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h i g h l i g h t s

• We study the non-Arrhenius process and propose an explanation about it.
• We propose a diffusion coefficient that is proportional to the supercooled-liquid concentration.
• The proposed model allows us to explain the anomalous behavior of the diffusivity robustly.
• We demonstrate that this new approach is consistent with experimental patterns.
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a b s t r a c t

Diffusivity in supercooled liquids was observed to exhibit a non-Arrhenius behavior near
the glass-transition temperature. This process, which occurs where the activation energy
depends on the temperature, suggests the possibility of a metastable equilibrium. This
peculiar phenomenon cannot be explained using the usual Markovian stochastic models.
Based on a non-linear Fokker–Planck equation, we propose a diffusion coefficient that
is proportional to the supercooled-liquid concentration. The proposed model allows us
to explain the anomalous behavior of the diffusivity robustly. We demonstrate that this
new approach is consistent with experimental patterns. Besides, it could be applied to
non-Arrhenius chemical kinetics.

© 2016 Elsevier B.V. All rights reserved.

In the transport phenomena of many systems, such as solids and porous media, the temperature dependence of the
diffusion coefficient D(T ), is currently assumed to exhibit Arrhenius-like behavior, i.e., a linear relationship logD ∝ 1/T .
In certain systems, the linearity is not experimentally well-established. However, it can be enforced because the number
and accuracy of experimental data points are usually not too high, and the accessible range of the 1/T variable is small.
Currently, the improvement in experimental techniques to study the reaction mechanism and ionic transport has allowed
measurements with high accuracy in a wide range of temperatures. Thus, the systems that exhibit a non-linear relationship
with suchdependencewere clearly identified, such as the transport process in supercooled liquid under focus here. However,
the diffusion barrier or activation energy is usually assumed to be constant, and there is no well-defined model that
correctly characterizes these phenomena in the nonlinear Arrhenius framework. In particular, for the transport mechanism
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in supercooled liquid, there is increasing evidence from various recent studies on the temperature dependence of diffusivity
processes that notice the deviations from the Arrhenius mechanism [1–7].

According to IUPAC rules the activation energy in dynamic equilibrium is defined as Eq. (1). The activation energy is
temperature dependent and it is also often described as Arrhenius law [8]. According to Tolman’s theorem [9], the Arrhenius
activation energy is a phenomenological quantity defined in terms of the slope of an Arrhenius plot, i.e.,

∂(ln(k))
∂

 1
T

 = −
Ea
kb

(1)

where k is the rate constant, Ea is the activation energy, T is the temperature and kb is the Boltzmann constant. According
to Eq. (1), if Ea is constant, the rate coefficient k decays exponentially with the inverse of temperature. Within the Arrhenius
regime, there are several interpretations for the activation energy [10–18,9,19]. Tolman [9] interpreted the activation energy
as the difference between the average energy of the molecules that reacted and the average energy of all the particles of the
system. However, based on a diffusion model for chemical reactions, Kramers [19] interpreted the activation energy using
stationary temperature-dependent solutions of a Fokker–Planck equation [20].We recall that a Fokker–Planck equationmay
be derived from the Langevin equation by using standard techniques.

In recent years, several systems were reported to significantly deviate from this law [1–7,21–23]. These approaches
assumed a dependence between the activation energy and the temperature. Two different behaviors of the linearity
deviation were identified in the plot ln k × 1/T [24]: a sub-Arrhenius behavior, which is associated with dominance of
tunneling quantum effects, and a super-Arrhenius behavior, which occurswhen classical transport phenomena predominate.
Nishiyama et al. [25] adopted a quadratic function to describe the nonlinear regimes. An alternative mathematical
description was proposed by Aquilanti et al. [26], which had defined the rate constant in terms of the deformed exponential

k(T ) = A

1 − d

ϵ

kbT

 1
d

(2)

where A, ϵ and d are phenomenological parameters, and the limit d → 0 recovers the conventional Arrhenius Law. However,
it is worth noting that although this function properly fits the experimental data, no physical interpretation was given for
the equation.

Recent experimentalworks [27,28] reported a non-Arrhenius-type behavior for diffusive processes in supercooled liquids
near the glass transition temperature. In particular, using the procedure described by Smith and Kay [2], the diffusivity as
a function of temperature provides an experimental curve that can be modeled by an exponential deformed by Aquilanti
similar to that proposed in Eq. (2).

Considering the existing problems on this subject, our main objective in this letter is to propose an alternative model
based on a nonlinear equation of Fokker–Planck type for diffusive systems beyond the Arrhenius mechanism. Furthermore,
the present study provides new insights into the deviations from linearity in many non-Arrhenius phenomena such as VTF
and non-exponential processes. This approachwas successfully applied in a variety of physical systems such as astrophysical
phenomena [29,30] and sunspots [31].

According to Frank [32], for the one-dimensional frame, Fokker–Planck-like equations correspond to the following
general form

∂

∂t
C(v, t) = −

∂

∂v
[F(v, t, C)C(v, t)] +

∂2

∂v2
[D(v, t, C)C(v, t)] (3)

where v is the random variable that characterizes the stochastic process, and C(v, t) is the probability density. The
coefficients F(v, t, C) and D(v, t, C) are the probability density functionals, whose explicit forms depend on the dynamic
evolution of the stochastic process to bemodeled. If Eq. (3) describes a diffusion process, C(v, t) corresponds to the diffusing
substance concentration, and the functionals F(v, t, C) and D(v, t, C) correspond to the drag coefficients and widespread
dissemination, respectively.

In this context, the nonlinear functional forms that we suggest for the coefficients F(v, t, C) and D(v, t, C) correspond
to the proposed forms in Plastino and Plastino [33] and Schwämmle et al. [34], so that,

F(v, t, C) = −


dU
dv


Cσ−1 (4)

and

D(v, t, C) = Γ Cα−1 (5)

whereU(v) is a generalized potential,Γ is a temperature-dependent parameter and the exponentsσ andα (both ≠1) define
nonlinear processes in the dissemination and drift. Thus, for a stationary regime with regularity conditions for v → ±∞, it
is straightforward to verify that using Eqs. (4) and (5), the solution of Eq. (3) is,

CS(T ) = C0 [1 − (α − σ)f (T )E]
1

α−σ (6)
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Fig. 1. Arrhenius plot of the supercooled-liquid diffusivity (open squares) and the diffusivity from Kr permeation (open circles). The dashed line is the fit
using the usual Arrhenius model. The solid line is the fit using the proposed model (Eq. (9)), for the supercooled liquid and Kr permeation data.

where C0 corresponds to a normalization constant and it is parameterized by temperature, f (T ) = Cσ−α
0 /(αΓ ), and

E = U(v)−U(v0). If Eq. (6) describes the stationary regime of a diffusive substance, E represents a potential barrier related to
the necessary energy to lead the substance from the maximum concentration state, which is related to the initial condition,
to the dynamical equilibrium regime.

To ensure the robustness of themodel, the boundary condition α → σ should recover the classical form of the Arrhenius
equation which implies three conditions: α = 2, which provides a diffusion coefficient that is directly proportional to the
concentration, D0 = Γ C0 is independent of temperature and f (T ) ∝ 1/T . For such conditions, it is easy to see that the rate
of change of the diffusion coefficient with temperature corresponds to expression

1
DS

dDS

dT
=

E
κT 2


DS

D0

σ−2

(7)

where κ is a proportionality constant. It is possible to rewrite Eq. (7) in the form,

κ
∂

∂
 1
T

 [lnDS] = −E

DS

D0

σ−2

. (8)

The left-hand side of Eq. (8) defines the generalized activation energy EG, which depends on temperature. It must be
emphasized that in the limit σ → 2, E

κ
→

Ea
kb
. Finally, the explicit dependence of EG on the temperature is given by

EG = E

1 − (2 − σ)

E
κT

−1

. (9)

The inverse activation energy versus inverse temperature linear dependence implied in Eq. (2) [26] is recovered, and the
identification can be made σ = 2 − d.

To verify the applicability of the proposed methodology, we used the recently published experimental approaches [2]
to characterize the activation energy and the diffusivity of the supercooled liquid, which was created when the film was
heated above its glass transition temperature Tg . In one of these experiments [2], a thick monolayer of an inert gas is
covered by a vapor-deposited amorphous film. The film is heated above its Tg temperature, whereupon it transforms into
a supercooled liquid, which allows the inert gas to permeate through the film. The temperature and rate of permeation are
used to determine the diffusivity of the supercooled liquid. Additionally, we calculated the diffusion activation energies Ea
in the temperature range 100 < T < 350 K, and the results are plotted in Figs. 1 and 2. In this case, Ea corresponds to the
pseudo-activation energy that is associated with the diffusion process and is thought to represent a potential energy barrier
that obstructs the structural rearrangement of the melt. The result shows that the activation energy is a nonlinear function
of the absolute temperature.

As a second applicationweused the formalism to characterize the experiment proposed byMatthiesen et al. [1]where the
permeation of krypton gas through initially amorphous overlayers was used to determine the diffusivity of the supercooled
liquid, which was created when the film was heated above its glass transition temperature Tg . In this procedure, the main
idea is that when the amorphous film is heated to temperatures near its Tg , it transforms into a supercooled liquid, and the
inert gas can begin to diffuse through the overlayer. In this experiment, the authors applied this approach to investigate
the temperature and composition dependence of the diffusivity of supercooled-liquid mixtures of methanol and ethanol.
The results of this experiment prove that the diffusivity of krypton inert gas is directly and quantitatively related to the
diffusivity of the supercooled-liquid overlayer. The final results are presented in Fig. 3, using the deformed Arrhenius plots
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Fig. 2. Diffusion activation energy as a function of the absolute temperature using Eq. (9).

Fig. 3. Deformed Arrhenius plot of the diffusivity obtained from Kr permeation through overlayers with various compositions of methanol in ethanol,
pure methanol and ethanol. The points represent the experimental data and the solid lines are our model fits to the measured diffusivity. At Tg = 103 K,
the diffusivity is D(Tg ) = 1.3910(−14) cm2/s.

of the diffusivities obtained from Kr permeation through the overlayers with various compositions of ethanol in methanol,
pure methanol and pure ethanol.

Using Eq. (9), we plotted Ea versus the absolute temperature for the following compositions of methanol in ethanol: 25%,
50%, 65%, 75% and 93%. The final results are plotted in Fig. 4. The value of the chi-square fit is χ2

≈ 10−5, which guarantees
the excellent consistency between the diffusivities obtained from the experimental data and those fitted using our model.

As previouslymentioned, Kramers [19] proposed amodel based on the Fokker–Planck equation for the usualmodeling of
chemical reactions, which properly verified the Arrhenius equation. The formalism proposed here is a generalization of the
Kramers model, which corresponds to the limiting case σ → 2, to reproduce the frameworks of nonlinearities modeled by
the empirical equationproposedbyAquilanti et al. (see Eq. (2)). The stationary solutiondescribed in Eq. (6) can be interpreted
as the concentration of chemical equilibrium, and the connectionwith the rate constant is established using the equilibrium
constant. Eq. (8) becomes a generalization of Eq. (1).

It is important to highlight that the other methodologies or mathematical models in the references have their merits,
as does the generalized Tolman model, which provides somewhat higher flexibility and enables extrapolation to more
extended ranges of temperature. This result is particularly evident in Figs. 2 and 4, where the activation energy decreases
with the temperature, whereas an asymptotically correct behavior is described using the new approach (see Eq. (9)). It is
noteworthy that the success of this fitting procedure is partially because due to the flexibility of the deformed exponential
function that coincides with the usual exponential function according to the well-known limit due to Euler. We recall
that Landau and Lifshitz [35] used this definition to describe fluctuations in statistical mechanics. In the recent scientific
literature, there are a variety of deformed algebraswith applications in different areas of science [36–39]. Such a deformation
of the exponential function occurs in the non-Boltzmann distribution of non-extensive Statistical Mechanics [40].
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Fig. 4. Activation energy in kJ/mol is calculated using Eq. (9). The value of the chi-square fit is χ2 < 10(−5) .

In summary, we note that (i) the diffusivity and the activation energy are power laws of the absolute temperature; (ii) for
the diffusion mechanism and at the limit of σ → 2 the usual Arrhenius law and Tolman’s activation energy are recovered,
which can be understood as a particular case of the proposedmethodology; (iii) this case studies only themethod to address
a phenomenological description of deviations from the Arrhenius law. This observation suggests that many molecules
cooperatively move regardless of the activation energy that is overcomed in the key relaxation processes. Furthermore,
the differential equation (Eq. (8)) provides insights into the deviations from linearity in many non-Arrhenius phenomena
such as non-exponential processes. In this context, this model appears to be an alternative tool to understand the processes
that occur when a supercooled liquid is cooled to temperatures near Tg , whereupon it forms a glass.

We conclude that the proposed formalism guarantees a physical interpretation of the observed super-Arrhenius behavior
of diffusive processes in supercooled liquid near the glass transition temperature. The diffusion coefficient, which is
represented in Eq. (6), satisfactorily fits the experimental data. Despite the emphasis on cases of super-Arrhenius behavior
(convex), sub-Arrhenius (concave) cases can be interpreted from the proposed formalism,where the deformation parameter
is the exponent 2 − σ .

For a recent examples of convexity, see [41–43]. A case of anti-Arrhenius behavior (rate decreasing with temperature) is
described in [44].
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