FISEVIER Contents lists available at ScienceDirect # Materials Science & Engineering A journal homepage: www.elsevier.com/locate/msea # Three different alumina-zirconia composites: Sintering, microstructure and mechanical properties Heidy L. Calambás Pulgarin, María P. Albano* Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), C.C. 49 (B1897ZCA) M. B. Gonnet, Provincia de Buenos Aires, Argentina #### ARTICLE INFO Article history: Received 3 December 2014 Received in revised form 9 April 2015 Accepted 3 May 2015 Available online 12 May 2015 Keywords: Al₂O₃–ZrO₂ Sintering behavior Microstructure Mechanical properties #### ABSTRACT Two commercial 3 mol% yttria–partially stabilized zirconia powders, with 0.3 wt% Al_2O_3 (Y–PSZA) and without Al_2O_3 (Y–PSZ), and a Zr (IV) precursor were used to produce alumina (Al_2O_3)–zirconia (ZrO_2) slip cast composites. The influence of both the zirconia content and the reduction of zirconia particle size on the sintering behavior, microstructure development and mechanical properties were investigated. The increase in the zirconia content from 10.5 to 22 vol% increased the hardness; whereas, above 22 vol% ZrO_2 the hardness decreased. A significant increase in the fracture toughness with increasing the ZrO_2 content over 22 vol% was obtained by the stress-induced phase transformation. The flaw size limited the strength below 22 vol%; whereas, above 22 vol% ZrO_2 the strength was controlled by the stress-activated phase transformation. For 10.5 vol% ZrO_2 , the smaller ZrO_2 grains produced by using the Zr (IV) precursor were more effective in preventing the Al_2O_3 grain growth resulting in higher hardness. However, the tetragonal—monoclinic (t-m) transformation of some unstabilized ZrO_2 grains during cooling reduced Young's modulus and fracture toughness. © 2015 Elsevier B.V. All rights reserved. #### 1. Introduction The mechanical behavior of zirconia-toughened-alumina ceramics is currently of great interest, mainly as a result of their high strength and enhanced fracture toughness [1]. The stress-induced martensitic transformation of tetragonal zirconia can markedly increase the fracture toughness of alumina-zirconia ceramics. In order to retain the tetragonal phase to room temperature, it is found that both the addition of Y₂O₃ stabilizer and the reduction of ZrO₂ grain size are required [2]. In this work, two commercial 3 mol% yttria-partially stabilized zirconia powders, with 0.3 wt% Al₂O₃ (Y-PSZA) and without Al₂O₃ (Y-PSZ), were used to produce Al₂O₃-ZrO₂ slip cast composites. The Al₂O₃ content play an important role for the densification of Y-PSZ ceramics. Matsui [3] explained the enhanced effect of Al₂O₃ on the densification of Y-PSZ with a change of the principal diffusion mechanism from grain-boundary to bulk volume diffusion. We have also studied [4] the enhanced sintering effect of Y-PSZ with 0.3 wt% Al₂O₃ compared to Y-PSZ in the sintering of 50 vol% Al₂O₃-50 vol% ZrO₂ composites. $\mbox{Al}_2\mbox{O}_3$ and \mbox{ZrO}_2 ceramics can be produced by conventional powder processing techniques which involve mixing, pressing and subsequent sintering. Slip casting is a suitable consolidation process to obtain compacts with high sintered densities and microstructural homogeneity allowing the manufacture of components with complex shapes [1]. According to Requena et al. [5] the slip casting technique is a powerful method to obtain $\mbox{Al}_2\mbox{O}_3/\mbox{ZrO}_2$ multilayer composites with nearly theoretical density (>98%). In a recent paper we reduced the ZrO_2 particle size by using a Zr (IV) precursor route [6]; smaller particles with respect to the classical powder mixing route, homogeneously distributed on the Al_2O_3 particle surfaces were obtained. Szutkowska [7] studied the fracture resistance behavior of sintered alumina–10 wt% zirconia (≈ 7 vol% ZrO_2) produced either with unstabilized ZrO_2 or 3 mol% yttria–partially stabilized zirconia powders; he measured the fracture toughness of these composites and pure alumina by different methods. His results showed that the alumina–10 wt% zirconia composites with unstabilized ZrO_2 had the highest fracture toughness value independently on the used method. In this paper, a series of Al_2O_3 – ZrO_2 formulations were prepared either by using the two commercial 3 mol% Y–PSZ powders or a Zr (IV) precursor. The influence of both the zirconia content and the reduction of zirconia particle size on the sintering behavior and microstructure ^{*} Corresponding author. Fax: +54 221 471 0075. E-mail address: palbano@cetmic.unlp.edu.ar (M.P. Albano). development were studied. In addition, the effect of these microstructures on the mechanical properties were discussed. #### 2. Experimental procedure #### 2.1. Raw materials and powder processing Alumina (A16 SG, Alcoa Chemicals, USA, d_{50} =0.40 μ m), 3 mol% yttria-partially stabilized zirconia with 0.3 wt% Al₂O₃ (Saint-Gobain ZirPro, CY3Z-MA, Chine, d_{50} =0.23 μ m) and without Al₂O₃ (Saint-Gobain ZirPro, CY3Z-NS, Chine, d_{50} =0.64 μ m) powders were used in this study. For the colloidal method, zirconium (IV)-propoxide solution (70 wt% in 1-propanol) (Sigma-Aldrich, Ireland) was added dropwise to a stable alumina (A16) suspension in absolute ethanol; this method was described in a previous paper [6]. The compositions used to prepare Al₂O₃–ZrO₂ composites are summarized in Table 1. A commercial ammonium polyacrylate solution (NH₄PA) (Duramax D 3500, Rohm and Haas, Philadelphia PA) was used as deflocculant. 48 vol% aqueous Al₂O₃–ZrO₂ suspensions with the different compositions (Table 1) and the optimum NH₄PA concentration were prepared by suspending particles in deionized water via 40 min of ultrasound; the pH was manually adjusted to be maintained at 9 with ammonia (25%). Slips were cast in plaster molds into rectangular bars ($12 \times 10 \times 9 \text{ mm}^3$); the consolidated bars were dried slowly in air for 24 h at room temperature and 24 h at 100 °C. The green samples were sintered in air at 1100–1600 °C for 2 h (heating rate 5 °C/min). #### 2.2. Characterization techniques The specific surface area (S_g) and the particle size distribution of the powders were measured using a Micromeritics Accusorb and a Sedigraph (Micromeritics), respectively. The density of the green compacts was determined by the Archimedes method using mercury displacement. The bulk density of the sintered samples was determined by water immersion (Standard Method ASTM C20). An impulse excitation frequency tester (GrindoSonic, MK5 Model) was used to determine the Young's modulus. The measured resonant frequency, along with the length, thickness, wide and weight of the bars were used in the following equation to calculate Young's modulus: $$E = 0.9465 \left(\frac{mf_{\rm f}^2}{w}\right) * \left(\frac{L^3}{e^3}\right) * T_1 \tag{1}$$ where m is the specimen mass, w is the wide, L is the length, f_f is the frequency (Hz), e is the specimen thickness and T_1 is the shape **Table 1**Compositions used for the preparation of Al₂O₃–ZrO₂ composites and green density of slip cast compacts. | Sample ^a | Al ₂ O ₃
(vol%) | Y-PSZA
(vol%) | Y-PSZ
(vol%) | ZN (vol%) | Green density
(% DT) ^b | |---------------------|--|------------------|-----------------|-----------|--------------------------------------| | 10.5Y-PSZA | 89.5 | 10.5 | _ | _ | 63.2 | | 10.5Y-PSZ | 89.5 | _ | 10.5 | _ | 64.3 | | 10.5ZN | 89.5 | _ | _ | 10.5 | 57.0 | | 22Y-PSZA | 78 | 22 | _ | | 62.5 | | 22Y-PSZ | 78 | _ | 22 | | 64.8 | | 22ZN | 78 | _ | - | 22 | 54.0 | | 50Y-PSZA | 50 | 50 | _ | - | 60.0 | | 50Y-PSZ | 50 | - | 50 | - | 65.3 | ^a The numbers 10.5, 22 and 50 in the sample codes indicate the volume percent of zirconia in the composite. factor (depedent on Poisson's ratio). Five measurements were tested for each sample and the results are presented as mean values. Theoretical values of Young's modulus were determined for comparison using a rule of mixtures in the form $E=E_1v_1+E_2v_2$; where E_1 and v_1 are the modulus values and volume fraction of Al₂O₃, respectively, and E_2 and v_2 are the respective values of ZrO₂. The mechanical properties evaluated for the samples sintered at 1600 °C were hardness, fracture toughness (K_{1c}) and flexural strength. The sintered samples were polished with a series of diamond pastes down to $1/4\,\mu m$ and annealed at $1100\,^{\circ}C$ for 30 min to remove surface strains introduced during machining. The Vickers hardness (Hv) was carried out using a diamond indenter (Buehler hardness tester) and calculated as follows: $$Hv = 1.854 \frac{F}{d^2}$$ (2) where F is the indentation load and d is the arithmetic mean of two diagonals (d_1 and d_2). 10 Hv measurements were used to obtain an average value. The fracture toughness (K_{1c}) was calculated on the basis of the indentation method: $$K_{1C} = 0.016 \left(\frac{E}{\text{Hv}}\right)^{1/2} \frac{P}{C^{3/2}}$$ (3) where E is Young's modulus, Hv is the vickers hardness, P is the indentation load and C is the crack length, which was measured using the ocular on the hardness tester. The flexural strength of the sintered samples was measured using a three-point bending test (INSTRON, 4483). About 10 measurements of fracture toughness and flexural strength were tested for each sample and the results are presented as mean values. The alumina and zirconia grain sizes were measured using SEM micrographs (JEOL, JSM-6360) of polished and thermally etched surfaces. The grain size values were the average of about a hundred measurements. The percentages of monoclinic and tetragonal ZrO_2 in the composites were determined by XRD analysis (Philips 3020 equipment, with $Cu-K\alpha$ radiation in Ni filter at 40 kV to 20 mA) using the Rietveld method [8]. #### 3. Results and discussion #### 3.1. Powder characterization Fig. 1 a shows the particle size distribution curves of the $Al_2O_3,$ Y–PSZ and Y–PSZA powders. In Fig. 1b the particle size distribution curves of the 10.5 and 22ZN powders after milling were compared with that of Al_2O_3 . Alumina showed a unimodal distribution with particle diameters >0.1 and $<0.75~\mu m$, the more frequent particle diameters were in the range of 0.15–0.3 μm . A slightly narrow particle size distribution was found for Y–PSZA; thus a greater volume of finer particles (diameters between 0.10 and 0.20 μm) and a lesser volume of particles with diameters in the range of 0.20–0.55 μm were observed, the more frequent particle diameter was 0.15 μm . A bimodal distribution curve was found for Y–PSZ, the more frequent particle diameters (0.37 and 0.65 μm) were greater than those of Al_2O_3 and Y–PSZA powders. A slightly wider particle size distribution was found for the ZN powders with respect to that of Al₂O₃ (Fig. 1b); a lesser volume of finer particles ($<0.35~\mu m)$ and a greater volume of particles with diameters in the range of 0.35–0.9 μm were found. The more frequent particle diameters of 10.5ZN were in the same range as those of Al₂O₃; whereas, for the 22ZN powder the more frequent particle diameters became greater (0.40–0.60 μm). Although the Zr ^b Theoretical density. Fig. 1. Particle size distribution curves of different as-received powders: (a) Al_2O_3 , Y-PSZ and Y-PSZA; and (b) Al_2O_3 , 10.5 and 22ZN powders after milling. (IV) precursor route avoided the formation of ZrO_2 aggregates on the Al_2O_3 particles [6], it let to aggregates of some Al_2O_3 particles with very fine ZrO_2 uniformly distributed. The diameters of the Al_2O_3 aggregates increased with increasing the ZrO_2 content. The specific surface area (S_g) of Al_2O_3 , Y–PSZ, Y–PSZA, 10.5ZN and 22ZN powders was 8.74, 7.84, 12.25, 9.7 and 13 m²/g, respectively. The finer particles of Y–PSZA was responsible to its higher specific surface area with respect to that of Al_2O_3 and Y–PSZ. The higher S_g of the ZN powders with respect to that of Al_2O_3 was attributed to the fine-sized ZrO₂ on the Al_2O_3 particles [6]. ### 3.2. Densification and grain growth Table 1 shows the green density values of the different Al₂O₃–ZrO₂ composites. For Al₂O₃–Y–PSZ compacts, green density values between 64.3% (10.5Y–PSZ) and 65.3% (50Y–PSZ) of theoretical density were found; while for Al₂O₃-Y–PSZA compacts, the green density had values between 63.2% (10.5Y–PSZA) and 60.0% (50Y–PSZA) of theoretical density. In a recent paper [6], we compared the green density of the different Al₂O₃–ZrO₂ composites and related them to the degree of slip dispersion. The substitution of Y–PSZ by Y–PSZA in the Al₂O₃–ZrO₂ mixtures increased the slip viscosity with NH₄PA resulting in a less dense packing of cast samples [6]. The cast samples obtained from the Al₂O₃–ZN slips exhibited the lowest green density values, 57.0% and 54.0% of the theoretical density for 10.5 and 22ZN, respectively (Table 1). This **Fig. 2.** Relative sintered density versus sintering temperature curves of Al_2O_3 and the composites with different ZrO_2 contents: (a) 10.5 vol% ZrO_2 and 22ZN, (b) 50 vol% ZrO_2 . behavior was attributed to the presence of some aggregated particles in the slips which increased the resistant to flow [6]. Fig. 2a shows the change in the relative sintered density with sintering temperature of Al₂O₃, 22ZN and the different composites with 10.5 vol% ZrO2; Fig. 2b shows the corresponding curves of Al₂O₃ and the composites with 50 vol% ZrO₂. The respective Delta sintered density with respect to Delta temperature $(\Delta \rho / \Delta T)$ are shown in Fig. 3a and b. The relationship between the relative density and the sintering temperature for 22Y-PSZA and 22Y-PSZ showed nearly the same behavior as 10.5Y-PSZA and 10.5Y-PSZ, respectively. The densification behavior of Al₂O₃ and the different composites could be related with the Al₂O₃ mean grain diameter measured at the different temperatures (Table 2). The Al₂O₃ grain diameter in pure Al₂O₃ remained nearly constant in the temperature range 1100–1250 °C, then a slightly increase in the grain diameter with increasing sintering temperature up to 1400 °C was found; thereafter an important increase in the Al₂O₃ grain diameter up to 1600 °C was observed (Table 2). When the Al₂O₃ average grain diameter increased over about 1 µm at 1400 °C a markedly decrease in the sintering rate of Al₂O₃ was found (Table 2 and Figs. 2 and 3). At temperatures above 1400 °C the porosity changed from being open and interconnected to closed and isolated and simultaneously grain growth occurred. The densification rate of 10.5Y–PSZA and 10.5Y–PSZ showed a maximum at 1330 °C (Fig. 3a); at temperatures > 1300 °C the Al₂O₃ grains began to grow, a slightly increase in the Al₂O₃ grain diameter between 1300 and 1500 °C was found followed by an important increase from 1500 to 1600 °C (Table 2). In the temperature range 1330–1450 °C the atomic transport process resulted in densification with a lesser contribution of coarsening; at T > 1450 °C the larger contribution of coarsening reduced the sintering rate (Fig. 3a and Table 2). For 10.5ZN the densification rate increased with an increase in the sintering temperature up to reaching a plateau in the range 1350-1450 °C, afterwards a rapidly decrease from 1450 °C to **Fig. 3.** $\Delta\rho/\Delta T$ (%/°C) versus sintering temperature for Al₂O₃ and the composites with different ZrO₂ contents: (a) 10.5 vol% ZrO₂ and 22ZN, (b) 50 vol% ZrO₂. 1600 °C was found (Fig. 3a). The Al₂O₃ grain size measurements showed negligible grain growth up to 1400 °C, thereafter a gradual increase in the Al₂O₃ grain diameter up to 1600 °C was observed (Table 2). However, the Al₂O₃ grain diameter obtained at 1600 °C was lower than that found for 10.5Y-PSZA and 10.5Y-PSZ. The presence of fine ZrO₂ grains by using the Zr (IV) precursor not only delayed the onset of Al₂O₃ grain growth until the temperature reached 1400 °C, but also reduced the Al₂O₃ grain growth up to 1600 °C (Table 2). Thus, the ZrO₂ efficiency in preventing Al₂O₃ grain growth was significantly increased by reducing the ZrO₂ grain size. This was attributed to the pinning effect which was associated to the locations of small ZrO₂ grains at the intergranular boundaries and often the triple junctions between Al₂O₃ grains. preventing the Al₂O₃ grain growth. The pinning effect was shown in Fig. 4a, the bright ZrO2 grains indicated by arrows are at the triple points between the dark Al₂O₃ grains. These results were in good agreement with those of Requena et al. [5]; who measured an alumina average grain size of $\approx 5.5 \,\mu m$ and $\approx 3.5 \,\mu m$ in Al₂O₃ and Al₂O₃/ZrO₂ (4 vol% ZrO₂) slip cast layers sintered at 1625 °C, respectively. The temperature of maximum densification of 22ZN was shifted to 1450 °C (Fig. 3a); this composite exhibited a greater increase in the Al_2O_3 mean grain diameter with temperature at 1400–1600 °C than that observed for 22Y–PSZA and 22Y–PSZ (Table 2). The aggregated Al_2O_3 particles in the green state also produced aggregation of the fine ZrO_2 particles, increasing the ZrO_2 grain size during sintering. Therefore, the effect of the small ZrO_2 grains size in preventing Al_2O_3 grain growth could not be expected in this composite. Besides, a high sintered density at 1600 °C could not be achieved due to the low packing density of the green compacts (Fig. 2a). Therefore, this composite will not be considered in the subsequently study on mechanical properties. The densification rates of 50Y-PSZA and 50Y-PSZ at the intermediate sintering temperature were both lower than that of Al₂O₃ (Figs. 2b and 3b); however, 50Y-PSZA began to sinter at lower temperatures with respect to 50Y-PSZ and higher relative densities at 1250-1400 °C could be achieved. The variation in Al₂O₃ grain diameter with sintering temperature of the two composites with 50 vol% ZrO2 was similar in the investigated temperature range (1100-1600 °C) (Table 2). During the intermediate stage of sintering (1250–1400 °C), the 50Y-PSZA densified faster than the 50Y-PSZ one; however, at T > 1450 °C the densification rate of both composites became similar and remained almost identical until the final temperature was reached (Figs. 2b and 3b). These results indicated that the starting Y-PSZA powder characteristics strongly influence the intermediate sintering stage, during which the surface diffusion was prevailing. The enhanced sintering effect of 50Y-PSZA with respect to 50Y-PSZ at the intermediate sintering stage was studied in a previous paper [4]; we explained that the higher sintering rate of 50Y-PSZA could be attributed to the increase in the specific surface area of the powders together with the enhanced densification produced by the Al₂O₃ content. The densification rate of Al₂O₃ at the intermediate **Table 2** Al₂O₃ mean grain diameters (d_{50}) of the samples as a function of sintering temperature (d_{50} Al₂O₃ \pm 0.05 μ m). | Temperature (°C) | d_{50} Al ₂ O ₃ Al ₂ O ₃ (μ m) | d ₅₀ Al ₂ O ₃ 10.5Y–
PSZA (μm) | d ₅₀ Al ₂ O ₃
10.5Y-PSZ (μm) | d ₅₀ Al ₂ O ₃
10.5ZN (μm) | d ₅₀ Al ₂ O ₃ 22Y-
PSZA (μm) | 50 2 5 | d ₅₀ Al ₂ O ₃
22ZN (μm) | d ₅₀ Al ₂ O ₃ 50Y–
PSZA (μm) | d ₅₀ Al ₂ O ₃
50Y-PSZ (μm) | |------------------|---|--|--|---|--|--------|---|--|--| | 1100 | 0.40 | 0.30 | 0.31 | 0.30 | 0.32 | 0.31 | 0.31 | 0.30 | 0.30 | | 1200 | 0.44 | 0.34 | 0.35 | 0.31 | 0.36 | 0.35 | 0.36 | 0.31 | 0.31 | | 1250 | 0.48 | 0.38 | 0.39 | 0.31 | 0.40 | 0.40 | 0.41 | 0.32 | 0.32 | | 1300 | 0.70 | 0.43 | 0.44 | 0.32 | 0.44 | 0.45 | 0.46 | 0.33 | 0.33 | | 1400 | 1.03 | 0.88 | 0.83 | 0.32 | 0.51 | 0.60 | 0.69 | 0.34 | 0.35 | | 1500 | 2.20 | 1.12 | 1.08 | 0.75 | 0.81 | 0.92 | 0.96 | 0.52 | 0.54 | | 1600 | 4.21 | 1.84 | 2.08 | 1.19 | 1.33 | 1.50 | 1.58 | 0.75 | 0.80 | sintering stage was higher than that of all the Al₂O₃–ZrO₂ composites (Fig. 2a and b). This was due to the lower activation energy of Al₂O₃ with respect to that of Al₂O₃–ZrO₂ [9]. **Fig. 4.** SEM micrographs of different samples sintered at $1600 \,^{\circ}$ C: (a) 10.5ZN showing the pinning effect, the bright ZrO_2 grains indicated by arrows are at the triple points between the dark Al_2O_3 grains, (b) 50Y-PSZ, and (c) Al_2O_3 . **Table 3** $\rm ZrO_2$ mean grain diameters (d_{50}) of the composites as a function of sintering temperature (d_{50} $\rm ZrO_2\pm0.05~\mu m$). | Temperature (°C) | d ₅₀
ZrO ₂
10.5Y-
PSZA
(μm) | d ₅₀
ZrO ₂
10.5Y-
PSZ
(μm) | d ₅₀ ZrO ₂
10.5ZN
(μm) | d_{50} ZrO_2 $22Y PSZA$ (μm) | d_{50} ZrO_2 $22Y PSZ$ (μm) | d ₅₀
ZrO ₂
50Y-
PSZA
(μm) | d ₅₀
ZrO ₂
50Y–
PSZ
(μm) | |--|---|--|--|--|--|---|--| | 1300
1400
1450
1500
1550
1600 | 0.30
0.30
0.36
0.42
0.53
0.64 | 0.30
0.30
0.37
0.43
0.56
0.71 | 0.30
0.30
0.37
0.43
0.50
0.56 | 0.31
0.31
0.38
0.44
0.59
0.72 | 0.31
0.31
0.38
0.46
0.63
0.79 | 0.31
0.31
0.40
0.51
0.70
0.82 | 0.31
0.31
0.42
0.60
0.78
0.95 | The pinning effect became larger as the ZrO_2 concentration in the composites increased from 10.5 to 50 vol%; a greater number of ZrO_2 grains reduced the contacts between Al_2O_3 grains and consequently the Al_2O_3 grain boundary mobility resulting in a lesser Al_2O_3 grain growth (Table 2). For pure Al_2O_3 the rapid grain growth at 1400–1600 °C let to a grain diameter at 1600 °C that was about 5.3 times greater than the grain diameter obtained in the presence of 50 vol% ZrO_2 (Fig. 4b–c and Table 2); thus, 50 vol% ZrO_2 was the most effective concentration in inhibiting Al_2O_3 grain growth. Both the presence of small ZrO_2 grains homogeneously distributed within the matrix and the increase in the ZrO_2 content decreased the contacts between Al_2O_3 grains and effectively reduced the Al_2O_3 grain-boundary mobility. For all the composites, the ZrO_2 mean grain diameter remained constant at $1300-1400\,^{\circ}\text{C}$ (Table 3). The fine ZrO_2 grains of the composite 10.5ZN began to grow at $1400\,^{\circ}\text{C}$, thereafter a gradual increase in the ZrO_2 grain diameter up to $1600\,^{\circ}\text{C}$ was found. For 10.5Y-PSZ and 10.5Y-PSZA a lower increase in the grain diameter with increasing sintering temperature up to $1500\,^{\circ}\text{C}$ was observed, followed by rapid grain growth with further increasing in temperature up to $1600\,^{\circ}\text{C}$; leading to a grain diameter at $1600\,^{\circ}\text{C}$ greater than that obtained for 10.5ZN (Table 3). The increase in the $\rm ZrO_2$ content from 10.5 to 22 vol% produced a slightly increase in the $\rm ZrO_2$ grain diameter at 1500–1600 °C (Table 3). An increase in the $\rm ZrO_2$ concentration over 22 vol% increased the contacts between $\rm ZrO_2$ grains approaching each other and promoting their growth; thus the largest $\rm ZrO_2$ grain diameter in the composites with 50 vol% $\rm ZrO_2$ at 1500–1600 °C occurred by the coalescence of the $\rm ZrO_2$ grains. As the zirconia content increased the Al₂O₃ grain growth was lesser whereas the ZrO₂ grain growth became greater; thus, the ratio of Al₂O₃ to ZrO₂ grain sizes decreased with increasing amounts of ZrO₂. The ZrO₂ grain diameter distribution curves for 10.5 and 50 vol% ZrO₂ are shown in Fig. 5a and b, respectively. For 10.5 vol% ZrO₂ (Fig. 5a), a greater volume of grains with diameters in the range 0.6-1 µm were found for 10.5Y-PSZA and 10.5Y-PSZ with respect to 10.5ZN. The most frequent grain diameter of 10.5ZN was 0.4 μm, a low percentage of ZrO₂ grains had diameters between 0.75 and 1 μm . On the contrary, the most frequent grain diameter of 10.5Y-PSZA and 10.5Y-PSZ was shifted to a greater grain diameter of 0.62 and 0.68 µm, respectively. Thus, finer ZrO₂ grains could be obtained at 1600 °C by the Zr (IV) precursor route. The 50Y-PSZ curve was shifted to greater grain diameters with respect to that of 50Y-PSZA (Fig. 5b). The most frequent grain diameter was 0.7 and 0.9 µm for 50Y-PSZA and 50Y-PSZ, respectively. The smaller ZrO₂ grain diameter at 1600 °C for 50Y-PSZA with respect to 50Y-PSZ was attributed to the lesser grain growth of Y-PSZA relative to that of Y-PSZ at the final sintering stage (1500-1600 °C) (Table 3). Thus, for the composites with 50 vol% ZrO2 the 0.3 wt% Al2O3 content in the starting Y-PSZ powder not only increased the sintering rate at **Fig. 5.** ZrO_2 grain diameter distribution curves for the composites with different ZrO_2 contents: (a) 10.5 vol% ZrO_2 , and (b) 50 vol% ZrO_2 . **Table 4**Relative sintered density of the different samples at 1600 °C. | ZrO ₂ content
(vol%) | Al ₂ O ₃ –Y–PSZA (% TD ^a) | Al ₂ O ₃ – Y–PSZ
(% TD ^a) | Al ₂ O ₃ –ZN (% TD ^a) | |------------------------------------|---|--|---| | 0
10.5
22
50 | 97.36
97.79
98.62
98.70 | 97.36
97.65
98.57
98.65 | 97.36
97.70 | ^a Theoretical density. the intermediate sintering stage but also decreased the ZrO_2 grain growth at the final sintering stage. Table 4 shows the sintered density of the bodies at 1600 °C for the different ZrO_2 contents. The final sintered density of pure Al_2O_3 was 97.36% TD. The substitution of Al_2O_3 either by Y–PSZA or Y–PSZ up to 22 vol% increased the relative sintered density, over 22 vol% ZrO_2 the sintered density remained nearly constant; this behavior was related with the Al_2O_3 grain growth at the final sintering stage. For Y–PSZ and Y–PSZA contents lower than 22 vol% the rapid Al_2O_3 grain growth at the final sintering stage (Table 2) reduced the sintering rate resulting in relative sintered density values close to that of Al_2O_3 . Since 22 and 50 vol% ZrO_2 effectively decreased the rate of Al_2O_3 grain growth (Table 2) higher sintered densities could be achieved. Although the fine **Fig. 6.** (a) SEM micrograph of Vickers indentation in Al_2O_3 sintered at 1600 °C, and (b) SEM micrograph of 10.5ZN composite, showing the crack propagation path. ZrO_2 grains in 10.5ZN effectively reduced the Al_2O_3 grain growth up to 1600 °C (Table 2), the relative sintered density of 10.5ZN was similar to that of 10.5Y–PSZ and 10.5Y–PSZA. This behavior could be explained taking into account the lower packing density of the 105ZN green compact (Table 1). #### 3.3. Mechanical properties Fig. 6a shows a scanning electron micrograph of Vickers indentation in Al_2O_3 sintered at $1600\,^{\circ}$ C. The Al_2O_3 with its large grain size showed a crack pattern disruption and it was accordingly unsuitable for hardness and fracture toughness measurements by the indentation technique. According to Anstis et al. [10] for coarse grained materials the fracture pattern is more susceptible to disruption from local-failure events. Anisotropy in the fracture seemed to be absent in all the composites samples as cracks extended from four corners. In Fig. 6b a crack extension from the corner of an indent in a composite with 10.5 vol% ZrO_2 can be observed, it shows that the crack propagation path in the composites was intragranular. Fig. 7 shows the Vickers hardness (Hv) versus the ZrO₂ content for the composites prepared with Y-PSZ and Y-PSZA, the Hv value of 10.5ZN was also shown. For the composites produced with Y-PSZ and Y-PSZA a maximum hardness was found at 22 vol% Fig. 7. Vickers hardness versus the ZrO₂ content for the different composites. **Table 5** Percentages of monoclinic ZrO_2 (m- ZrO_2) after sintering at 1600 °C at the surface and fractured surface in the different composites. | Composites | m-ZrO ₂ (%) at surface | m-ZrO ₂ (%) at fractured surface | |---------------------|-----------------------------------|---| | 10.5Y-PSZA | 0.8 | 0.8 | | 10.5Y-PSZ
10.5ZN | 1.2
27.4 | 1.2
27.4 | | 22Y-PSZA | 1.1 | 1.1 | | 22Y-PSZ
50Y-PSZA | 1.2
1.3 | 1.2
9.5 | | 50Y-PSZ | 1.4 | 11.3 | ZrO₂. For ZrO₂ content lower than 22 vol% the increase in the Al₂O₃ average grain diameter over 1 μm decreased the Hv values (Table 2 and Fig. 7). According to Rice et al. [11] the generally accepted trend was that Hv increased with decreasing the grain size (G) (e.g., Hv \propto $G^{-1/2}$) at finer G. As we have explained for the composites with 10.5 vol% ZrO₂, the Al₂O₃ grain growth became lesser as the ZrO₂ grain size decreased, consequently the lower Al₂O₃ average grain diameter of 10.5ZN compared with 10.5Y–PSZ and 10.5Y–PSZA resulted in higher Hv values (Table 2 and Fig. 7). Although the Al₂O₃ mean grain diameters of the composites with 22 and 50 vol% ZrO₂ were low, the Hv values for 50 vol% ZrO₂ were markedly lower than those of 22 vol% ZrO₂; this was due to the greater substitution of Al₂O₃ by the lower hardness ZrO₂ in the composites. Table 5 lists the percentages of monoclinic ZrO₂ (m-ZrO₂) after sintering at 1600 °C for the different composites. X-ray analysis of all the composites containing 3 mol% Y₂O₃ stabilized ZrO₂ (Y-PSZ and Y-PSZA) revealed that the percentage of m-ZrO₂ retained at room temperature was 0.8-1.4% with the remainder (99.2-98.6%) as tetragonal ZrO₂; whereas for 10.5ZN, in which unstabilized ZrO₂ was obtained by the Zr (IV) precursor, 27.4% of the ZrO2 was present as the monoclinic phase and 72.6% was t-ZrO₂. Analysis of Raman spectrum in sintered alumina-10 wt% zirconia (≈ 7 vol% ZrO₂) produced with unstabilized ZrO₂ [7] revealed the presence of about 25 vol% of m-ZrO₂ and 75 vol% of t-ZrO₂. Besides, Requena et al. [5] observed a high retention of t-ZrO₂ when the zirconia grain size in sintered Al₂O₃/ZrO₂ (4 vol% ZrO₂) layers was below 1 μm. A critical grain size exists, linked to the yttria concentration, above which spontaneous t-m transformation of grains takes place [2]; this critical size markedly decreased in the absence of Y₂O₃ stabilizer. Consequently, the observation that some of the t-ZrO₂ transformed to m-ZrO₂ after sintering of 10.5ZN indicated **Fig. 8.** Young's modulus (E) as a function of the ZrO_2 content for Al_2O_3 and the different composites. The dash line indicated the theoretical E values. that a fraction of the unstabilized ZrO_2 grains might be above the critical size required for the transformation. In fact, we have observed (Fig. 5a) that 10.5ZN contained a low percentage of ZrO_2 grains with diameters in the range 0.75–1 μ m, which could be transformed to the monoclinic phase during cooling. Fig. 8 shows Young's modulus (E) as a function of the ZrO₂ content for Al₂O₃ and the different composites. The expected modulus were calculated by the rule of mixture, using the values of 390 GPa for Al₂O₃ and 210 GPa for t-ZrO₂ [12]; these calculated values are also included in Fig. 8. The addition of the lower elastic modulus ZrO₂ to Al₂O₃ decreased the elastic modulus of the composites. For the composites produced using 3 mol% Y₂O₃ stabilized ZrO₂ (Y-PSZ and Y-PSZA) a nearly linear decrease of E with increasing the ZrO₂ content was found; the E values were scarcely lower than those estimated by the rule of mixture due to the presence of some residual porosity. However, a comparison between the composites with 10.5 vol% ZrO2 revealed a drastic decrease in E for the 10.5ZN composite. This indicated that the transformation from tetragonal to monoclinic phase after sintering in 10.5ZN occurred concurrently with the formation of microcracks. For a random array of microcracks with radius c, it has been shown that the young's modulus (E) is given by [13] $$E = E_0/(1 + 1.8Nc^3) \tag{4}$$ where E_0 is Young's modulus of the uncracked material and N is the microcrack density. Therefore, E decreased with the introduction of microcracks; transmision electron microscopy of these materials shows that the monoclinic particles are also twinned [13]. Fig. 9 shows the critical fracture toughness (K_{1c}) as a function of the ZrO₂ content for the composites produced with Y–PSZ and Y–PSZA. The K_{1c} of the 10.5ZN was also included for comparison. For the composites produced with Y–PSZ and Y–PSZA a slightly increase in K_{1c} with increasing the ZrO₂ content from 10.5 to 22 vol% ZrO₂ was found followed by a significant increase with further increasing in the ZrO₂ concentration from 22 to 50 vol%. Table 5 shows the percentage of m–ZrO₂ at the surface and fractured surface in the different composites; the percentage of m–ZrO₂ increased after fracture only for the composites with 50 vol% ZrO₂. Thus, this ZrO₂ concentration promoted the t–m transformation under stress and increased K_{1c} . In fact, the alumina containing 10.5 and 22 vol% Y–PSZ and Y–PSZA exhibited K_{1c} values comparable to that of alumina ceramics (about 4 MPa m^{1/2} [7]), indicating that no stress-induced transformation toughening **Fig. 9.** Critical fracture toughness (K_{1c}) as a function of the ZrO_2 content for the different composites. occurred during catastrophic crack growth. The K_{1c} values of 10.5Y–PSZA and 10.5Y–PSZ were in accordance with those measured by Szutkowska [7] who obtained a similar fracture toughness value of sintered alumina–10 wt% zirconia (≈ 7 vol% ZrO₂) produced with 3 mol% yttria–partially stabilized zirconia with respect to that of sintered pure alumina. On the contrary, for the composites with 50 vol% ZrO₂, K_{1c} values of 8.06 and 10.66 MPam^{1/2} for 50Y–PSZA and 50Y–PSZ were obtained. This behavior was a result of crack tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. As it was shown in Table 3*** increasing the ZrO₂ content over 22 vol% resulted in a substantial increase in the main grain diameter of ZrO₂. The tetragonal phase becomes easier to transform with increasing their size and the transformation toughening contribution increases [14]. Thus, the increase in K_{1c} with increasing the ZrO2 content from 22 to 50 vol% was a result of the larger ZrO₂ grain size of the composites with 50 vol% ZrO₂ together with their lower elastic modulus (Table 3 and Fig. 8). The lower elastic modulus reduced the constraint of the ZrO₂ grains and allowed the transformation to proceed. For the composites with 50 vol% ZrO₂ with the lowest elastic modulus, a ZrO₂ main grain diameter of about 0.8-0.9 µm at 1600 °C promoted the stressinduced tetragonal-monoclinic transformation. The greater ZrO₂ average grain diameter of 50Y-PSZ with respect to 50Y-PSZA (Table 3) produced a greater contribution of transformation toughening leading to higher K_{1c} values. Szutkowska [7] determined that the fracture toughness of sintered alumina-10 wt% zirconia composites obtained with unstabilized ZrO₂ exhibited a higher value with respect to that of sintered alumina-10 wt% zirconia produced with 3 mol% yttria-partially stabilized zirconia. He found intergranular crack path passing over the zirconia grains in alumina-10 wt% zirconia with unstabilized ZrO₂ as a consequence he explained that the main mechanisms for toughening in this composite were grain bridging and crack deflection. On the contrary, in the present study the K_{1c} value of the 10.5ZN composite was lower than those of 10.5Y-PSZA and 10.5Y-PSZ. As it was mentioned the low E value of the 10.5ZN composite (Fig. 8) indicated that the t-m phase transformation after sintering occurred concurrently with the formation of microcracks. Thus, residual tensile stresses and microcracks are introduced when ZrO2 grains autotransformed during processing. First, these additional local tensile stresses and microcracks are introduced by the volume expansion and twinning associated with the autotransformation of large ZrO₂ grain-boundary grains [15]. The residual matrix stresses are also **Fig. 10.** Flexural strength versus the fracture toughness for the different composites. influenced by the anisotropy in the mismatch in thermal expansion coefficients of tetragonal and monoclinic ZrO_2 with those of Al_2O_3 [15]. Second, Fig. 6b shows that the crack propagation path in the 10.5ZN composites was intragranular, then the crack interacts with these existing large ZrO_2 grains and the associated tensile strains and microcracks. These two effects resulted in lower K_{1c} values of 10.5ZN compared with 10.5Y–PSZ and 10.5Y–PSZA. Fig. 10 shows the flexural strength versus the fracture toughness for the different composites. Below 22 vol% ZrO₂ (K_{1c} less than 5 MPam^{1/2}) the strength decreased with decreasing the composite sintered density (Table 4), thus, the strength was limited by flaw size; whereas above 22 vol% ZrO₂ ($K_{1c} > 5$ MPam^{1/2}) the strength was limited by stress-actived phase transformation. This means that the stress to initiate transformation is lower than the fracture stress; therefore, transformation occurs preferentially [16]. Thus, the maximums in the curves indicated a transition from flaw-size control of strength at low toughness to transformation limited strength at higher values of toughness. ## 4. Conclusions - The increase in the Y-PSZA or Y-PSZ contents from 0 to 22 vol% markedly reduced the Al₂O₃ grain growth at the final sintering stage; as a consequence, higher sintered densities and hardness could be achieved; for 50 vol% ZrO₂ lower hardness values were obtained. - 2. 2-A significant increase in K_{1c} with increasing the ZrO_2 content over 22 vol% ZrO_2 was obtained by the stress-induced phase transformation in partially stabilized ZrO_2 particles dispersed in Al_2O_2 . - 3. For the composites with 50 vol% ZrO₂, the 0.3 wt% Al₂O₃ content in the starting Y–PSZ powder not only increased the sintering rate at the intermediate sintering stage but also decreased the ZrO₂ grain growth at the final sintering stage. - 4. The greater ZrO_2 mean grain diameter of 50Y–PSZ with respect to 50Y–PSZA produced a greater contribution of transformation toughening leading to higher K_{1c} values. - 5. Below 22 vol% ZrO₂, the flaw size limited the strength; whereas, above 22 vol% ZrO₂ the strength was limited by the stress activated phase transformation. - 6. For 10.5 vol% ZrO₂, the smaller ZrO₂ grains produced by using the Zr (IV) precursor were more effective in preventing the Al₂O₃ grain growth resulting in higher hardness. However, the tetragonal–monoclinic (t-m) transformation of some unstabilized ZrO_2 grains during cooling reduced the young's modulus and fracture toughness. #### References - [1] S. Olhero, I. Ganesh, P. Torres, F. Alves, J.M.F. Ferreira, J. Am. Ceram. Soc. 92 (1) (2009) 9–16. - [2] C. Piconi, G. Maccauro, Biomaterials 20 (1999) 1-25. - [3] K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, J. Hojo, J. Am. Ceram. Soc. 91 (6) (2008) 1888–1897. - [4] H.L. Calambás Pulgarin, M.P. Albano, Ceram. Int. 40 (2014) 5289-5298. - [5] J. Requena, R. Moreno, J.S. Moya, J. Am. Ceram. Soc. 72 (8) (1989) 1511–1513. - [6] H.L. Calambás Pulgarin, L.B. Garrido, M.P. Albano, Ceram. Int. 39 (6) (2013) 6657–6667. - [7] M. Szutkowska, J. Mater. Process. Technol. 153-154 (2004) 868-874. - [8] D. Balzar, N.C. Popa, Rigaku J. 22 (2005) 16-25. - [9] J. Wang, R. Raj, J. Am. Ceram. Soc. 73 (5) (1990) 1172–1175. - [10] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (9) (1981) 533–538. - [11] R.W. Rice, C.C. Wu, F. Borchelt, J. Am. Ceram. Soc. 77 (10) (1994) 2539–2553. - [12] A. Rafferty, A.M. Alsebaie, A.G. Olabi, T. Prescott, J. Colloid Interface Sci. 329 (2009) 310–315. - [13] D.J. Green, J. Am. Ceram. Soc. 65 (12) (1982) 610-614. - [14] H.J. Hannink, P.M. Kelly, B.C. Muddle, J. Am. Ceram. Soc. 83 (3) (2000) 461–487. - [15] P.F. Becher, J. Am. Ceram. Soc. 66 (7) (1983) 485–488. - [16] M.V. Swain, L.R.F. Rose, J. Am. Ceram. Soc. 69 (7) (1986) 511-518.