is capable of rejecting the null hypothesis even in
very short data sets for both chaotic and periodic Lorenz series.

In addition, the Lorenz equations were studied for very
long series, N = 100 000 using the same values of �t and
M as above and the results are shown in Fig. 6. The point of
repeating the NMP analysis on long series is to demonstrate
the presence of persistent missing patterns. The NMP remains
nonzero for long series in both cases. The presence of persistent
NMPs suggest that some of the missing patterns are, in fact,
forbidden, and therefore, providing evidence for determinism.

Although not shown here for the sake of brevity, we
also studied the chaotic Lorenz equation in the case of a
sampling time of �t = 1.0, where the series was significantly
undersampled. It was found that the RMP analysis did not
reject the null hypothesis for D = 4 and 5 and N � 1000.
However, the null hypothesis was rejected for D = 6 and 7
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FIG. 4. Results of the surrogate analysis of a periodic series generated from (1) using M = 199 surrogates producing a significance level
of α = 0.01. The box and whisker plot shows the range of values of the RMP for the IAAFT surrogates and the scatter plot (blue dot) represents
the RMP of the original series. Results for embedding dimensions D = 4 (a), 5 (b), 6 (c), and 7 (d), and τ = 1 have been included.
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FIG. 5. Results of the surrogate analysis of a chaotic series generated from (1) using M = 199 surrogates producing a significance level of
α = 0.01. The box and whisker plot shows the range of values of the RMP for the IAAFT surrogates and the scatter plot (blue dot) represents
the RMP of the original series. Results for embedding dimensions D = 4 (a), 5 (b), 6 (c), and 7 (d), and τ = 1 have been included.
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FIG. 6. Results of the surrogate analysis of (1) for (a) chaotic parameters and (b) periodic parameters using N = 100 000 with M = 199
surrogates producing a significance level of α = 0.01. The box and whisker plot shows the range of values of the RMP for the IAAFT surrogates
and the scatter plot (blue dot) represents the RMP of the original series. Results for embedding dimensions D = 4, 5, 6, and 7, and τ = 1 have
been included.

when N > 500. This is suggesting that nonlinearity can be
detected for short undersampled series if the embedding
dimension is high enough. However, the RMP was equal to zero
for all embedding dimensions when N = 100 000, suggesting
that undersampling was equivalent to producing a stochastic
series, as was expected due to the aliasing effect related to
undersampling. A more thorough study of how the sampling
time, especially oversampling, affects the RMP analysis is
needed for continuous systems.

D. Stochastic nonlinear correlated system

The final model system studied is a stochastic nonlinear
correlated system. An example of such a system is

xk+1 = aνk + bνk−1(1 − νk), (2)

where ν is a uniformly independent identically distributed (iid)
random variable between 0 and 1, a = 3, and b = 4.

For a discussion on the stochasticity of this system, the
interested reader is directed to [7]. The goal of applying the
RMP surrogate analysis is to see whether or not the analysis
can detect nonlinearity (by rejecting the null hypothesis) in
a nonlinear correlated stochastic system. The results of the
analysis are shown in Figs. 7 and 8. For each embedding
dimension and for each length N , M = 199 surrogates were
used for a confidence of α = 0.01.

In Fig. 7, we can see that for D = 4 [Fig. 7(a)], the RMP

of the series is consistent with the RMP of the surrogates for
almost all data lengths, suggesting that D = 4 is too small of
an embedding dimension to use with this system. However,
for larger values of D, the RMP surrogate analysis is able to
detect the nonlinear behavior of the system as the series length
increases.

Figure 8 shows the results of the RMP analysis when longer
series are studied. The RMP of the series becomes consistent
with those of the surrogates. Therefore, the missing patterns
from Fig. 7 are, in fact, not forbidden. The nonzero RMP,
which is significantly different from the surrogates in Fig. 7,
is demonstrating nonlinearity, however, the convergence of
the RMP to that of the surrogates for longer series provides
evidence that the system is stochastic.

In order to reliably distinguish between missing and
forbidden patterns, very long time series were needed for

the model systems. Unfortunately, in real world applications,
series of such length are rare. Hence, the use of RMP to
detect determinism in data sets which do not satisfy N � D!
is difficult (especially when D = 7 or D = 8 is used) and
may not be possible. While this is not a surprising result,
the interesting finding is the amount of data needed for
the nonlinear stochastic series, especially for D = 7, where
1 000 000 points were needed to demonstrate stochasticity
even though 7! = 5040.

Next, the insights learned from applying the RMP analysis to
the model systems will be applied to study experimental time
series. Because of the long series needed to identify deter-
minism or stochasticity in the model systems, the next section
focuses only on detecting nonlinearity in experimental data.

V. APPLICATION TO EXPERIMENTAL DATA

In this section, the RMP surrogate analysis is applied to three
experimental data sets, measurements of the North Atlantic
Oscillation (NAO), smoothed sunspot numbers, and EEG data.

A. North Atlantic oscillation index

The first example, the North Atlantic Oscillation (NAO)
index which is measured as the difference in normalized
pressures at the Azores High and Icelandic Low [26]. The NAO
has a significant influence on the winter weather in Western
and Central Europe. The monthly mean NAO index was
downloaded from the Climate Prediction Center Web site [27].
The downloaded data spans from January 1950 until January
2017. However, in order to satisfy the end-to-end mismatch
criterion, data from December 1953 until June 2016 was
analyzed, for a total of 751 data points. Once the end-to-end
mismatch criterion was satisfied, M = 999 surrogates were
generated resulting in α = 0.002. The series and its surrogates
were symbolized using τ = 1 and D = 4, 5, 6, and 7. The
results of the analysis are shown in Fig. 9. Notice that in
Fig. 9, the RMP of the NAO time series is consistent with those
of the surrogates for all embedding dimensions. Hence, the null
hypothesis cannot be rejected for all embedding dimensions
tested, supporting the conclusion that the data are consistent
with a linear stochastic system and in agreement with the
literature [26,28–32].
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FIG. 7. Results of the surrogate analysis of (2). For each length N , M = 199 surrogates were generated for α = 0.01. The box and whisker
plot shows the range of values of the RMP for the IAAFT surrogates and the scatter plot (blue dot) represents the RMP of the original series.
Results for embedding dimensions D = 4 (a), 5 (b), 6 (c), and 7 (d), and τ = 1 have been included.
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FIG. 8. Results of the surrogate analysis of (2). For each length N , M = 199 surrogates were generated for α = 0.01. The box and whisker
plot shows the range of values of the RMP for the IAAFT surrogates and the scatter plot (blue dot) represents the RMP of the original series.
Results for embedding dimensions D = 4 (a), 5 (b), 6 (c), and 7 (d), and τ = 1 have been included.
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FIG. 9. Results of the surrogate analysis of NAO data using M =
999 surrogates resulting in α = 0.002. The box and whisker plot
shows the range of values of the RMP for the IAAFT surrogates and
the scatter plot (blue dot) represents the RMP of the original series.
Results for embedding dimensions D = 4, 5, 6, and 7, and τ = 1
have been included.

B. Monthly smoothed sunspot numbers

The next data set we analyzed is the 13-month smoothed
monthly sunspot numbers downloaded from the World Data
Center SILSO, Royal Observatory of Belgium, Brussels [33].
The data used to satisfy the end-to-end mismatch criterion
began in January 1749 and ended January 2017 for a total of
3205 data points. A total of M = 999 surrogates were created
from the series and each series was symbolized using the same
value of τ and D used for the NAO data.

The results from Fig. 10 suggest that nonlinearities are
present in the data with a 99.8% confidence level for
D > 4. This result is in agreement with [34] which detected
nonlinearity with a 98% confidence level.

R
M

P

FIG. 10. Results of the surrogate analysis of 13-month smoothed
monthly sunspot numbers using M = 999 surrogates resulting in α =
0.002. The box and whisker plot shows the range of values of the RMP

for the IAAFT surrogates and the scatter plot (blue dot) represents the
RMP of the original series. Results for embedding dimensions D = 4,
5, 6, and 7, and τ = 1 have been included.

FIG. 11. Fraction of rejections of the null hypothesis q as a
function of the embedding dimension for the EEG data. Results for
embedding dimensions D = 4, 5, 6, and 7, and τ = 1 have been
included.

C. Electroencephalogram data

The final experimental series studied were
electroencephalogram (EEG) data measured from healthy
people and people with epilepsy. We used EEG from a public
database [35]. The data consists of two sets of surface EEG
time series measured from five healthy volunteers who were
awake with eyes open (set A), and awake with eyes closed
(set B). Furthermore, three additional data sets were measured
from five epilepsy patients. Sets C and D were measured
from the patients during a seizure-free interval from outside
and inside the seizure generating areas, respectively. The final
set, set E, contains intracranial EEGs measured during an
epileptic seizure. Each data set contains 100 single-channel
EEG segments sampled at 173.61 Hz for 23.6 s, resulting in
N = 4097 data points. Additional information about the EEG
data can be found in Ref. [36].

The EEG data was analyzed by producing M = 999
surrogates for each of the 100 recordings contained with in
the five data sets. The fraction of null hypothesis rejections q

occurring in each data set was found and the results are shown
in Fig. 11.

Notice that in Fig. 11, data set A has no null hypothesis
rejections while data set E has the most. Sets B–D have
increasing numbers of null hypothesis rejections, suggesting
an increase in the degree of nonlinearity for those sets. These
results are similar to those obtained in Donges et al. [37].

VI. CONCLUSIONS

In this paper, the number of missing ordinal patterns (NMP)
was demonstrated as an effective measure of nonlinearity
in model and experimental time series. The efficacy of the
NMP as a test for determinism was also studied in model
time series where very long data sets can be obtained. The
ability to obtain very long data sets for experimental series
limits the applicability of the NMP as a test for determinism
in experimental data, where the condition, N � D!, is often
not satisfied.

One of the most important results in this paper is that the
NMP can be an effective indicator of nonlinearity for very
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short series when used within a surrogate framework. In many
cases, the NMP is effective as a test for nonlinearity even if
N � D!. Normally, when working with the Bandt and Pompe
(BP) methodology, it is good practice to choose D such that
N � D!. However, such a choice is not necessary when using
the NMP as a test for nonlinearity.

Real world time series are often nonstationary. While
the NMP test statistic will work for nonstationary series,
the IAAFT surrogates will not. The surrogates produced
by the IAAFT method are stationary. Hence, the NMP of a
nonstationary series maybe different from those of its IAAFT
surrogates, resulting in a potential false rejection of the null
hypothesis. Improved surrogate methods have been proposed
to overcome this drawback [38,39].

There are several outstanding questions that need further
investigation. First, can the NMP be used, either within a
surrogate framework or not, as an effective measure for short
experimental time series? Are there methods with which one
can study the NMP for an ensemble of randomly chosen
subsets of the data in order to test how the NMP varies
as a function of length, and if so, can that method provide
a reliable means of detecting determinism? The authors’

preliminary work on the aforementioned question suggest
that such an analysis is difficult to interpret. Furthermore,
testing the robustness to noise of the NMPs ability to detect
nonlinearity is a problem that still needs to be addressed. The
BP methodology’s robustness to noise is well documented
[12–14,40], and the NMP metric inherits that robustness.
However, an open question is whether or not that robustness
extends to the IAAFT surrogate framework. While it is
believed that extension should carry over to the surrogate
framework analysis; it is worthwhile testing that belief,
because a full understanding of the limits of noise robustness
is an important prerequisite to applying any time series test
on real-world data. In addition to noise robustness, the NMP
analysis’ robustness to sampling irregularities and choice of τ

is another avenue of future research. Included in such a study
would be the sensitivity of the NMP analysis to sampling rates
for continuous systems. Furthermore, it is often the case that
real-world data are irregularly sampled. As was mentioned in
Sec. I, there have been studies on the robustness of the number
of forbidden patterns (NFP) to sampling irregularity. A similar
study in a surrogate framework for irregularly sampled time
series would also be of interest.
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