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Abstract In this article we present a real-time path-planning algorithm that can1

be used to generate optimal and feasible paths for any kind of unmanned vehicle2

(UV). The proposed algorithm is based on the use of a simplified particle vehicle3

(PV) model, which includes the basic dynamics and constraints of the UV, and an4

iterated non-linear model predictive control (NMPC) technique that computes the5

optimal velocity vector (magnitude and orientation angles) that allows the PV to6

move towards desired targets. The computed paths are guaranteed to be feasible for7

any UV because: i) the PV is configured with similar characteristics (dynamics and8

physical constraints) as the UV, and ii) the feasibility of the optimization problem9

is guaranteed by the use of the iterated NMPC algorithm. As demonstration of the10

M.Murillo · G.Sánchez · L.Genzelis · L.Giovanini
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capabilities of the proposed path-planning algorithm, we explore several simulation11

examples in different scenarios. We consider the existence of static and dynamic12

obstacles and a follower condition.13

Keywords feasible optimal path · model predictive control · real-time path-14

planning · replanning15

1 Introduction16

One of the areas that has grown surprisingly fast in the last decade is the one17

involving autonomous Unmanned Vehicles (UVs), both aerial (Unmanned Aerial18

Vehicles - UAVs) and terrestrial (Unmanned Ground Vehicles - UGVs). Their re-19

duced size and geometry allow them to carry out dangerous missions at lower20

costs than their manned counterparts without compromising human lives. They21

are mostly used in missions such as search and rescue, power line inspections,22

precision agriculture, imagery and data collection, security applications, mine de-23

tection and neutralization, operations in hazardous environments, among others24

[1–6]. In general, most of such missions require that the UVs move in uncertain25

scenarios avoiding different types of obstacles. To do so, they must have the ability26

to autonomously determine and track a feasible collision-free path.27

The path-planning problem is one of the most important parts of an au-28

tonomous vehicle, therefore it has attracted substantial attention [7, 8]. It deals29

with searching a feasible path between the present location and the desired target30

while taking into consideration the geometry of the vehicle and its surroundings,31

its kinematic constraints and other factors that may affect the feasible path. Dif-32

ferent methodologies are used to find feasible paths (see [9] for an overview). Some33
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recent path-planning algorithms can be found in [10–12]. In [10] Saska et al. in-34

troduce a technique that integrates a spline-planning mechanism with a receding35

horizon control algorithm. This approach makes it possible to achieve a good per-36

formance in multi-robot systems. In [11] an offline path-planning algorithm for37

UAVs in complex terrain is presented. The authors propose an algorithm which38

can be divided into two steps: firstly a probabilistic method is applied for local ob-39

stacle avoidance and secondly a heuristic search algorithm is used to plan a global40

trajectory. In [12] Zhang et al. present a guidance principle for the path-following41

control of underactuated ships. They propose to split the path into regular straight42

lines and smooth arcs, using a virtual guidance ship to obtain the control input43

references that the real ship should have in order to follow the computed path. As44

it can be seen, there are many methods to obtain feasible paths for UVs; however,45

most of them do not consider the dynamics of the UV that should follow the path.46

In their recent review article [13], Yang et al. have surveyed different path-47

planning algorithms. The authors discuss the fundamentals of the most successful48

robot 3D path-planning algorithms that have been developed in recent years. They49

mainly analyze algorithms that can be implemented in aerial robots, ground robots50

and underwater robots. They classify the different algorithms into five categories:51

i) sampling based algorithms, ii) node based algorithms, iii) mathematical model52

based algorithms (which include optimal control and receding horizon strategies),53

iv) bioinspired algorithms, and v) multifusion based algorithms. From these, only54

mathematical model based algorithms are able to incorporate in a simple way55

both the environment (kinematic constraints) and the vehicle dynamics in the56

path-planning process. Recently, in [14] Hehn and D’Andrea introduced a trajec-57

tory generation algorithm that can compute flight trajectories for quadcopters.58
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The proposed algorithm computes three separate translational trajectories (one59

for each degree of freedom) and guarantees the individual feasibility of these tra-60

jectories by deriving decoupled constraints through approximations. The authors61

do consider the quadcopter dynamics when they compute the flight trajectories62

but their proposed technique is not a general one (it can not be used with ground63

vehicles, for example). Even though the feasibility is guaranteed for each separate64

trajectory, the resulting vehicle trajectory might not be necessarily feasible (e.g.,65

when perturbations are present). In [15] the authors present three conventional66

holonomic trajectory generation algorithms (flatness, polynomial and symmetric)67

for ground vehicles subject to constraints on their steering angle. In order to sat-68

isfy this constraint, they propose to lengthen the distance from the initial position69

to the final position until the constraint is satisfied. This process might be tedious70

and it may not be applicable in dynamic environments. Besides, it can only be71

used with ground vehicles and it can only handle steering constraints violations.72

Motivated by the advent of new autonomous vehicles that encompass a broad73

range of mission capabilities, a suitable path-planning algorithm should be prac-74

ticable and tailored to various UVs when executed in dynamical environments.75

Therefore, a challenging idea for path-planning is to develop an algorithm capable76

of handling dynamical environments and UVs that have different characteristics77

with regard to kinematic properties and maneuverability. For example, an au-78

tonomous rotary-wing vehicle is able to stop and make quick turns on a spot. On79

the contrary, an autonomous fixed-wing aircraft has to maintain a minimal flight80

velocity and can not turn at a large angle instantaneously. If a path obtained81

from a planning algorithm demands many agile or abrupt maneuvers, it would be82

difficult or even completely impossible to track. Consequently, it is inadequate in83
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practice for a planning algorithm to only aim at an invariable model of steady84

maneuver.85

In this article a unified framework to design an online path-planning algorithm86

is presented. The proposed strategy can be summarized in Fig. 1. Using a simplified

Particle Vehicle UV

Path-Planning
 

Guidance

^^

Fig. 1 Scheme of the path-planning & guidance system

87

particle vehicle (PV) model, which is configured to have similar characteristics88

(states and inputs constraints) to the UV, the path-planning module computes89

the velocity vector v∗k (magnitude v∗k and angles θ∗k and ψ∗k) in order to find the90

shortest feasible path towards the nearest waypoint wi. The vector v∗k is in fact91

the velocity vector that the UV should have in order to achieve wi. Thus, using92

this velocity vector and other possible setpoints xsp, the guidance module is able93

to compute the inputs (actuator positions and motors speeds) that the UV should94

have so as to move towards wi. In this article, we mainly focus on the design of95

the path-planning module. We propose to design this module using the iterated96

robust NMPC technique presented in [16] as it uses a successive linearization97

method which allows us to use analytic tools to evaluate stability, robustness and98

convergence issues. Besides, it allows us to use quadratic program (QP) solvers99

and to easily take into account dynamic and physical constraints of the UV at the100

path-planning stage in order to obtain feasible paths.101
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The main contribution of this paper are: i) the proposal of a general algorithm102

for path-planning that can be used with any kind of UV, ii) the inclusion of103

the dynamics and constraints of the UV in the path-planning problem, iii) the104

guarantee of feasibility of the computed optimal path, iv) the inclusion of static105

and dynamic obstacles into the path planning problem, and v) the decentralization106

of the path-planning problem for multiple vehicles.107

The organization of this article is as follows: in section 2 the 2D and 3D PV108

models are presented. In section 3, the path-planning problem is introduced. In109

section 4 three simulation examples are outlined. Finally, in section 5 conclusions110

are presented.111

2 Non-linear Particle Vehicle Model112

In this work we propose to use a PV model to obtain feasible and optimal paths113

for UVs. This section is devoted to obtain such a model for both the 2D and 3D114

cases. First, we provide a more general approach about systems representation and115

then we particularize it for the case of 2D and 3D PV models.116

The general representation of the dynamics of an arbitrary non-linear system117

is given by118

ẋ(t) = f(x(t),u(t),d(t)), (1)119

where x(t) ∈ X ⊆ <n, u(t) ∈ U ⊆ <m and d(t) ∈ D ⊆ <v are the model state,120

input and disturbance vectors, respectively; X , U and D are the state, input and121
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disturbance constraint sets; f(·) is a continuous and twice differentiable vector122

function that depends on the system being modeled1.123

To obtain the PV models, we use the 2D and 3D schemes shown in Fig. 2.124

Using these schemes, we propose to use the following state vector to model the 2D

(a) 2D (b) 3D

Fig. 2 Schemes of the proposed PV models

125

PV126

x = [x, y, v]T , (2)127

where x and y denote the PV position coordinates and v is the modulus of the PV128

velocity vector. We define the control input vector as129

u = [ψ, T ]T , (3)130

where ψ and T denote the yaw angle and the thrust force, respectively. Conse-131

quently, the 2D dynamics of the proposed PV model can be obtained as132

ẋ = f(x,u,d) =


v cosψ + dx

v sinψ + dy

−τv + κT

 , (4)133

1 To simplify the notation, from now on we will omit the time dependence, i.e. ẋ(t) = ẋ,

x(t) = x, u(t) = u and d(t) = d
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where dx and dy are the xy components of d, the damping constant τ determines134

the rate of change of the PV velocity and κ is a constant proportional to the thrust135

force T .136

To model the 3D PV we just have to include the altitude dependence. Using137

the scheme presented in Fig. 2b, the state vector is chosen as138

x = [x, y, z, v]T , (5)139

where x, y and z denote the PV position coordinates and v is the modulus of the140

PV velocity vector. The control input vector is then defined as141

u = [θ, ψ, T ]T , (6)142

where θ, ψ and T denote, respectively, the pitch angle, the yaw angle and the143

thrust force. Then, the 3D dynamics of the PV model can be described by the144

following first order differential equation system:145

ẋ = f(x,u,d) =



v cos θ cosψ + dx

v cos θ sinψ + dy

v sin θ + dz

−τv + κT


, (7)146

where dx, dy and dz are the xyz components of d. As it can be seen, if the pitch147

angle θ is zero, then (7) is reduced to (4).148

One important thing we would like to mention about the proposed PV models is149

that in the last equation of (4) and (7) the basic dynamics of the UV is included.150

This is very advantageous as physical systems do not have the ability to make151

instant changes in their dynamics. So, by including this last equation in the PV152

models we ensure that if this model is used in the path-planning module, then153
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the path will be computed reflecting the UV basic dynamics, and consequently154

guaranteeing the feasibility of the path. Generally, the UV dynamics is not taken155

into account in path-planning algorithms because they use impulsional models156

[12, 17], which can lead to unfeasible paths for a UV.157

3 The Path-Planning Problem158

Given a target position or waypoint wi the path-planning problem consists in159

finding a path that connects the initial state vector x(t0) and each consecutive160

waypoint wi
2, where the subscript i = 1, 2, · · · ,M indicates the waypoint number.161

In this article we propose to find the path that is not only the shortest one but162

also a feasible one, i.e. the shortest path that also takes into account the dynam-163

ics and physical constraints of the UV that should follow the path. To find the164

shortest path we only have to measure the distance between the current position165

of the PV and the desired waypoint, and then minimize it. But as we also want166

the path to be feasible, we have to include the dynamics and constraints in the167

minimization problem. This may be done, for example, using a receding horizon168

technique, since the distance can be embedded in the cost function and the dy-169

namics and constraints in the constrained minimization. Here, we propose to use170

the NMPC technique presented in [16] to control the velocity vector (modulus and171

direction) of the PV model. By controlling this vector the position of the PV is172

actually determined, thus defining the desired path towards the waypoint. The173

main advantage of using this technique (unlike the one used in [12], for example)174

2 For the 2D case wi is defined as wi = [wix , wiy , wiv ]T and for the 3D case wi =

[wix , wiy , wiz , wiv ]T . wix , wiy and wiz denote the xyz coordinates of waypoint wi and wiv

defines the speed that the PV should have when wi is reached.
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is that, as the dynamics and constraints of the UV that should follow the path175

can be taken into account in the minimization problem, then the resulting path is176

guaranteed to be feasible.177

In Fig. 3 a scheme of the proposed methodology is shown. Under the assump-

(a) Initial condition for t = t0 (b) Condition for t = t1

(c) Condition for t = t2

Computed Path

(d) Condition for t = tk

Fig. 3 Computing a path between x(t0) and w1

178

tion that the control inputs of the PV have a limited rate of change, this figure179

shows how the path towards a single waypoint w1 is obtained. As can be seen in180

Figs. 3b and 3c, the PV starts moving towards w1. To do this, we propose to use181

the algorithm [16] to minimize the euclidean distance (dist(x(tj),wi)) between the182
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current position of the PV and the desired waypoint. As a result, the optimal yaw183

angle and thrust force are computed and the velocity vector modifies its direction184

and modulus in order to reach the desired target in a feasible way. The path we185

were looking for turns out to be the path that the PV has described in order to186

go from the starting configuration to the desired one (see Fig. 3d).187

Also, it could happen that a path that connects the initial position and several188

waypoints is required. This situation is illustrated in Fig. 4 for the case of two189

waypoints3. As shown in Fig. 4a, the PV is configured with an initial condition190

x(t0), u(t0) and the path should pass first through the waypoint w1 and then191

through the waypoint w2. To obtain this path, two sub-paths are considered: one192

joining the initial configuration with w1 and the other joining w1 with w2. The193

first sub-path is obtained in a similar way as we have done in Fig. 3. Once w1194

has been reached, the second sub-path can be computed. To do this, the desired195

target is changed from w1 to w2 and the minimization of the distance between the196

current position of the PV and w2 is performed. As a result, the PV starts moving197

again and its velocity vector is recalculated in order to move the PV towards w2198

(see Figs. 4b and 4c). The full computed path can be seen in Fig. 4d. As it is199

shown, it has been obtained by joining both sub-paths together.200

As was mentioned before, we propose to modify the direction and modulus of201

the velocity vector of the PV using the control technique described in [16]. To use202

this control technique, first we need to transform the non-linear model (1) into an203

equivalent discrete linear time-varying (LTV) one of the form204

x̃k+1|k = Ak|kx̃k|k + Buk|k ũk|k + Bdk|k d̃k|k, (8)205

3 Note that if there are more than two waypoints, the procedure to compute the path is

similar as the one presented here.
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(a) Condition for t = tk (b) Condition for t = tk+a

(c) Condition for t = tN

Computed Path

(d) Full computed path

Fig. 4 Computing a path between x(t0) and w2 passing through w1

where206

x̃k|k = xk|k − xrk|k, ũk|k = uk|k − urk|k and d̃k|k = dk|k − drk|k. (9)207

xrk|k, urk|k and drk|k
4 define the linearization state, input and disturbance trajecto-208

ries, and Ak|k, Buk|k and Bdk|k are the discrete matrices of the linearized version209

of (1). Receding horizon techniques use a cost function of the form210

J (k) =
N−1∑
j=0

Lj(xk+j|k,uk+j|k) + LN (xk+N |k), (10)211

4 dr
k+j|k, j = 0, · · · , N − 1 is a given or estimated perturbation
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where Lj(·, ·) is the stage cost and LN (·, ·) stands for the terminal cost. Gener-212

ally, in receding horizon algorithms both the stage cost and the terminal cost are213

adopted as follows:214

Lj(xk+j|k,uk+j|k) = ‖xk+j|k −wi‖lQk|k + ‖∆uk+j|k‖
p
Rk|k

(11)215

and216

LN (xk+N |k) = ‖xk+N |k −wi‖lPk|k , (12)217

where Qk|k,Rk|k,Pk|k are positive definite matrices; Pk|k is the terminal weight218

matrix that is chosen so as to satisfy the Lyapunov equation. Superscripts l and p219

are even positive numbers and in general are adopted as l = p = 2. ‖(·)‖βα stands220

for the α-weighted β-norm and ∆uk+j|k = uk+j|k − uk+j−1|k. Then, in terms221

of the LTV system (8) and according to [16], we propose to solve the following222

optimization problem:223

min
Ũk∈U

J (k)

st.



x̃k+j|k = Ak|kx̃k|k + Bk|kũk|k,

x̃k|k = xk|k − xrk|k,

ũk|k = uk|k − urk|k,

J (k) ≤ J0(k).

(13)224

where225

Ũk
5 = [ũk|k, ũk+1|k, · · · ũk+N−1|k]T (14)226

is the control input sequence and J0(k) denotes the cost function evaluated for227

the initial solution U0
k = [uk|k−1,uk+1|k−1, · · · ,uk+N−2|k−1, 0]T at iteration k.228

5 Hereinafter we use bold capital fonts to denote complete sequences computed for k, k +

1, · · · , k +N − 1.
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The last inequality in (13) defines the contractive constraint that guarantees the229

convergence of the iterative solution and defines an upper bound for J (k) (for a230

detailed explanation about this contractive constraint, please refer to [16]).231

In this work, we propose to split the optimization problem (13) into two dif-232

ferent ones. When the current position of the PV is far away from the desired233

waypoint (that is to say when dist6(xk|k,wi) > r) we use the standard quadratic234

objective function, i.e. we set l = 2 and p = 2 7. Instead, when the current position235

of the PV is sufficiently close to the desired waypoint (say dist(xk|k,wi) ≤ r) we236

adopt a higher order objective function, i.e we set l = 4 and p = 2.237

Remark 1 Note that with the selected values of l and p both optimization problems238

are convex, thus not affecting the optimality, feasibility and stability of the system.239

The main idea behind changing the order of the optimization problem can be240

explained looking at Fig. 5. This figure shows how the one dimensional (1D) cost241

function242

c(e) =
(
e− wi
r

)l
(15)243

changes its shape as the parameter l is varied. As it can be seen, when we are244

sufficiently close to the desired waypoint, as l gets bigger the derivative of the cost245

6 dist(a, b) is a function that computes the euclidean distance between a and b. r is the

radius of a circumference (2D case) or a sphere (3D case) centred at wi that defines the zone

in which we consider that we are close enough to the waypoint and proceed to follow the next

one.

7 Note that with l = 2 the position error for both the stage cost and the terminal cost

are the square of the distance between the current position and the desired one, which is the

quantity we want to minimize. p = 2 was selected in order to obtain a quadratic function for

input variations. Also, with the proposed superscripts selection, the cost function can be seen

as a measure of the energy expended in the path-planning process.
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Fig. 5 One dimensional cost function

function around e = wi ± r is very sharp. This effect can be used to force the PV246

to reach the desired waypoint faster than if the conventional quadratic function247

(l = 2) is used. For the multi-dimensional case, the effect of varying l is similar as248

the one described for the 1D case. We have discussed the 1D case because it can249

be visualized graphically.250

The proposed path-planning algorithm can be described as follows: first, the251

non-linear system is transformed into a LTV system by means of successive lin-252

earizations along pre-defined state-space trajectories. Then, the distance between253

the current position of the PV and the desired waypoint is measured. If the PV is254

close enough to the target, then the higher order optimization problem is adopted255

to force the PV to reach the waypoint faster than if the conventional optimization256

problem is used. The proposed constrained minimization problem is solved and257

the optimal control input sequence (orientation angles and thrust force) is then258

obtained. The minimization process is repeated until the control input sequence259

converges. Finally, the computed optimal inputs are applied to the PV and the260
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path-planning process is reinitialized. In Algorithm 1, the proposed path-planning261

algorithm is summarized.262

Remark 2 Note that the change in the objective function does not affect the con-263

vergence and stability because J (k) ≤ J0(k) guarantees these properties for time-264

variant objective functions [16].265

Remark 3 If multiple vehicles are considered in the path-planning procedure, the266

proposed algorithm can be used in a decentralized manner because the couplings267

between vehicles can be embedded into the objective function and the constraints268

of the minimization problem [18].269

4 Simulation Examples270

In this section several simulation examples are shown. Using the PV model (4) we271

solve the optimization problem (13) to find 2D feasible and optimal paths. The272

extension to the 3D case is straightforward, we only need to use the PV model (7)273

instead of (4).274

For all the simulation examples we assumed that there are no disturbances275

(dk|k = 0) and that the PV has the initial state vector x0 = [0, 0, 0]T and the276

initial input vector is u0 = [π/2, 0]T . The PV model is discretized using a sampling277

rate Ts = 0.1 s and the horizon N was set to N = 8. The input weight matrix is278

chosen as Rk|k = diag([0.1, 0.1]). The PV constraints are configured as follows:279

0 ≤ T ≤ 2 (N), −0.087 ≤ ∆ψ ≤ 0.087 (rad/s), −1 ≤ ∆T ≤ 1 (N/s) and 0 ≤ v ≤280

2 (m/s). ψ, x and y are unconstrained. Both constants of the PV model are set as281

τ = 2 (1/s) and κ = 2 (1/kg). As we are interested in having the computed path282
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Algorithm 1: The Path-planning algorithm

Require: The initial condition xk|k, the iteration index q = 0 and the PV models (4) or (7)

1: Obtain the LTV system [Ak|k,Bk|k] and the matrices Qq
k|k, Rq

k|k and P q
k|k.

2: if dist(xk|k,wi) > r then

3: l← 2

4: p← 2

5: else

6: l← 4

7: p← 2

8: end if

9: Compute the optimal control input sequence Ũ∗,qk solving (13)

10: Update U∗,q
k|k ← Ur,q

k|k + Ũ∗,q
k|k

11: if
∥∥∥U∗,qk −U∗,q−1

k

∥∥∥
∞
≤ ε then

12: U∗k ← U∗,qk

13: k ← k + 1

14: q ← 0

15: else

16: q ← q + 1

17: Update Uq
k = U∗,q−1

k

18: Go back to line 2

19: end if

20: Apply uk|k = u∗
k|k to the system

21: Go back to line 1

pass sufficiently close to the waypoints, but not exactly through them, we define283

a circular area centered at each waypoint. If the path passes through this area,284

then we consider that the corresponding waypoint has been reached. For all the285

waypoints we set this area to a disk with a radius of r = 0.4 (m).286
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In examples 1 and 2 we assume that the computed path should pass sufficiently287

close to the following three waypoints8:288

w1 = [−10, 0, 1]T ,

w2 = [3, 8, 1]T ,

w3 = [−2, −5, 0]T .

(16)289

For these examples, the weight matrices are adopted as follows:290

1. Between the initial position x0 and the first waypoint w1, the state weight291

matrix is adopted as Qk|k = diag([10, 10, 10]).292

2. Between the waypoints w1 and w2, we adopt Qk|k = diag([10, 10, 100]).293

3. Between the waypoints w2 and w3, the weight matrix is adopted as Qk|k =294

diag([10, 10, 100]).295

In example 3 we assume that the computed path should pass sufficiently close296

to the following waypoint:297

w1 = [10, 8, 0]T . (17)298

For this example, the weight matrix is adopted as Qk|k = diag([10, 10, 10]).299

At this point it is worth mentioning that with the proposed approach all the300

examples could be run in real-time, as the optimization loop was solved in a max-301

imum time of approximately 30 (ms) in a desktop PC (i7-2600K CPU@3.40GHz,302

32GB RAM). All the examples were programmed using Python and CasADi [19]303

and were not optimized in any way. Since CasADi has C++ interfaces, we think304

that there is still room for improvement.305

8 As the simulation examples are performed for the 2D case, the components of the following

waypoints denote, respectively, x -coordinate, y-coordinate and speed.
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4.1 Example 1306

In this example we use the PV model (4) to compute a feasible and optimal path307

that passes sufficiently close to the waypoints wi (i = 1, 2, 3) defined in (16). We308

consider two cases: i) There are no obstacles between the waypoints, and ii) There309

are two circular obstacles of radii ro1 = ro2 = 1 (m) and centers co1 = [−4, 7]T (m)310

and co2 = [4, 4]T (m). In the first case, the computed path only has to satisfy the311

constraints imposed by the dynamics of the PV. In the second one, the computed312

path not only has to satisfy the PV constraints but it also has to avoid colliding313

with the two predefined obstacles. The results are shown in Fig. 6. As can be seen,

Position x (m)
-15 -10 -5 0 5

P
o

s
it
io

n
 y

 (
m

)

-6

-4

-2

0

2

4

6

8

10

v
0

x
0

w
1

w
2

w
3

(a) Without obstacles (b) With two obstacles

Fig. 6 Computed paths using the path-planning algorithm

314

in both cases the PV starts from x0 with a velocity vector v0. When there are315

no obstacles (Fig. 6a), the resulting path is smooth and it satisfies the PV state316

and input constraints. Moreover, the PV passes successfully through the three317

desired waypoints. When the two circular obstacles are present (Fig. 6b) the path318

is similar to that obtained in the previous case but in this situation the computed319
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path avoids collision with both obstacles. With the proposed methodology, adding320

the obstacles is just as simple as adding constraints of the form321

(x− coix )2 + (y − coiy )2 ≥ ro (18)322

to the optimization problem (13), where coix and coiy denote the x and y compo-323

nents of the vector coi . Since the obstacles are added as constraints to (13), their324

detection and avoidance is straightforward, because the solution of the optimiza-325

tion problem already takes into account the presence of these static obstacles.326

Remark 4 Note that any obstacle can be circumscribed within a circle (2D) or a327

sphere (3D), thus any shape of obstacle can be considered.328

Fig. 7 shows the evolution of the velocity modulus and the yaw angle of the329

PV for both situations, without obstacles (Fig. 7a) and with them (Fig. 7b).330

Both figures are similar, the major difference that they exhibit can be observed331

approximately between t = 21 (s) and t = 23 (s). At this time the PV has reached332

the waypoint w2 and it is moving towards w3. When the PV detects the presence333

of the obstacle centered at co2 it must reduce its velocity and modify its yaw angle334

in order to avoid colliding with the obstacle. Once the obstacle is avoided, the PV335

accelerates again and reaches the final target w3.336

4.2 Example 2337

For the second simulation example, we consider that the PV should pass sufficiently338

close to waypoints wi (i = 1, 2, 3) and that there are three obstacles: the previous339

two mentioned in example 1, and a third one that appears suddenly at t = 2.5 (s).340

The latter obstacle is also circular and it is located at co3 = [−6, 2]T (m) with341
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Fig. 7 Evolution of velocity modulus and orientation angle

radius ro3 = 1.5 (m). The results are shown in Fig. 8. As observed in Fig. 8a,342

when the PV starts moving only two fixed obstacles are present. At t = 2.5 (s)343

(see Fig. 8b) a new circular obstacle appears in the way of the PV. If the PV does344

not change the direction of its velocity vector v, then it will collide with this new345

obstacle. Fortunately, we are computing the path in an online manner, so, as it346

is shown in Fig. 8c, the PV can detect the new obstacle and the direction of the347

velocity vector is automatically changed. In Fig. 8d the resulting path is depicted,348

which is smooth and it satisfies not only the PV constraints but also avoids the349

two static obstacles and the appearing one. The evolution of the velocity modulus350

and the yaw angle is depicted in Fig. 9. As can be observed, a peak appears in the351

yaw angle curve between t = 2.5 (s) and t = 4.5 (s). This occurs because the PV352

needs to modify its yaw angle from ψ = 180 (deg) up to ψ = 220 (deg) in order to353

change its direction and, consequently, avoid colliding with the new obstacle. The354

evolution of the velocity modulus is similar to that presented in Fig. 7b.355
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(a) Initial configuration (b) Configuration for t = 2.5 (s)

(c) Configuration for t = 5 (s) (d) Final configuration

Fig. 8 Generation of a feasible path with two fixed obstacles and one appearing

at t = 2.5 (s)

4.3 Example 3356

In this example we explore the problem of computing a feasible path in a follower357

condition without obstacles. We assume that we have two particle vehicles: PV1,358

with initial condition x01 = [0, 0, 0]T and u01 = [π/2, 0]T , and PV2 (the follower)359

whose initial condition is x02 = [−5, 5, 0]T and u02 = [−π/2, 0]T . To perform this360

simulation example, we configured two NMPC controllers: one for PV1 and the361
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Fig. 9 Evolution of velocity modulus and orientation angle

other for PV2. The configuration of the NMPC parameters for both controllers362

was done as described in the beginning of Section 4, except that we have let PV2363

to increment its speed up to 4 (m/s).364

In this example, we consider that PV1 has to reach the waypoint (17) and365

PV2 has to reach PV1, i.e. its target is the current position of PV1. The results366

obtained are shown in Fig. 10. As can be seen in Fig. 10a, at t = 1.5 (s) the PV1367

(rounded) starts moving towards w1 while the PV2 (squared) modifies its velocity368

vector in order to move towards PV1. At t = 3 (s) (Fig. 10b), the PV2 is located369

behind the PV1. When t = 4.5 (s) the PV2 has almost reached the PV1 and they370

both move towards w1, as depicted in Fig. 10c. Finally, as shown in Fig. 10d, when371

t = 10 (s) the PV2 reaches PV1 and they both reach the desired target w1. Figure372

11 compares the velocities (Fig. 11a) and the yaw angles (Fig. 11b) of both PV1373

and PV2. As it can be seen from Fig. 11a, the PV2 increments its speed up to its374

maximum value (4 m/s) in order to follow as quick as possible the PV1. Once the375

follower is close to PV1, both velocities profiles are similar. In Fig. 11b it can be376

seen how both yaw angles are modified. At t = 3 (s) both ψ1 and ψ2 have similar377
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(c) Configuration for t = 4.5 (s)
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(d) Configuration for t = 10 (s)

Fig. 10 Generation of a feasible path in a follower condition without obstacles

values, meaning that the velocity vectors of PV1 and PV2 are aligned with each378

other and consequently, PV1 reaches the desired waypoint and the PV2 reaches379

PV1.380

In this example we have computed a feasible path in a follower problem. If381

instead of following the moving object we configure PV2 to move away from PV1,382

then the proposed approach can be easily extended to be used with moving ob-383

stacles.384

385
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without obstacles

4.4 Example 4386

In this example we explore the problem of computing a feasible path while387

following it with a Husky9 UGV simulated in Gazebo10 simulator. The math-388

ematical model used to solve the guidance of the Husky UGV is given by the389

following equation390

ẋ = f(x,u) =


vh cosψh

vh sinψh

ωh

 , (19)391

where x = [xh, yh, ψh]T is the state vector, xh and yh denote the robot position392

and ψh denotes its yaw angle. The control input vector u = [vh, ωh]T includes the393

linear and angular velocities vh and ωh, respectively. It should be noticed that394

the model (19) used to control the Husky is different from the plant, which is395

9 https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

10 http://gazebosim.org/
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a complex model simulated by Gazebo. We assume that both the PV and the396

Husky UGV have the same initial position but they differ in its initial orientation397

angle. The PV has its velocity vector pointing upwards (ψ = 90 (deg)) while the398

Husky velocity vector points to the east side (ψh = 0 (deg)). As it can be seen in399

Fig. 12 the Husky model is able to follow the computed path successfully. This is400

mainly due to the fact that the navigation algorithm generates a trajectory that401

is feasible and takes into account the dynamic constraints of the UGV. Fig. 13a

Fig. 12 Path-following with a Husky UGV

402

shows that when t = 0 (s), the Husky turns left in order to move towards waypoint403

w1 = [−4, 2, 0.5]T . Once it is reached, the Husky UGV turns right in order to move404

in a straight line towards waypoint w2 = [5, 5, 0]T . As the path was computed405

taking into account a circular obstacle which is located at co = [1, 4.5]T (m) with406

radius ro = 1 (m), it can be seen that the UGV performs the obstacle avoidance407

maneuver at approximately t = 10 (s) without any difficulty. After that, it moves408
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towards waypoint w2 in almost a straight line. It should be emphasized that as409

the resulting path is smooth and feasible, the Husky is able to follow it without410

major difficulties. In Fig. 13b it is shown the xy-position errors ex = x − xh and411

ey = y − yh, respectively, in the path-following maneuver. It can be seen that at412

approximately t = 1 (s) both errors tend to increase. This is due to the fact that413

the orientation of the Husky is different from the orientation of the PV. This was414

done on purpose in order to show that despite both yaw angles were different, the415

Husky is able to follow quite well the computed path. Then, for approximately416

t > 2.5 (s) the position errors tend to decrease and are very close to 0.
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Fig. 13 Husky control inputs and path-following errors

417

5 Conclusions418

In this article we have presented an online path-planning algorithm that can be419

used to guide any kind of unmanned vehicle towards desired targets. The pro-420

posed algorithm handles the problem of finding the optimal path towards desired421
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waypoints, while taking into account the kinematic, the dynamic and constraint of422

the vehicle. We used a simplified particle vehicle model and the iterated non-linear423

model predictive control technique to control the velocity vector of this particle424

vehicle model. By controlling this vector we have actually determined the path425

that the particle vehicle model should take in order to reach the targets. We have426

also exploited the use of a higher order cost function in the optimization problem.427

Because we have used the iterated NMPC algorithm [16], optimality, stability and428

feasibility can be guaranteed. The performance and capabilities of the proposed429

path-planning algorithm were demonstrated through several simulation examples.430

The path-following capabilities were explored using a Husky UGV to follow a431

feasible path. All the simulation examples were performed successfully.432
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