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� A structured integrodifference equation is used to study invasion speed of T. dimidiata.

� Importance of seasonal dispersal when estimating the invasion capacity of triatomines.
� An efficient control may be to disturb the transition from juvenile to adult stage.
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a b s t r a c t

Demographic processes and spatial dispersal of Triatoma dimidiata, a triatomine species vector of Chagas
disease, are modeled by integrodifference equations to estimate invasion capacity of this species under
different ecological conditions. The application of the theory of orthogonal polynomials and the steepest
descent method applied to these equations, allow a good approximation of the abundance of the adult
female population and the invasion speed. We show that: (1) under the same mean conditions of
demography and dispersal, periodic spatial dispersal results in an invasion speed 2.5 times larger than
the invasion speed when spatial dispersal is continuous; (2) when the invasion speed of periodic spatial
dispersal is correlated to adverse demographic conditions, it is 34.7% higher as compared to a periodic
dispersal that is correlated to good demographic conditions. From our results we conclude, in terms of
triatomine population control, that the invasive success of T. dimidiata may be most sensitive to the
probability of transition from juvenile to adult stage. We discuss our main theoretical predictions in the
light of observed data in different triatomines species found in the literature.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Chagas disease, also known as American trypanosomiasis, is a
life-threatening illness caused by the protozoan parasite, Trypa-
nosoma cruzi. The disease is endemic in Latin America where T.
cruzi is primarily transmitted by blood-sucking triatomine bugs
(Gourbière et al., 2012), and is now spreading outside of its
(M. Mesk),
ancestral geographic range because of increasing international
exchanges (Pinto Dias, 2013; Tanowitz et al., 2011).

As an efficient vaccine is still lacking and as it is difficult to
deliver medicinal drugs in time (during and shortly after the acute
stage of the disease) vector control and blood screening are the
main strategies to control the transmission of this disease. Despite
the important successes of the national and international control
programs launched in the 90s (Abad-Franch et al., 2013), neither
the 2005 target of interruption of the transmission of the disease
set by the World Health Assembly in 1998, nor the 2010 target for
elimination were met (Gürtler et al., 2008).

The evolution of disease transmission indeed lead to new
challenges, which currently include the emergence of Chagas
disease in regions previously considered to be free of the disease,
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such as the Amazon basin (WHO, 2010), the re-emergence of the
disease in regions where control of key domiciliated species, such
as Triatoma infestans, had been achieved (Gurevitz et al., 2012;
Gürtler et al., 2009), and the increasing awareness that non-
domiciliated species, such as T. dimidiata (Gourbière et al., 2008;
Nouvellet et al., 2011) or Rhodnius prolixus (Guhl et al., 2009;
Hashimoto and Schofield, 2012) can contribute to substantial
levels of infection prevalence in humans (Nouvellet et al., 2013;
Rascalou et al., 2012).

To deal with such challenges requires a good understanding of
the triatomines' demographic and dispersal potentials, and their
response to the ongoing environmental changes. The dispersal of
triatomines appears as one of the less documented traits, although
the ones influencing the rate of flight initiation and its direction
have been investigated in the past (Galvão et al., 2001; Minoli and
Lazzari, 2006; Pacheco-Tucuch et al., 2012; Schofield et al., 1991),
and dispersal distances have recently been estimated more accu-
rately by combining data on insects’ spatial distribution and spatial
modeling in T. dimidiata (Nouvellet et al., 2015). Still, some of the
relationships between the demographic/dispersal life-history
traits and the invasion capacity of vectors that are spreading into
new geographic areas and/or the speed at which they do so,
remains to be quantified.

To establish such a quantitative link requires a stage structured
spatial modeling to account for the demographic and dispersal
specificities of pre-adult and adult triatomines. Spatially explicit
models (Dunning Jr. et al., 1995) can be used in this context in view
of the geographic nature of the spread of triatomines, see (Nou-
vellet et al., 2015) for a review on these models and other math-
ematical models of Chagas disease. The geographic habitat can be
modeled in a discrete or in a continuous way. Some common
discrete spatio-temporal models as cellular automata (Cissé et al.,
2016; Crawford et al., 2013; Slimi et al., 2009), grid-based models
(Barbu et al., 2010) and based agent models (Devillers et al., 2008;
Yong et al., 2015) have been used to study triatomine or T. cruzi
invasion of domestic (e.g., (Barbu et al., 2011; Slimi et al., 2009))
and sylvatic areas (Crawford et al., 2013). Examples of spatially
explicit continuous models which have been widely used to study
the spread of populations and epidemics are based on reaction-
diffusion (Petrovskii and Li, 2006; Skellam, 1951), integrodiffer-
ential (Medlock and Kot, 2003; Mollison, 1977) and inte-
grodifference (Kot and Schaffer, 1986; Shigesada and Kawasaki,
2002) equations.

The work of Crawford et al. (2013) seems to be the only pub-
lished work treating invasion speed of Chagas disease. In biological
models, the term “invasion speed” (see Appendix A.6 for defini-
tion) is generally associated with the speed at which a certain
population or infection expands over space. In (Crawford et al.,
2013) a two dimentional deterministic cellular automaton (CA)
model in the form of a dynamical system with 9376 equations is
developed in order to study invasion of a hypothetical strain of T.
cruzi through the region defined by the primary sylvatic cycles in
northern Mexico and parts of the southeastern United States.
Hosts are racoons and woodrats which are assumed not to dis-
perse. Vectors are Triatoma gerstaeckeri and T. sanguisuga which
are assumed to disperse during a maximum of 5 weeks. In this
(CA) model, the invasion speed of the epidemic has been defined
using two distinct methods and examined under different vector
migration scenarios.

In this study we use for our modeling a structured inte-
grodifference equation (SIDE) which offers an ideal mathematical
framework to model invasions of populations in a constant (Li
et al., 2005; Lui, 1989; Neubert and Caswell, 2000), and periodic or
stochastic environment (Caswell et al., 2011; Schreiber and Ryan,
2011). Interestingly, under some assumptions (relying on the so
called the linear conjecture), the rate of invasion of a nonlinear
SIDE is approached by the rate of invasion of the linear SIDE
obtained from the nonlinear SIDE at low densities and is given by
an explicit formula (Caswell et al., 2011; Neubert et al., 2000;
Schreiber and Ryan, 2011). This formula can also be obtained for a
linear SIDE by using an approximation method, called the saddle
point (or the steepest descent) method (Radcliffe and Rass, 1997).
The saddle-point method is a method used to approximate some
specific integrals depending on one parameter when this para-
meter is large (Murray, 1984). Recently, it was used in (Kot and
Neubert, 2008) to analyze the linear unstructured inte-
grodifference equation (UIDE) that models the growth and spread
of populations released at the origin in one and two dimensional
space: formal solutions were written to the model using the
exponential transform and, by the steepest descent method, the
asymptotic approximation to the solutions for long times was
determined. Moreover, from this approximation, they derived a
pair of equations of the rate of invasion which are equivalent to the
earlier formulation given by Weinberger (1982). Kot and Neubert
(2008) concluded that the saddle-point approximation was
excellent not only for long times but also for all times except
(possibly) the first few iterations. The steepest descent method has
also been applied to infinite-dimensional matrix integrodifference
equations (Powell et al., 2005), and used to obtain the speed of
propagation for certain continuous time models when the spatial
aspect is described by contact distributions (Radcliffe and Rass,
1984). While mathematical expressions of the variation of abun-
dance in space and time have been derived for the linear
unstructured case (Kot and Neubert, 2008), such theoretical
results remain to be derived for a linearly structured model.

The first aim of this paper is to study the invasion capacity of T.
dimidiata by calculating its invasion speed and its abundance over
time and space in a sylvatic setting by considering different bio-
logical situations. We choose this species since data are available
in the literature on both its demographic and dispersal parameters
(see references above). The dispersal of T. dimidiata adults is
described by a Laplace kernel in order to account for the long
distances traveled by triatomines in their sylvatic biotope (Scho-
field et al., 1991, 1992).

Our second objective is to propose an original method that
relies on orthogonal polynomials to allow calculating both abun-
dances and invasion speed.

We set up a deterministic linear SIDE model with the triato-
mine population classified in two stages (juveniles and adults) that
accounts for their demography and dispersal (in the biological
situations considered it is assumed that only adults disperse) in a
one dimensional and homogeneous habitat. This model is denoted
by 2SIDE. As the density of triatomines and their rates of invasion
are important pieces of information, e.g. to manage vector control,
we follow here the steps of Kot and Neubert (2008) for the 2SIDE
which provides, at the same time, a theoretical extension of the
ideas of Kot and Neubert (2008) to a two stages SIDE. This theo-
retical extension is presented in Appendix A (Section A.3) and it is
exemplified by considering two cases: "constant dispersal" and
"periodic dispersal". General mathematical results about these two
cases are given in Section 2, and detailed analyses are reported in
Appendices A and B. The triatomine population densities over time
and space can be represented formally by an exponential trans-
form and a specific polynomial set, called orthogonal polynomials
which are characterized by a three-term recurrence relation
(TTRR) (Chihara, 1978; Szegö, 1975). Then, by the asymptotic
behavior of these orthogonal polynomials and the saddle-point
method, we determine approximations of the densities for long
time periods from which invasion speed formulae can be obtained
(see Appendices A and B). The conditions of application to the
species T. dimidiata are given in Section 3. Specifically, a gradient of
biological situations, ranging from the most favorable to the least
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favorable demographical conditions are taken into account in
estimating the abundance and invasion speeds for both the con-
stant and periodic dispersal cases. In Section 4, we present the
results obtained using the available data on the demography and
dispersal of T. dimidiata to parameterize our model. We took the
Laplace dispersal kernel depending on the mean dispersal distance
parameter, estimated from previous studies. We calculated the
capacity to disperse of triatomines under the two kinds of dis-
persal described below in Section 2. In each case, the adult density
is approximated and their rate of invasion is calculated. We com-
pared saddle-point approximations to exact solutions in the con-
stant case. The end of Section 4 is devoted to sensitivity analysis of
the invasion speed to changes in demographic and dispersal
parameters. In Section 5, we discuss our main results and give
some perspectives to refine this kind of studies.
2. The models

Although the life cycle of triatomines is composed by seven
developmental stages: the egg, five larval stages and the adult
stage, we considered the development from egg to the fifth larval
Fig. 1. Schematic representation of the life cycle used in the triatomine model.

Jtþ1 xð Þ ¼ Fsj tð ÞSj tð ÞJt xð Þþ f a t; Sj;1 tð ÞJt xð Þ; Sa;1 tð Þ R þ1
�1 k x�yð ÞAt yð Þdy

� �
Sa tð Þ R þ1

�1 k x�yð ÞAt yð Þdy
Atþ1 xð Þ ¼ 1�Fsj tð Þ

� �
Sj tð ÞJt xð ÞþSa tð Þ R þ1

�1 k x�yð ÞAt yð Þdy

8<
: ð1cÞ
stage as a single stage that we call the juvenile stage as in (Menu
et al., 2010).

Assuming a balanced sex ratio, we focused our modeling on the
number of female triatomines. During each Δt (¼1 week) time
step, two processes occur: dispersal and demography. We assume
that females first disperse to feed (Ceballos et al., 2005; Lehane
et al., 1992; Payet et al., 2009; Wisnivesky Colli et al., 1993),
making around a single flight per week (Borges et al., 2005; Canals
et al., 1999; Catala, 1991), and after reaching their energetic
threshold they initiate egg laying (Collier et al., 1977; Friend et al.,
1965; Zeledón, 1981). So, we assume that dispersal precedes
demography: individuals disperse in t; tþ1

2

� �
, and then demo-

graphy occurs in tþ1
2; tþ1

� �
. Dividing the interval t; tþ1½ � into two

equal intervals is just a formality: one process can be longer than
the other.

The dispersal process is described, in a one-dimensional habitat,
by a dispersal kernel k x�yjÞ

��� which represents the probability that
an adult moves from location y to location x during one time step.
The dependence of the kernel on the distance x�yj

�� comes from the
assumption that the environment is spatially homogeneous.

There is very little information on dispersal with respect to
developmental stage. However, the few available data (Forattini
et al., 1975; Tonn et al., 1976; Rabinovich, unpublished data) sug-
gest the dispersal of adults is the main factor of triatomine new
colony foundation; although 4th and 5th instar nymphs could also
participate in the dispersal process (although possibly mainly by
human passive dispersal) but 1st, 2nd and 3rd instar nymphs do
not disperse, and since in our model we considered only a single
juvenile stage, we chose to neglect juvenile dispersal in this paper.
The non-dispersal of juveniles is associated with the Dirac delta
function δðx�yÞ (Neubert and Caswell, 2000). The densities at
time t and location x of the juvenile stage and the adult stage are
denoted Jt xð Þ and At xð Þ; respectively.

During a time step, in the interval t; tþ1
2

� �
surviving juveniles

with a probability Sj;1 tð Þ and dispersing adults which survive with
a probability Sa;1 tð Þ are given by

Jtþ 1
2
xð Þ ¼ Sj;1 tð ÞJt xð Þ

Atþ 1
2
xð Þ ¼ Sa;1ðtÞ

R þ1
�1 k x�yð ÞAt yð Þdy :

8<
: ð1aÞ

Then, in the interval tþ1
2; tþ1

� �
, juveniles surviving with a

fraction Sj;2 tð Þ may remain in the juvenile stage or develop into
the adult stage with probabilities FsjðtÞ and FmaðtÞ ¼ 1�FsjðtÞ,
respectively. Adults survive with a probability Sa;2ðtÞ and lay eggs
with a fecundity density dependent function (number of juveniles/
adult during Δt) f a t; Jtþ 1

2
xð Þ;Atþ 1

2
xð Þ

� �
. With these notations,

mature and reproduction rules can be written

Jtþ1 xð Þ ¼ Fsj tð ÞSj;2 tð ÞJtþ 1
2
xð Þþ f a t; Jtþ 1

2
xð Þ;Atþ 1

2
xð Þ

� �
Sa;2 tð ÞAtþ 1

2
xð Þ

Atþ1 xð Þ ¼ 1�Fsj tð Þ
� �

Sj;2 tð ÞJtþ 1
2
xð ÞþSa;2 tð ÞAtþ 1

2
xð Þ

:

8<
:

ð1bÞ

Combining (1a) and (1b) with Sj tð Þ ¼ Sj;1 tð ÞSj;2 tð Þ and
Sa tð Þ ¼ Sa;1 tð ÞSa;2 tð Þ, the model takes the form of the following
integrodifference equations with J0(x) and A0(x) known.
Despite the nonlinearity of the fecundity, the broad principle
called the “linear conjecture” asserts that the asymptotic invasion
speed is determined by the linearization of (1c) at low densities.
The linear conjecture is expected to hold provided per capita
survivorship and reproduction are greatest at low densities
(Mollison, 1991). This conjecture is supported extensively by the-
ory (Lui, 1989; Weinberger, 2002; Weinberger et al., 2002) and
numerical simulations (Caswell et al., 2011; Neubert and Caswell,
2000; Neubert et al., 2000; Schreiber and Ryan, 2011).

For the nonlinear model (1c), the linear conjecture applies
provided that fecundity is greatest at low densities, i.e. f a t; Sj;1 tð ÞJt

�
xð Þ; Sa;1ðtÞ

R þ1
�1 k x�yð ÞAt yð ÞdyÞr f a t;0;0ð Þ ¼ :f a tð Þ. Under this con-

dition, and relying on the linear conjecture, the invasion speed is
governed by the low-density leading edge of the invasion wave,
and the invasion is described by the linear 2SIDE

Jtþ1 xð Þ ¼ Fsj tð ÞSjðtÞJt xð Þþ f a tð ÞSaðtÞ
R þ1
�1 k x�yð ÞAt yð Þdy

Atþ1 xð Þ ¼ 1�Fsj tð Þ
� �

SjðtÞJt xð ÞþSaðtÞ
R þ1
�1 k x�yð ÞAt yð Þdy :

(
ð2aÞ

The demographic and dispersal kernel matrices of the biolo-
gical model (2a) are given by

Bt:¼
b11;t b12;t
b21;t b22;t

 !
¼

Fsj tð ÞSjðtÞ f aðtÞSaðtÞ
1�Fsj tð Þ
� �

SjðtÞ SaðtÞ

 !
ð2bÞ
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and

K xð Þ:¼
k11 xð Þ k12 xð Þ
k21 xð Þ k22 xð Þ

 !
¼

δ xð Þ k xð Þ
δ xð Þ k xð Þ

 !
; ð2cÞ

respectively. For convenience we write Bt ¼ blm;t
� �

and K xð Þ ¼
klm xð Þð Þ, where l;mA 1;2f g. The triatomine life cycle used for our
modeling is shown in Fig. 1.

With this notation, system (2a) can be written in the following
compact form:

ntþ1 xð Þ ¼
Z þ1

�1
K x�yð Þ3Bt½ �nt yð Þdy ð3Þ

where nt xð Þ ¼ Jt xð Þ;At xð Þ� �0and the notations ðÞ0 and }∘} indicate the
transpose vector and the product term-by-term Hadamard pro-
duct, of the matrix of dispersal kernels and the projection matrix
describing demography, respecively. For the general approach (see
Appendix A, Section A.3), the kernels klm are taken to be time
dependent and denoted by klm;t and the dispersal matrix is also
denoted by Kt or klm;t

� �
.

The existence of solutions of Eq. (3), called traveling waves, was
studied both for the scalar (Weinberger, 1982) and structured
cases (Caswell et al., 2011; Neubert and Caswell, 2000; Schreiber
and Ryan, 2011) considered with or without density dependence.
It has been shown, in particular in the latter case, and considering
a constant environment (Bt � B), that when the population initi-
ates its invasion finite in size and restricted to a finite range in
space (i.e. the initial conditions have compact support), the waves
move along the x-axis position with an invasion speed, given by:

min
0o so ŝ

1
s
lnρ1ðsÞ

	 

: ð4Þ

Where ρ1ðsÞ is the largest eigenvalue of the wave projection matrix
H sð Þ ¼ ĥlm sð Þ

� �
:¼ B3K̂ sð Þ ¼ blmk̂lm sð Þ

� �
, with sA 0; ŝ

� �
and where ŝ

is the largest real value for which the k̂lm sð Þ exist. The elements of
the K̂(s) matrix are the moment generating functions (or the

exponential transforms) of the kernels klm, i.e. k̂lm sð Þ ¼ Rþ1

�1
klmðxÞ

esxdx for l;m¼ 1;2 (see Appendix A, Section A.1).
The invasion speed measures the invasive success of the tria-

tomine population. Its value depends implicitly on the population
density vector nt xð Þ. As the expressions of Jt xð Þ and At xð Þ are cou-
pled (Eq. (2a)), it is sufficient to calculate the population density of
adults At xð Þ.

The purpose of the next subsections is to calculate the adult
density At xð Þ and the invasion speed not only for the case of the
2SIDE in the triatomine's invasion analysis but also for the general
demographic matrix Bt ¼ blm;t

� �
and the dispersal matrix K xð Þ ¼

klm xð Þð Þ cases. Our development of this general analysis is based on
the application of orthogonal polynomials and the steepest des-
cent method. We considered two cases; (i) a constant environ-
ment, where demographic and dispersal parameters are constant,
and which we called the "constant dispersal model”; and (ii) a
situation where demographic and dispersal parameters vary with
seasons, which we called the “periodic dispersal model”. Details of
the calculations and demonstrations are reported in Appendix A
Section A.4 for the constant model, and Appendix B for the
periodic model.

The wave projection matrix H¼ ĥlm

� �
, its inverse exponential

transform �H:¼ hlmð Þ and the matrix denoted by �H rð Þ, which was
obtained by replacing the second column of �H by the vector
Jr Ar

� �0
, where r, a natural number, play an important role in the

results obtained for both the constant and periodic model. Below,
we use the trace and determinant notations of a matrix denoted by
tr ∙ð Þ and detð∙Þ, respectively. We will also use the notation detcv ∙ð Þ
for the convolution product determinant of a matrix, i.e.
detcv �H

� �
¼ h11 � h22�h12 � h21.

2.1. The constant dispersal model

Under a constant environment the projection matrix describing
demography takes the form Bt ¼ B¼ blmð Þ and we have H¼ B3K̂
and �H ¼ B3K.

The exact expression for At xð Þ is then (see Appendix A):

At ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
ð�1Þl A0 � tr �H

� �
�t�2l

t� l
detcvð �H 0ð ÞÞ

	 


� tr �H
� �h i� t�1�2lð Þ

� detcvð �HÞ
h i� lð Þ

ð5Þ

where the variable x is omitted to simplify notation, t
l

� �¼ t!
l! t� lð Þ!

denotes the binomial coefficients and ðÞ�ðnÞ is the n times con-
volution product.

An approximation of At xð Þ using the steepest descent method
gives:

At xð Þ � Cðs0Þe�xs0 ϑ s0ð Þ� �tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π κ001 s0ð Þ tj
��q ð6Þ

where ϑ sð Þ ¼ ξ sð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q
and CðsÞ is the function:

C sð Þ ¼
Â1 sð Þ� Â0 sð Þ ξ sð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q ð7aÞ

depending on Â0 sð Þ, Â1 sð Þ ¼ b21k̂21 sð ÞĴ0 sð Þþb22k̂22 sð ÞÂ0 sð Þ,
ξ sð Þ ¼ 1

2tr H sð Þð Þ and η sð Þ ¼ �det H sð Þð Þ.
To simplify the notations, the natural logarithm of ϑ sð Þ is

written κ1 sð Þ ¼ lnϑ sð Þ and is differentiated twice in Eq. (6). All the
functions used in formula (6) depend on s0, root of

ϑ0 s0ð Þ
ϑ s0ð Þ ¼

x
t
: ð7bÞ

The invasion speed, denoted ccst , can then be written (see
Appendix A) as

ccst ¼ min
0o so ŝ

1
s
ln ϑ sð Þ: ð8Þ

We note that ϑ sð Þ is the largest eigenvalue of the wave pro-
jection matrix H sð Þ. It was shown, by a different method in
(Neubert and Caswell, 2000), that ccst in formula (8) is an upper
bound for the invasion speed of a two stages SIDE with initial
conditions having compact support, i.e., they are finite in size and
restricted to a finite range in space.

2.2. The periodic dispersal model

A periodic environment can be defined by a set of phases (e.g.,
seasons), each providing a constant environment. If the number of
phases is T, then the environment is called T-periodic. For each
phase j j¼ 1;…; Tð Þ, the demographic, the dispersal and the wave
projection matrices are respectively Bj, Kj and Hj.

If r is the time of the census at the beginning of each phase
(r¼ 0:::T�1) then, after t periods, the density of adults is (see
Appendix B):

AtTþ r ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
ð�1Þl Ar � tr H

̌
� �

�t�2l
t� l

detcv H
̌
rð Þ

� �	 


� tr H
̌

� �	 
� t�1�2lð Þ
� detcv H

̌
� �	 
� lð Þ

ð9Þ

where H is the wave projection matrix over a complete
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environmental cycle (from t to tþT), given by H¼HTHT�1…H1

and Hj ¼ Bj 3K̂ j (Caswell et al., 2011). It should be remembered that

H
̌
is the inverse exponential transform of H.
An approximation of AtTþ r xð Þ can be calculated as in the

"constant dispersal model" and gives:

AtTþ r xð Þ � C1ðs0Þe�xs0 ϑ1 s0ð Þ� �tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π κ0011 s0ð Þ tj
��q ð10Þ

where ϑ1 sð Þ ¼ ξ1 sð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 sð Þþη1 sð Þ

q
and C1ðsÞ is the function

C1 sð Þ ¼
ÂTþ r sð Þ� Âr sð Þ ξ1 sð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 sð Þþη1 sð Þ

q� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 sð Þþη1 sð Þ

q ð11aÞ

depending on Âr sð Þ, ÂTþ r sð Þ ¼ ĥ21 sð ÞĴr sð Þþ ĥ22 sð ÞÂr sð Þ, ξ1 sð Þ ¼ 1
2trðHÞ

and η1 sð Þ ¼ �detðHÞ.
Here, ϑ1 sð Þ is the largest eigenvalue of the wave projection

matrix H sð Þ, κ11 sð Þ ¼ lnϑ1 sð Þ and s0 is the root of the equation

ϑ0
1 s0ð Þ

ϑ1 s0ð Þ ¼
x
t
: ð11bÞ

The invasion speed, measured as distance per unit time step of
T, is then

cper ¼ min
0o so ŝ

1
s
ln ϑ1ðsÞ
� �

: ð12Þ

For both the constant and periodic models, the relative error
REtðxÞ is defined as the difference between the exact value of the
abundance and its approximation as given in Eq. (6) (constant
model) or in Eq. (10) (periodic model), divided by the exact value.

The aim of the next section is to use these theoretical results to
study the invasive capability of the triatomine species T. dimidiata.
3. Application to T. dimidiata

3.1. The constant case

This case corresponds to a constant spatial dispersal in time.
Four sets of demographic parameters are considered according to
four environmental settings. They are denoted CDi where (1)
i¼ lab, when demographic parameters are those measured in
laboratory experiments; (2) i¼ 50% lab, when demographic para-
meters are taken to be 50% of their value in the lab; (3) i¼ f a_field,
when the fertility is equal to what has been measured in the field,
while the values of other demographic parameters are those
measured in the laboratory; and (4) i¼all_bad, when demographic
parameters are at their minimum value, i.e., a value corresponding
to field measurements or 50% of their lab value. These can be
Table 1
Values of the demographic parameters for T. dimidiata corresponding to the constant disp
dispersal case.

Sets of demographic values f a (eggs/week), Adult fecundity Sa (Adult survival

CDlab-Dlab-NDlab 4.420 0.985
CD50%lab - D50%lab-ND50%lab 2.210 0.492
D50%f a - ND50%f a 2.210 0.985
D50%Sa - ND50%Sa 4.420 0.492
D50%Sj - ND50%Sj 4.420 0.985
D50%Fma - ND50%Fma 4.420 0.985
CDf a_f ield -Df a_f ield -NDf a_f ield 0.033 0.985

DSa_f ield -NDSa_f ield 4.420 0.891
CDall_bad-Dall_bad-NDall_bad 0.033 0.492
described as high (i¼ lab), moderate (i¼50%lab or i¼ f a_field) and
weak (i¼all_bad) demographic values.

Numerical values of T. dimidiata’s demographic parameters
were obtained from the laboratory (Zeledón, 1981; Zeledón et al.,
1970), were calculated for a time step Δt ¼ 1 week. The average
development time from egg to adult is Td ¼ 38:05 weeks. The
probability Fsj of remaining in the juvenile stage is Fsj ¼
expð�1=38:05Þ ¼ 0:974. The percentage of juvenile survival is
S¼ 58:58%, so the per unit time probability of survival during the
juvenile stage is 0:5858

1
38:05 ¼ 0:986. The average lifespan of the

adult female is L¼ 480 days or 68:57 weeks, so the per unit time
probability of survival of adult females is Sa ¼ 1� 1

68:57¼ 0:985. The
average number of eggs/female/life is F ¼ 605:86 eggs, and for a
balanced sex ratio, Ff ¼ 303 female eggs/female/life. So, f a ¼ Ff =
68:57¼ 4:42 female eggs/week. The field demographic parameters
are fecundity, f a_field¼ 0.434 female eggs/three months, and adult
survival, Sa_field¼0.223 in three months (Barbu et al., 2011). Cali-
brating to one week we find f a_field¼0:434=13¼ 0:0334 female
eggs/week and Sa_field ¼ 0:223ð Þ1=13 ¼ 0:891.

The values of the demographic parameters corresponding to
the four biological situations CDlab, CD50%lab, CDf a_field and CDall_bad

are given in Table 1.
Dispersal of adults is described by the Laplace kernel

kα xð Þ ¼ ð1=2αÞexp � x =α
�� ����

, which implies that the probability to
disperse decreases with the dispersal distance. The parameter
alpha (in meter units) is the mean of the dispersal distance tra-
veled by a sample of adults during the time step. The mean dis-
persal distances of T. dimidiata was estimated from data of year-
round travel by Barbu et al. (2010), and in a non-fully sylvatic
context, during one time step of two weeks, to be around 40 to
60 m. As in our model the time step is of one week, we considered
a field estimate of α¼30 m. This choice of α and the Laplace kernel
is justified by the fact that in the more realistic case, the periodic
case below where α¼120 m, the Laplace kernel takes into account
the long distances traveled in a single flight by T. infestans and T.
sordida observed under the vector's natural climatic conditions
(Schofield et al., 1991, 1992). On average 44% flew farther than
100 m for a single flight (see (Crawford and Kribs-Zaleta, 2013) for
a summary) and the Laplace kernel gives for α¼ 120 m approxi-
mately the same proportion

R
x 4100jj k120 xð Þdx¼ 43:5%. That pro-

portion of 44% is for a single flight. As the time step of our model is
one week, we assumed (see above) that adults (on average) dis-
perse once in a week. We consider that this mean value of α is not
an extremely low value for a sylvatic biotope.

3.2. The periodic case

Seasonality affects demographic and dispersal parameters;
according to field studies in the Yucatan peninsula, Mexico,
T. dimidiata dispersal shows a strong seasonal pattern with a three
ersal case (CDi), the period of dispersal (Di), and non-dispersal (NDi) in the periodic

probability) Sj (Juvenile survival probability) Fma (Transition probability)

0.986 0.026
0.493 0.013
0.986 0.026
0.986 0.026
0.493 0.026
0.986 0.013
0.986 0.026

0.986 0.026
0.493 0.013
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months period of dispersal from April to June (A–J) that has been
consistently observed over the last 10 years (Dumonteil et al.,
2013; Dumonteil et al., 2002; Waleckx et al., 2015b). So we con-
sidered a Laplace kernel with a dispersal parameter α representing
the dispersal capacity in meters as the mean of the dispersal
season A–J, and the Dirac delta function for the other seasons with
no dispersal. To have the same average dispersal capacity as in the
constant case, we considered α¼ 120 m in A–J.

Sets of values of demographic parameters values associated
with the period of dispersal or non-dispersal are then denoted Di

and NDi respectively. In addition to the values of the constant
model, five new index values i were defined: (1) i¼50%f acorre-
sponding to values measured in the lab except for the fertility f a
which was reduced to 50% of its lab value; (2) i¼50%Sa corre-
sponding to laboratory values for all demographic parameters
except Sa, which was considered to be 50% of its lab value; (3)
i¼50%Sj corresponding to the laboratory values for all parameters
except Sj , which was considered to be 50% of the value of the
laboratory; (4) i¼50%Fma corresponding to the laboratory values
for all parameters except Fma, which was considered to be 50% of
the value measured in the laboratory, and (5) i¼Sa_field corre-
sponding to laboratory values for all demographic parameters
except Sa; which corresponds to a field value (Barbu et al., 2011).

While a constant environment is characterized by a single set of
demographic parameters, a periodic environment is described by a
pair of demographic sets,

i; j∈ lab; 50%lab; 50%f a; 50%Sa; 50%Sj; 50%Fma; f a_field; Sa_f ield; all_bad
� �

:

The definitions of the different sets of parameters for the periodic
case are shown in Table 1.

3.2.1. Different biological situations
Three ecological situations were considered with respect to the

environmental conditions encountered during the periods of dis-
persal and non-dispersal. The first (situation 1), is where the same
demographic conditions are considered during periods of dispersal
and non-dispersal. The second (situation 2) and third (situation 3)
situations, correspond to more realistic conditions. We suppose
unfavorable demographic conditions during the period of non-
dispersal and favorable demographic conditions during the period
of dispersal in situation 2, and favorable demography during the
period of non-dispersal and unfavorable demographic conditions
for the dispersal period in the situation 3. These two situations
correspond to alternative ecological conditions as explained
below.

Situation 1. The same demographic parameters are considered
during the dispersal and non-dispersal periods. Although this case
is likely not to be biologically realistic, it was considered because it
is close to the constant case. The abundances At xð Þ and their
invasion speed cper are then estimated with the parameter sets ,
where: (1) i¼ j¼ lab (2) i¼ j¼ 50%lab and (3) i¼ j¼ all_bad.

Situation 2. In situation 2, we assume spatial dispersal induced by a
density-dependent mechanism during the period of a favorable
demography. Conversely, during the period of unfavorable demo-
graphy, we assume that no density dependence occurs, as well as no
dispersal. This situation corresponds to an unfavorable demography
during the sedentary period and a favorable one during the spatial
dispersal period. Representative sets of demographic parameters are
(Di,NDj) where: i¼ lab and j¼ 50%f a; 50%Sa;50%Sj; 50%Fma; f a_f ield
and Sa_f ield.

Situation 3. In this case, we assume that the spatial dispersal is
induced by the depletion of hosts, creating an unfavorable envir-
onment that impacts negatively on the demography of
triatomines. Conversely, during the period where hosts are pre-
sent, the demography is favorable and then triatomines do not
disperse. In summary, situation 3 corresponds to favorable
demography during the period of non-dispersal and unfavorable
demography during dispersal. This situation 3 can also be con-
sidered to correspond to occurrence of hurricanes (that is known
to result in passive dispersal of triatomines (Guzman-Tapia et al.,
2005) that combines both low demography and dispersal. Adult
density At xð Þ and invasion speed cper will be estimated with
parameters sets (Di,NDj) where: j¼ lab and i¼ 50%f a; 50%Sa; 50
%Sj; 50%Fma; f a_f ield and Sa_f ield.

3.2.2. Duration of the dispersal period
The effect of lengthening the duration of the dispersal period

was analyzed by assuming that triatomines disperse not only
during the season A–J but also during the season July to September
(J–S). We then denoted the demographic parameters as 2Di;NDj

� �
,

where i and j belong to the same set as when assuming a single
period of dispersal. To maintain an average capacity of dispersal of
α¼ 30 m, as in the case of a constant dispersal, α was set to 60 m.

3.2.3. Calculating the invasion speed
Let HOD, HJM ;HAJ , HJS be the projection matrices defined for a

one week time step during the different seasons O–D, J–M, A–J and
J–S respectively. Then H13

OD, H
13
JM , H

13
AJ and H13

JS are the projection
matrices of each season and the matrix H ¼H13

ODH
13
JMH

13
AJ H

13
JS is the

projection matrix of one year. The invasion speed, measured as
distance per a unit time step of one year, is calculated from Eq.
(12), namely cper ¼ min

0o so ŝ

1
sln ϑ1ðsÞ
� �

, where ϑ1ðsÞ is the dominant

eigenvalue of the matrix H.
In the case of a constant dispersal, all projection matrices are

equal and the invasion speed can be calculated in the same way.

3.3. Sensitivity analysis

The sensitivity of the invasion speed cl (l¼cst or per) to a
parameter θ is given by the derivative of cl with respect to θ, i.e.
dcl=dθ. With a perturbation Δθ on θ, the sensitivity of cl can be
approximated by cl θþΔθ

� ��cl θ
� �� �

=Δθ, and the elasticity is
defined as dcl=cl

� �
= dθ=θ
� �

. For a periodic environment of period T,
let θj be the value of θ during the phase j. Then, the sensitivity
(elasticity) of cl to θ is the mean of the sensitivities (elasticities) of
cl to θj, i.e

PT
j ¼ 1 dcl=dθj

� �
=T and

PT
j ¼ 1 θj=cl

� �
dcl=dθj

� �
=T ,

respectively (Caswell et al., 2011).
4. Results

4.1. Constant dispersal case

Changes in abundance of adults in the case of a constant dis-
persal with laboratory parameters are shown in Fig. 2. The curves,
for weeks 5, 10, 20 and 30, show an increase in the density of
adults per point habitat and an increase of the distance dispersed
(about 500 m after 30 weeks).

The curves obtained by the approximation in Eq. (6) conform
well with those obtained by the exact expression defined in Eq. (5)
except near the origin. According to Eq. (6), the relative error
between the exact expression and its approximation tends to zero
(as t increases, the error curve approaches the x-axis). For instance
the graphs represented in Fig. 3 for a chosen situation, show that
this error decreases for increasing time.

In the constant dispersal case, when the laboratory demo-
graphic parameters are used, the speed of invasion ccst ¼ 26:80 m/



Fig. 2. Plots of the exact solution of Eq. (5) (solid curves) and the approximation in Eq. (6) (dotted curves) for the Laplace distribution with α¼ 30 m, J0 xð Þ ¼ 0 and A0 xð Þ ¼ δðxÞ,
the set of demographic parameters CDlab for t ¼ 5;10;20 and 30 weeks. The x-axis represents the distance (measured from the origin) traveled by adults.

Fig. 3. The relative error between the approximation in Eq. (6) and the exact
solution in Eq. (5) as a function of distance x with α¼ 10 m, for t ¼ 40 and t ¼ 50 in
the case of the set of demographic parameters CDlab .
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w. This value drops to 3.3 m/w if field fertility is considered (case
shown in Fig. 4). For the sets of demographic parameters CD50%lab

and CDall_bad; population extinction is expected. The invasion speed
is very sensitive to the probability of transition from juvenile to
adult stage. Finally, the elasticity of the invasion speed is larger
compared to the survival of adult Sa: in fact, a variation of 1% in Sa
causes a variation of 1.5% in the rate of invasion ccst . See Fig. 5 and
sensitivity analysis in section 4.3.

4.2. Periodic dispersal case

The distribution of adult densities in the case of a periodic
dispersal has the same pattern as the constant case for different
equivalent dispersal capacities (α¼40, 120, 200 m) and the same
couples of sets of the demographic parameters (Figs 6 and 7).

The most important results concern the invasion speeds of T.
dimidiata for dispersal abilities equivalent to the case of constant
dispersal and the couple sets of demographic parameters char-
acterizing the three biological situations considered: in all the



Fig. 4. Plots of adult densities At xð Þ in the constant case CDf a_field (see Table 1) for t¼155 (solid curves), t¼156 (dot), t¼157 (dash) and t¼158 (dashdot) with three different
values of the mean dispersal: (a) α¼ 10 m, (b) α¼ 30 m, and (c) α¼ 50 m. The curves in (a*), (b*) and (c*) show the edges of the curves in (a), (b) and (c), respectively.
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cases, the invasion speed is higher with periodic dispersal than
with constant dispersal except for conditions D50%lab;ND50%labð Þ
and Dall_bad;NDall_bad

� �
where the population goes to extinction

(Table 2). The largest increase was obtained in the case Dlab;NDlabð Þ
(situation 1 in Table 2): in this case cper increased 146.9% of ccst .

When T. dimidiata leaves a high-density habitat (situation 2 of
Table 2), the field values of demographic parameters play a very
important role; the maximum speed of invasion is expected in this
case (cper¼59.64 m/w) when the probability of adult survival Sa of
the non-dispersal period is based on field values (the parameter
sets (Dlab,NDSa_field)); however, it is minimal when the fertility f a of
this non-dispersal period is that of the field (sets of parameters
(Dlab,NDfa_field)). This corroborates the result of the maximum
elasticity of cper versus Sa obtained in Fig. 5.



Fig. 5. Sensitivity and elasticity of the invasion speed to changes in each of the demographic and dispersal parameters for the constant case CDlab (white bar), the periodic
case Dlab ;NDlabð Þ with one season of dispersal (gray bar), and the periodic case 2Dlab ;NDlabð Þ with two seasons of dispersal (black bar). See Table 1 for demographic and
dispersal parameters. (a) sensitivity to f a (fertility), Sa (adult survival probability), Sj (juvenile survival probability), Fma (transition probability from juvenile to adult) and α

(mean dispersal distance), (a*) sensitivity to f a and α not apparent in (a); (b) elasticity.
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The ecological situation where spatial dispersal is induced
actively by host depletion or passively by hurricanes (both con-
ditions correlated with low demography in situation 3), is char-
acterized by invasion speeds in all cases higher than those
obtained in situation 2 (dispersal correlated to high demography
by intermediate of density-dependent dispersal). This reflects the
fact that T. dimidiata may have a better invasive capacity when the
period of non-dispersal is very favorable from demographic point
of view (NDlab). This improvement leads to an increase of cper up to
139.6% of ccst .
4.2.1. The effect of the duration of dispersal period
Extending the period of dispersal (dispersal in season A–S)

while keeping the same capacity of dispersal in the case of one
season A–J (α¼120 m for a season and α¼60 m in each season for
the situation with two seasons) results in a decrease of the inva-
sion speed of T. dimidiata (relative to a dispersal during only one
season) of 55.8% in the situation 2 and 58.21% in situation 3.
Despite the decrease in the rate of invasion with the longer period
of dispersal, all demographic situations give invasion speeds above
the speed of invasion of the constant dispersal, except in the case
where cper¼19.57 m/w (occst¼26.80 m/w).

In this new case extending the period of dispersal, the duration of
the dispersal period (A–J) and non-dispersal periods (J–M, J–S and O–
D) are not equal, and the invasion speeds corresponding to Di;NDlabð Þ
of situation 3 remain greater than the speeds obtained with their
permuted Dlab;NDj

� �
of situation 2. This confirms that the population

of triatomines has an important capacity of invasion when its demo-
graphy is favorable during the period of non-dispersal.
4.3. Sensitivity analysis

The sensitivities and elasticities of the invasion speed cl (l¼cst
or per) to demographic parameters f a, Sa, Sj, Fma (given in Table 1)
and to the scale of dispersal α are shown in Fig. 5. The patterns for
the constant dispersal and the periodic dispersal are qualitatively
similar. The invasion speed is most sensitive to Fma, Sa and Sj. So, a
good strategy for vector control may be to reduce transition
probability from juvenile to adult stage (Fma), adult survival (Sa)
and juvenile survival (Sj).



Fig. 6. Plots of adult densities At xð Þ in the periodic case (see Table 1) for t¼155 (solid curves), t¼156 (dot), t¼157 (dash) and t¼158 (dashdot) with three different values of
the mean dispersal distances α: (a) α¼ 40, (b) α¼ 120 and (c) α¼ 200 m.

Fig. 7. Plots of adult densities At xð Þ in the periodic case (see Table 1) for t¼158,
with α¼ 40 (solid), α¼ 120 (dot) and α¼ 200 m (dash).
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5. Discussion

The purpose of this study was to estimate the invasion speed of
T. dimidiata in different ecological situations using an original
mathematical method that allows accounting for two types of
dispersal: a "constant dispersal”, i.e. a weekly dispersal that does
not vary within the year, and a "periodic dispersal", where weekly
dispersal occurs only during a 3–6 month-periods in each year.

The constant and periodic models have been studied by con-
sidering various sets of demographic parameters representing
different entomological and ecological situations. In all these
situations, abundances were derived analytically by applying the
properties of Chebyshev polynomials of the second kind and
approximated asymptotically by applying the saddle point
method. The expression of the invasion speed deduced from these
approximations coincides with the formula obtained by Neubert
and Caswell (2000). Accordingly, this methodology provides a new
application of orthogonal polynomials which consists in a formal
representation of the solutions of linear 2SIDE, an asymptotic
behavior of the solutions, and the calculation of the invasion
speed. This also, provides a biologically meaningful interpretation
of the recurrence coefficients in the TTRR as those are formulated
with respect basic demographic parameters.

The first major finding of this study is that for any given mean
capacity of dispersal, the invasion speed is greater when dispersal
is seasonal than when it occurs all year long. Furthermore, inva-
sion speed increases with the shortening of the duration of the
dispersal season. This has important implications for vector con-
trol because there exists an important variability of dispersal
pattern between different triatomines species (see (Waleckx et al.,
2015a) for a review), with some species such as T. dimidiata,
showing clear seasonal pattern with a 3-months peak of



Table 2
The invasion speed in the constant and periodic cases for a dispersal period of one season and two seasons, calculated for different scenarios. The relative difference between,
on one hand, the constant dispersal case and the periodic dispersal case, and on the other hand, between the one season periodic dispersal case and two seasons periodic
dispersal case; they were calculated for different speeds for the sake of comparison.

Cases of spatial dispersal and differ-
ent ecological situations

Set of demographic
parameters

Invasion speed (m/w) for
each demographic set
Di ;NDj
� �

Relative difference
between (Di,NDj)
and CDLab

Invasion speed (m/w) for
each demographic set
2Di ;NDj
� �

Relative difference
between (2Di,NDj)
and (Di,NDj)

Constant dispersal CDlab 26.80 – –- –

CD50%lab extinction – – –

CDf a_f ield 3.30 – – –

CDall_bad extinction – – –

Periodic dispersal Situation 1 (Dlab, NDlab) 66.18 1.469 41.43 0.597
D50%lab ;ND50%labð Þ extinction – – –

Dall_bad ;NDall_bad
� �

extinction – – –

Situation 2 Dlab ;ND50%f a

� �
56.05 1.091 35.92 0.560

Dlab ;ND50%Sa

� �
34.89 0.302 19.57 0.783

Dlab ;ND50%Sj

� �
39.36 0.469 27.51 0.431

Dlab ;ND50%Fma

� �
56.43 1.106 35.96 0.569

Dlab ;NDf a_f ield

� �
32.68 0.219 23.50 0.391

Dlab ;NDSa_f ield

� �
59.64 1.225 36.96 0.614

Situation 3 D50%f a ;NDlab
� �

63.90 1.384 39.81 0.605

D50%Sa ;NDlab
� �

45.43 0.695 31.25 0.454

D50%Sj ;NDlab

� �
62.83 1.344 38.76 0.621

D50%Fma ;NDlab
� �

64.22 1.396 40.06 0.603

Df a_f ield ;NDlab

� �
60.70 1.265 37.33 0.626

DSa_f ield ;NDlab

� �
62.62 1.337 39.53 0.584
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abundance observed in human dwellings (Barbu et al., 2009;
Dumonteil et al., 2013). Our results indicate that such triatomine
species with a seasonal dispersal are more likely to expand their
geographical range than species dispersing all year long. In addi-
tion, sensitivity analysis suggests that vector control of such spe-
cies with higher invading potential should focus primarily (if
possible) on the transition from juvenile to adult, adult survival
and to a lesser extent on the survival of juveniles. The second
important finding of our study is that invasion speed is sub-
stantially greater (up to 34.7%) under the assumption of a dispersal
correlated to low demography rates (either because of the absence
of host or occurrence of hurricane) than when it is associated to
high demography rates. Finally, the analysis of the distribution of
adult dispersal distance shows that the maximum distance tra-
veled varies with the dispersal capacity parameter α: the higher α
the larger is the maximum distance reached, and the pattern is
similar whatever the ecological situation considered here. We now
discuss these main theoretical predictions with respect to the
empirical knowledge of triatomines' dispersal that we found in the
literature.

We have focused on T. dimidiata because dispersal was identi-
fied as a key factor of Chagas disease transmission to human by
this non-domiciliated vector species (Gourbière et al., 2008),
which has generated long-term field and modeling studies pro-
viding one of the rare quantitative assessments of triatomines
dispersal in the field (see (Nouvellet et al., 2015) for a review). The
marked effects of seasonality in our results suggest that it would
be important for both fundamental and applied purposes to
investigate the temporal variation in other species and to estimate
their invasion capacity while accounting for such temporal pat-
tern. Indeed, the literature shows that several triatomine species
mainly disperse during short warmer periods and so we can
anticipate such species to be more likely to expand their geo-
graphical range than other species dispersing all year long. In
North America the species T. protacta was found to show the
maximum natural dispersal activity in July and August with
movements confined to a thermo-period of 15.5 °C to 24.4 °C
(Wood, 1967). Zeledón (1975) claims that warmer temperatures in
countries with marked seasons seem to stimulate the dispersal
activity of certain species which explains, at least in part, the
increase in the number of acute Chagas disease cases during spring
and summer. Dumonteil et al. (2002) documented strong seasonal
variations in T. dimidiata populations, with a higher abundance
during the hot and dry season in April–June, but reduced year-
round colonization of houses; this feature plus the analysis of the
developmental stage structure found, suggest that flying adults
seasonally invade houses thus playing an important role in
transmission of T. cruzi to humans. The relationship between
temperature and dispersal in triatomines seems to have a phy-
siological basis. For Dipetalogaster maximus, when temperature
rises from 30 to 37 °C, an energy supply for muscle activity during
flight is enhanced (Scaraffia and Gerez De Burgos, 2000). (Naiff
et al. 1998) found in urban Manaus (Brazil) that P. geniculatus
males were significantly more frequent in the dry season. Scho-
field et al. (1992) believe that in T. infestans temperature influences
not only the proportion of bugs flying but also the distance flown.
(Vazquez Prokopec et al. 2006) developed an empirical model of
flight initiation and predicted that the flight dispersal of T. infes-
tans would peak in summer; when winds were o5 km/h, the
arrival of adult T. infestans at the light traps was significantly
associated with maximum temperature and relative humidity. Mac
Cord and d'Almeida (1986) observed that fed T. infestans exposed
to 30 °C for four hours, disperse from the eighth day of starvation.

We also established that the invasion speed is substantially
greater when the dispersal period is correlated to low demo-
graphic rates, which could arise as a result of an absence of hosts
or starvation. This result is in concordance with the experimental
works on the influence of starvation on dispersal. Mac Cord and
d'Almeida (1986) found that the length of the starvation period
had more influence on triatomine dispersal than temperature.
These conclusions were later corroborated by Lehane et al. (1992),
who determined that flight initiation in T. infestans is associated
with low nutritional status and increases with rising temperature.
Lehane et al. (1992) also developed a predictive model for the
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probability of flight initiation and concluded that flight would be
rare during colder months (o20°C) but that 5–10% of the popu-
lation of an infested house would fly on any given night during the
hotter months when temperature approaches 30 °C; however, if
bug nutritional status falls significantly, this proportion could be
expected to rise to 30%. Similar conclusions were arrived at in the
case of T. protracta: flights occurred when starved bugs became
stimulated by periods of above the average summer temperatures
(Sjogren and Ryckman, 1966). We note the importance of wind
(which can lead to low demography in the presence of hurricanes),
that was also found to be associated with the dispersal of R. pro-
lixus (D'Ascoli and Gómez-Núñez, 1966) and of T. dimidiata
(Dumonteil et al., 2004).

Our models show that invasion speed also depends on the
dispersal capacity of triatomines, i.e. the dispersal kernel, which
varies with respect to species. For T. dimidiata, our analysis of adult
distance distribution shows that the higher the mean dispersal
capacity, α, the larger the maximum distance reached. For other
species, P. megistus was recognized by (Miles 1976) as able to
disperse for long distances in direction to houses, and confirmed
by (Forattini et al. 1977). T. sherlocki was never recorded to fly
while T. infestans and R. prolixus (as well as other triatomine spe-
cies) fly readily; these differences were related to good/poor
structures associated with locomotors abilities as well as to a
physiological basis (Gringorten and Friend, 1979). Despite T. sher-
locki was never recorded to fly, T. juazeirensis (a very related spe-
cies) is an excellent flier and laboratory-bred hybrids between
these two species had intermediate dispersal capacity (Almeida
et al., 2012).

The invasion speed of T. cruzi has been examined by Crawford
et al., (2013) under different vector migration scenarios. For no
preferred direction of migration, the invasion speed of the epi-
demic ranged from 4.05 km/yr to 8.45 km/yr (or from 78 m/w to
162.5 m/w). When vectors migrate with a preferred direction, this
range becomes 2.56 km/yr to 10.74 km/yr (or 50 m/w to 206.5 m/
w). We examined the invasion speed of T. dimidiata in periodic
environments under different biological situations; in the most
realistic periodic case (three months of dispersal) the invasion
speed ranged from 33 m/w to 64 m/w. The dispersal kernel and
field studies showed that 44% of the adults have a capacity to
travel farther than 100 m in a single flight, but their invasion speed
was low. This is due to seasonality and the low values of certain
demographic parameters (e.g., maturation Fma¼0.026). In the
study of Crawford et al., (2013) this is due, for instance, to the
assumption that triatomines can disperse only for a maximum of
5 weeks and maturation rate which affects the dispersal rate. The
invasion speeds carried out from the (CA) model can be viewed as
upper bounds for the (2SIDE) model since the epidemic spreads
via two triatomines (by dispersal, migration and infection rates)
and two hosts (by infection rates). Accordingly, the estimates of
the invasion speed in Crawford et al., (2013) and in our modeling
approache seem to be reasonable.

Our sensitivity analysis suggests that vector control of such spe-
cies with higher invading potential should focus primarily (if possi-
ble) on the transition from juvenile to adult, and on adult and
juvenile survival. Very little data is available in literature addressing
the question about differential effect of insecticides on the triato-
mine's developmental stage. Indeed, most papers just use one
nymphal instar (present World Health Organization recommenda-
tion is to use only 1st instars) and when they use more instars
usually the type and number of each are not given, and/or the results
do not discriminate among nymphal stages. When dieldrin was used
(although it is not used any more) all the adults died but only 33% of
the fifth instar nymphs died after a 48 h exposure to filter papers
with a concentration of 1.6% dieldrin (Nocerino, 1975). Therefore, our
study suggests that the effect of insecticides on survival of different
insect stages should be investigated.

Our analysis shows that a more efficient control may consist in
disturbing the transition from juvenile to adult stage. One pos-
sibility may be to use juvenile-hormone mimics. The juvenile-
hormone mimics, such as Precocenes, are safe to use but slow-
acting and active only on a few stages (Schofield, 1985). Garcia
et al. (1987) indicate that Precocene and Azadirachtin are effec-
tive inhibitors of molting and reproduction in R. prolixus; how-
ever, they mention that the time of application is critical and only
applications of these compounds early in the inter-molting per-
iod cause their effects in nymphs. In general Proallatotoxins, and
particularly Precocenes, reveal significant effects on feeding,
molting cycle (inducing precocious metamorphosis and ecdysial
stasis), and reproduction in R. prolixus, apparently based on the
corpus allatum cytotoxic effect and on the ecdysteroid biosynth-
esis in prothoracic glands and ovaries (Azambuja and Garcia,
1987). Finally, juvenile-hormone mimics tend to be highly spe-
cific resulting in an unattractively small market for commercial
products (Patterson and Schwarz, 1977) as cited in (Schofield,
1985).

To conclude, our work shows that seasonal variation in the
dispersal process cannot be neglected when estimating the inva-
sion capacity of triatomines and, presumably, others species.
While the models used in this paper consider a deterministic
environment (i.e. constant or with seasonal variations), demo-
graphic parameters are usually influenced by environmental sto-
chasticity (unpredictable variation) in the field, which was actually
recently proposed for triatomines (Menu et al., 2010; Pelosse et al.,
2013). How such unpredictable environmental variations affect
insect demography and/or the dispersal and their invasion speed
remains an open question. Such further developments would
represent a natural extension of the framework presented in the
present study, and of the use of orthogonal polynomials and their
asymptotic properties, whereby demographic and dispersal para-
meters vary with time.
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Appendix A

This appendix contains the proofs and calculus leading to
approximations of adult density At xð Þ and the invasion speed ccst in
the case of a constant environment. It consists of six sections: the
first section deals with the properties of the exponential trans-
form; the second and third sections are about orthogonal poly-
nomials and their application in the general case and, finally, the
fourth, fifth and sixth sections are reserved to the calculus of the
approximations of At xð Þ and ccst in the particular case of a constant
environment.
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5.1. A.1. The exponential transform

The exponential transform for a function f is defined by (see
(Kot and Neubert, 2008) and the references therein)

f̂ sð Þ ¼
Z þ1

�1
f xð Þesxdx ðA:1Þ

and its inverse is

f xð Þ ¼ 1
2πi

Z ρþ i1

ρ� i1
f̂ sð Þe� sxds: ðA:2aÞ

The constant ρ is chosen so that the integration is along a
vertical line within the vertical strip of convergence of the
transform.

The convolution product is defined as

f � gð Þ xð Þ ¼
Z þ1

�1
f y�xð ÞgðyÞdy ðA:2bÞ

and satisfies the property

^f � g sð Þ ¼ f̂ sð Þĝ sð Þ: ðA:2cÞ

For a natural number n, we put f �ðnþ1Þ ¼ f � f �ðnÞ and by con-
vention f �ð0Þ ¼ δ (the Dirac distribution).

Remark A.1. Let s be a real number. Then f̂ isð Þ is the Fourier
transform of f xð Þ defined as

f̂ isð Þ ¼
Z þ1

�1
f xð Þeisxdx ðA:3Þ

and the inverse transform is

f xð Þ ¼ 1
2π

Z þ1

�1
f̂ isð Þe� isxds¼ 1

2πi

Z i1

� i1
f̂ sð Þe� sxds ðA:4Þ

If f xð Þ is positive, then the existence of f̂ 0ð Þ implies the exis-
tence of f̂ isð Þ for every s real according to the inequality

f̂ isð Þ r f̂ 0ð Þ for sAR:
������ ðA:5Þ

We need the following notions (see (Murray, 1984), Chap.1):

Definition A.1. We say that f tðzÞ is equivalent to gtðzÞ when t-þ1
and we note f tðzÞ � gtðzÞ if

lim
t-þ1

f tðzÞ
gtðzÞ

¼ 1 ðA:6aÞ

or

8ε40; (t0ANtZt0 ) f t zð Þ�gtðzÞ oε gtðzÞj
������ ðA:6bÞ

The equivalence is uniform if t0 is independent of z.

Proposition A.1. ( (Murray, 1984), p.34 formula 2.33).

Suppose that the functions g sð Þ;h sð Þ;h0 sð Þ and h00 sð Þ are real and
continuous for all real s. Assume that h sð Þrh 0ð Þ for all real s,
h0 0ð Þ ¼ 0, h00 0ð Þo0, g 0ð Þa0 and g sð Þ ¼ g 0ð Þþsg0 0ð ÞþΟ s2

� �
. Then

we have the asymptotic approximation as t-1
Z þ1

�1
eth sð Þg sð Þds� gð0Þeth 0ð Þ ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h00 0ð Þ tj
��q ðA:7Þ

Note that, if g sð Þ40 in a neighborhood of s¼ 0, thenZ þ1

�1
eth sð Þ g sð Þ ds�

Z þ1

�1
eth sð Þg sð Þds

����
���� ðA:8Þ
Proposition A.2. Let g and h as in proposition A.1. with g sð Þ40 in
a neighborhood of s¼ 0. Suppose that Qt sð Þ � eth sð Þg sð Þ uniformly as
t-1, thenZ þ1

�1
Qt sð Þ cos sxð Þds�

Z þ1

�1
eth sð Þg sð Þ cos sxð Þds: ðA:9Þ

Proof. Let ε40 and ε140. As Qt sð Þ � eth sð Þg sð Þ and by using defi-
nition A.1., it exists a t0 ε=ð1þε1Þ

� �
Z0 such that, for tZt0

ε=ð1þε1Þ
� �

we haveZ þ1

�1
Qt sð Þ cos ðsxÞds�

Z þ1

�1
eth sð Þg sð Þ cos ðsxÞds

�����
�����

¼
Z þ1

�1
Qt sð Þ�eth sð Þg sð Þ
� �

cos ðsxÞds
�����

�����
r
Z þ1

�1
Qt sð Þ�eth sð Þg sð Þ

�����
����� cos ðsxÞ

�����ds
�����

r
Z þ1

�1
Qt sð Þ�eth sð Þg sð Þ dsr ε

ð1þε1Þ
Z þ1

�1

�����eth sð Þg sð Þ
�����ds:

�����
�����

As g is positive in a neighborhood of s¼ 0, we can writeZ þ1

�1
eth sð Þg sð Þ cos ðsxÞds�

Z þ1

�1
eth sð Þg sð Þds�

Z þ1

�1

�����eth sð Þg sð Þ
�����ds:

So for tZt1 ε1; xð Þ we have

1−ε1ð Þ
Z þ∞

−∞
eth sð Þg sð Þ cos ðsxÞds r

Z þ∞

−∞
jeth sð Þg sð Þjds

����
����

r 1þε1ð Þ
Z þ∞

−∞
eth sð Þg sð Þ cos ðsxÞds

�����:
�����

Thus, for tZmax t1 ε1; xð Þ; t0 ε=ð1þε1Þ
� �� �

we obtainZ þ1

�1
Qt sð Þ cos ðsxÞds�

Z þ1

�1
eth sð Þg sð Þ cos ðsxÞds

�����
�����

rε
Z þ1

�1
eth sð Þg sð Þ cos sxð Þds

�����;
�����

which is the equivalence in proposition A.2.

5.2. A.2. Orthogonal polynomials

A polynomial set Ptf gtZ0, with degree Ptð Þ ¼ t for tZ0, is an
orthogonal polynomial set (OPS) with respect to a linear functional
L, if for every non negative integers t1 and t2 we have

L Pt1Pt2

� �¼ 0 if t1at2 and L P2
t1

� �
a0: ðA:10Þ

Or equivalently, they satisfy the so called three term recurrence
relation (TTRR)

XPt Xð Þ ¼ a1;tPtþ1 Xð Þþa2;tPt Xð Þþa3;tPt�1 Xð Þ; tZ0
P�1 Xð Þ ¼ 0; P0 Xð Þ ¼ 1

(
ðA:11Þ

with a1;ta3;tþ1a0 for tZ0. For more details see for instance
(Chihara, 1978).

The connection between orthogonal polynomials and the
solutions of Eq. (2a) is made by using the TTRR and the following
result.

Proposition A.3. Let Vtf gtZ0 be a sequence defined by

Vtþ1 ¼ ξξtV tþηηtVt−1 for tZ1
V0 and V1 known

(
ðA:12Þ

with ξ, η real numbers and ξt
� �

tZ0, ηt
� �

tZ0 real sequences such
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that ξηξta0 for tZ0. Then,

Vt ¼ � ið Þtη t
2 V0Ft i

ξffiffiffi
η

p
� �

þ i V1�ξξ0V0
� �

η� 1
2Gt�1 i

ξffiffiffi
η

p
� �	 


ðA:13Þ

where i2 ¼ �1, Ftf gtZ0 and Gtf gtZ0 are polynomials defined by

ξtXFt Xð Þ ¼ Ftþ1 Xð ÞþηtFt�1 Xð Þ
F �1 Xð Þ ¼ 0; F0 Xð Þ ¼ 1

(
ðA:14aÞ

and

ξtþ1XGt Xð Þ ¼ Gtþ1 Xð Þþηtþ1Gt�1 Xð Þ
G�1 Xð Þ ¼ 0;G0 Xð Þ ¼ 1

(
ðA:14bÞ

with degree(Ft)¼degree(Gt).
Furthermore, if ηta0 for tZ1, then the polynomials Ftf gtZ0

and Gtf gtZ0 are orthogonal.

Proof. We proceed by induction on t. For t ¼ 0 it is easily seen that
the assertion Eq. (A.13) is satisfied. Assume that Eq. (A.13) is true
until t and let us prove it for tþ1ð Þ.

The substitution of Vt and Vt�1 in Eq. (A.12) yields:

Vtþ1 ¼ ξξt � ið Þtηt
2 V0Ft i

ξffiffiffi
η

p
� �

þ i V1�ξξ0V0
� �

η� 1
2Gt�1 i

ξffiffiffi
η

p
� �	 


þηηt � ið Þt�1η
t � 1ð Þ
2 V0Ft�1 i

ξffiffiffi
η

p
� �

þ i V1�ξξ0V0
� �

η� 1
2Gt�2 i

ξffiffiffi
η

p
� �	 


¼ � ið Þtþ1η
t þ 1ð Þ
2 V0 ξt i

ξffiffiffi
η

p Ft i
ξffiffiffi
η

p
� �

�ηtFt�1 i
ξffiffiffi
η

p
� �� �	

þ i V1�ξξ0V0
� �

η� 1
2 ξt i

ξffiffiffi
η

p Gt�1 i
ξffiffiffi
η

p
� �

�ηtGt�2 i
ξffiffiffi
η

p
� �� �


:

Now, by using Eqs. (A.14) we find

Vtþ1 ¼ � ið Þtþ1η
t þ 1ð Þ
2 V0Ftþ1 i

ξffiffiffi
η

p
� �

þ i V1�ξξ0V0
� �

η� 1
2Gt i

ξffiffiffi
η

p
� �	 


;

which is the desired relation.
The sets Ftf gtZ0 and Gtf gtZ0 are polynomials such that

degree Ftð Þ ¼ degree Gtð Þ ¼ t. This can be easily verified by induction
from Eq. (A.14a) and Eq. (A.14b), respectively.

As ξta0 for tZ0 and ηta0 for tZ1 we conclude that 1
ξt
ηt þ 1
ξt þ 1

a0 for tZ0. So, from Eq. (A.11), the polynomials Ftf gtZ0 and
Gtf gtZ0 are orthogonal.

Remark A.2. We have Ft �Xð Þ ¼ ð�1ÞtFt Xð Þ and Gt �Xð Þ ¼
ð�1ÞtGt Xð Þ. This means that if t is even (resp. odd) the polynomials
are even (resp. odd), they are called symmetric. See ((Chihara,
1978), Th.4.3, p.21). This implies that Ft Xð Þ and Gt Xð Þ can be
expended as:

Ft Xð Þ ¼
Xt=2½ �

l ¼ 0

f t;lX
t�2l ðA:15Þ

and

Gt Xð Þ ¼
Xt=2½ �

l ¼ 0

gt;lX
t�2l ðA:16Þ

where f t;l and gt;l are real coefficients. These expansions are used
later to write population densities (see Eqs. (A.29a) and (B.6)).

Remark A.3. The polynomials Gtf g are called the associated
polynomials and they are obtained from the polynomials Ftf g by a
shift on the coefficients ðξt ;ηtÞ. ((Van Assche, 1987), p.8).

5.3. A.3. Application in general case

The exponential transform applied to Eq. (2a) in text, assuming
that Â0 sð Þ, Ĵ0 sð Þ and k̂lm;t sð Þ

n o
tZ0

exist for sA I�C, yields to the
following system

Ĵtþ1 sð Þ ¼ b11;t k̂11;t sð Þ Ĵt sð Þþb12;t k̂12;t sð ÞÂt sð Þ
Âtþ1 sð Þ ¼ b21;t k̂21;t sð Þ Ĵt sð Þþb22;t k̂22;t sð ÞÂt sð Þ

Ĵ0 sð Þ and Â0 sð Þ known

:

8>><
>>: ðA:17Þ

Remark that k̂lm;t 0ð Þ ¼ 1 (because they are probability den-
sities), and that, it is reasonable to assume Ĵ0 0ð Þ and Â0 0ð Þ finite
(because they are the total of juveniles and the total of adults, at
time t¼0 in the whole habitat, respectively). So, 0A I, and this
implies that we can take the imaginary axis as a path of integra-
tion in the inverse exponential transform (remark A.1).

Notice that for s¼ 0, the quantity Ât 0ð Þ is the population size of
adults at time t in the whole habitat. We denote by λt the per
capita growth rate at time t for the adults in the whole habitat. We
have:

λt ¼ Âtþ1 0ð Þ=Ât 0ð Þ: ðA:18aÞ
Its geometric mean is

λ0λ1λ2…λt�1
� �1=t ¼ Ât 0ð Þ=Â0 0ð Þ

� �1=t
ðA:18bÞ

with limit

λ¼ lim
t-1

λ0λ1λ2…λt�1
� �1=t

: ðA:18cÞ

Now, we establish the TTRR (of the form Eq. (A.12)) satisfied by
Ât and Ĵ t .

To simplify calculus we put

at sð Þ ¼ b11;t k̂11;t sð Þ ðA:19aÞ

bt sð Þ ¼ b12;t k̂12;t sð Þ ðA:19bÞ

ct sð Þ ¼ b21;t k̂21;t sð Þ ðA:19cÞ

dt sð Þ ¼ b22;t k̂22;t sð Þ: ðA:19dÞ
System Eq. (A.17), where the variable s is omitted, takes the

form:

Ĵ tþ1 ¼ at Ĵ tþbtÂt

Âtþ1 ¼ ct Ĵ tþdtÂt

Â0 and Ĵ0 known

:

8>><
>>: ðA:20Þ

Put t�1ð Þ instead of t in the equations to get

Ĵ t ¼ at�1 Ĵ t�1þbt�1Ât�1

Ât ¼ ct�1 Ĵ t�1þdt�1Ât�1

(
ðA:21Þ

The elimination of Ĵ t�1 in the first equation and of Ât�1 in the
second one leads to the system

ct�1 Ĵ t ¼ at�1Âtþ ct�1bt�1�at�1dt�1ð ÞÂt�1

bt�1Ât ¼ dt�1 Ĵ tþ ct�1bt�1�at�1dt�1ð ÞĴ t�1
:

(
ðA:22Þ

Finally, eliminating Ât and Ât�1 (resp. Ĵ t and Ĵ t�1) from the first
(resp. second) equation of Eq. (A.22) by using the second (resp.
first) equation of Eq. (A.22), we obtain, for tZ1, the two TTRR

bt−1 Ĵtþ1 ¼ bt−1atþbtdt−1ð ÞĴtþbt ct−1bt−1−at−1dt−1ð ÞĴt−1
Ĵ0 and Ĵ1 ¼ a0 Ĵ0þb0Â0 known

(
ðA:23aÞ

and

ct−1Âtþ1 ¼ at−1ctþdtct−1ð ÞÂtþct ct−1bt−1−at−1dt−1ð ÞÂt−1

Â0 and Â1 ¼ c0 Ĵ0þd0Â0 known
:

8>><
>>:

ðA:23bÞ
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The relations Eq. (A.23a) and Eq. (A.23b) are of the form Eq.
(A.12). For instance, for Eq. (A.23b) we have:

ξξt ¼
at�1

ct�1
ctþdt ðA:24aÞ

ηηt ¼ ct bt�1�
at�1

ct�1
dt�1

� �
ðA:24bÞ

V0 ¼ Â0 ðA:24cÞ

V1 ¼ c0 Ĵ0þd0Â0: ðA:24dÞ

Proposition A.3 and Eq. (A.23b) allow to express Ât by ortho-
gonal polynomials for a large class of systems of type Eq. (A.17).
Therefore, At xð Þ can be expressed by orthogonal polynomials and
the inverse exponential transform defined in Eq. (A.4).

Now from the asymptotic behavior of the orthogonal poly-
nomials we find the asymptotic behavior of Ât sð Þ, and then
applying the steepest descent method to the integral in Eq. (A.4),
we deduce the asymptotic behavior for At xð Þ.

5.4. A.4. Constant model

Next we show how the system (2a), with Bt ¼ B and Kt ¼K, is
intimately related to Chebyshev polynomials of the second kind
denoted Utf gtZ0 and defined by the TTRR:

2XUtðXÞ ¼ Utþ1ðXÞþUt�1ðXÞ
U�1ðXÞ ¼ 0;U0ðXÞ ¼ 1

:

(
ðA:25Þ

They also have the expressions, see ((Magnus et al., 1966),
p.257),

Ut Xð Þ ¼
Xt=2½ �

l ¼ 0

�1ð Þl t� l
l

� �
2Xð Þt�2l ðA:26aÞ

and

Ut Xð Þ ¼
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�1

p� �tþ1
� X�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�1

p� �tþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�1

p : ðA:26bÞ

In the constant case, the TTRR of Ât sð Þ is deduced from Eq.
(A.23b) as follows

Âtþ1 sð Þ ¼ 2ξ sð ÞÂt sð Þþη sð ÞÂt−1 sð ÞtZ1

Â0 sð Þ and Â1 sð Þ ¼ b21k̂21 sð ÞĴ0 sð Þþb22k̂22 sð Þ Â0 sð Þ known

(
ðA:27Þ

where

2ξ sð Þ ¼ b11k̂11 sð Þþb22k̂22 sð Þ ðA:28aÞ

and

η sð Þ ¼ b12b21k̂12 sð Þk̂21 sð Þ�b11b22k̂11 sð Þk̂22 sð Þ: ðA:28bÞ

Proposition A.4. The adults' density is

At ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
A0 � b11k11þb22k22ð Þþt�2l

t� l
b21k21 � J0�b11k11 � A0
� �	 


� b11k11þb22k22ð Þ� t�1�2lð Þ

� b12b21k12 � k21�b11b22k11 � k22ð Þ� lð Þ ðA:29aÞ

where the variable x is omitted to simplify notation and t
l

� �¼ t!
l! t� lð Þ!

denote binomial coefficients.
Proof. Applying proposition A.3 to Eq. (A.27) with
ξ; ξt ;η;ηt
� �¼ ξ sð Þ;2;η sð Þ;1� �

, yields to the equality

Ât sð Þ ¼ η
t
2 sð Þ � ið Þt Â0 sð ÞUt

iξ sð Þffiffiffiffiffiffiffiffi
η sð Þ

p
 !

þ i b21k̂21 sð ÞĴ0 sð Þ
�"

�b11k̂11 sð ÞÂ0 sð Þ
�
η� 1

2 sð ÞUt�1
iξ sð Þffiffiffiffiffiffiffiffi
η sð Þ

p
 !35 ðA:29bÞ

where Utf g are Chebyshev polynomials of the second kind.
From Eq. (A.26a) and knowing that t�1� l

l

� �¼ t�2l
t� l

t� l
l

� �
, the

relation Eq. (A.29b) (where we have omitted the variables to
simplify notation) becomes

Ât ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
2ξÂ0þ

t�2l
t� l

b21k̂21 Ĵ0�b11k̂11Â0

� �	 

2ξ
� �t�1�2lηl:

ðA:29cÞ
Now by applying the inverse exponential transform and its

convolution property, we obtain Eq. (A.29a).

Remark A.5. Using Eq. (A.26b), Ât sð Þ in Eq. (A.29b) can be
written as

Ât sð Þ ¼ C sð Þ ξ sð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q� �t

þ Â0 sð Þ�C sð Þ
� �

ξ sð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q� �t

ðA:30Þ

with

C sð Þ ¼
Â1 sð Þ� Â0 sð Þ ξ sð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q ðA:31Þ

5.5. A.5. Approximating adult density

Chebyshev polynomials have the following approximation

Ut zð Þ � 1
2

zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2�1

p� �tþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
z2�1

p for z=2 �1;1½ � ðA:32Þ

which can be deduced from Eq. (A.26b), or is a special case of
Jacobi's polynomials approximation (Szegö, 1975).

We obtain then from Eq. (A.30) that

Ât sð Þ � C sð Þ M̂1 sð Þ
� �t

ðA:33aÞ

where

M̂1 sð Þ ¼ ξ sð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 sð Þþη sð Þ

q
: ðA:33bÞ

By Eq. (A.4) and noting that the function Ât isð Þ is even we have

At xð Þ ¼ 1
2πi

Z i1

� i1
Â sð Þe� sxds¼ 1

2π

Z þ1

�1
Ât isð Þe� isxds

¼ 1
2π

Z þ1

�1
Ât isð Þ cos ðsxÞds: ðA:34aÞ

From Eq. (A.33a) we get Ât isð Þ � C isð Þ M̂1 isð Þ
� �t

. So, we can use
proposition A.2 with

Qt sð Þ ¼ Ât isð Þ, g sð Þ ¼ C isð Þ and h sð Þ ¼ ln M̂1 isð Þ
� �

to obtain

At xð Þ � 1
2π

Z þ1

�1
C isð Þ M̂1 isð Þ

� �t
cos sxð Þds: ðA:34bÞ

The functions C isð Þ and M̂1 isð Þ are even and by Eq. (A.4) we can
write

At xð Þ � 1
2π

Z þ1

�1
C isð Þ M̂1 isð Þ

� �t
cos sxð Þds
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� 1
2πi

Z i1

� i1
C sð Þ M̂1 sð Þ

� �t
e� sxds ðA:34cÞ

The steepest descent method is applied, as in (Kot and Neubert,
2008), to the integral

1
2πi

R i1
� i1 C sð Þ M̂1 sð Þ

� �t
e� sxds, in order to arrive at the approx-

imation

At xð Þ �
Cðs0Þe�xs0 M̂1 s0ð Þ

� �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π κ001 s0ð Þ tj
��q ðA:35Þ

where

κ1 sð Þ ¼ ln M̂1 sð Þ ðA:36aÞ
and s0 satisfies the equation

M̂
0
1 s0ð Þ

M̂1 s0ð Þ
¼ x

t
: ðA:36bÞ

5.6. A.6. Invasion speed

The invasion speed of the adults is defined as follows: choose a
critical population level Acr that defines the location of the front of
the invasion. Then the location xt of the invasion at time t is the
furthest value of x where At xð Þ ¼ Acr . Between time zero and time t
the location of the wave front has advanced a distance of xt�x0,
and hence the average invasion speed by time t is given
by xt �x0ð Þ

t . The “invasion speed” is obtained by taking the limit:
lim
t-1

xt � x0ð Þ
t ¼ lim

t-1
xt
t .

Now, as the invasion speed is an asymptotic result, Eq. (A.35) is
used for its calculation. By choosing a critical population size Acr , if
we set At xð Þ to Acr and solve Eq. (A.35) for the ratio x=t, we find that

x
t
� 1
s0

ln M̂1 s0ð Þ
h i

þ1
t
ln

C s0ð Þ
Acr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π jκ001 s0ð Þj tp

" #( )
: ðA:37Þ

In the limit of large t, if the ratio x=t converges to a constant,
then s0 and κ001 s0ð Þ (as functions of s0) converge to constants. Thus,
by Eq. (A.37) the speed is

ccst � lim
t-1

x
t
¼ 1
s0
ln M̂1 s0ð Þ
h i

ðA:38Þ

We have also, for large t from Eq. (A.36b) the equation

ccst ¼
M̂

0
1 s0ð Þ

M̂1 s0ð Þ
ðA:39Þ

We can see easily that Eqs. (A.38) and (A.39) are equivalent to

d
ds

1
s
ln M̂1 sð Þ
� �	 


s ¼ s0

¼ 0 and ccst ¼ 1
s0
ln M̂1 s0ð Þ
� �

ðA:40Þ

So, this means that

ccst ¼ min
sA I

s40

1
s
ln M̂1 sð Þ
� �

ðA:41Þ
Appendix B

This appendix contains the proofs and calculus leading to
approximations of adult density At xð Þ and the invasion speed cper
in the case of a periodic environment. Calculus of the adult's
density, in the case of a periodic environment is based primarily
on calculus developed in Appendix A for the constant model.
Suppose the environment cycles, with a period T, through a set
of T distinct phases (e.g., seasons). For each phase j, j¼ 1;…; T, the
demographic, dispersal and wave projection matrices are Bj, Kj

and Hj respectively. Over a complete environmental cycle, from t
to tþT , the wave projection matrix is the product of the Hj (Cas-
well et al., 2011),

H sð Þ ¼HT sð ÞHT�1 sð Þ…H1 sð Þ: ðB:1Þ
In fact we have

n̂tþT sð Þ ¼H sð Þn̂t sð Þ ðB:2Þ
Let r being the time of the census at the beginning of each

phase (r¼ 0:::T�1), putting tTþr instead of t in Eq. (B.2) gives, for
a time step of T and initial condition n̂r sð Þ, the underlying system

n̂ tþ1ð ÞTþ r sð Þ ¼H sð Þn̂tTþ r sð Þ ðB:3Þ
which is a constant model similar to the system in Eq. (A.17). So,
the previous results of “constant model” can be applied with initial
condition nr xð Þ and

H sð Þ ¼H 0ð Þ3K̂ sð Þ: ðB:4Þ
where H 0ð Þ is the demographic projection matrix and K̂ sð Þ ¼R
K xð ÞexpðsxÞdx, K xð Þ is the dispersal matrix.

Put H sð Þ ¼ ĥlm sð Þ
� �

, then H 0ð Þ ¼ ĥlm 0ð Þ
� �

and K̂ sð Þ ¼ ĥ lm sð Þ
ĥ lm 0ð Þ

� �
. A

relation similar to relation Eq. (A.29b) (in the proof of proposition
A.4) takes the form

ÂtTþ r ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
2ξ1Ârþ

t�2l
t� l

ĥ21 Ĵ r� ĥ11Âr

� �	 

2ξ1
� �t�1�2lηl1

ðB:5Þ
with 2ξ1 ¼ ĥ11þ ĥ22 and η1 ¼ ĥ12ĥ21� ĥ11ĥ22.

By applying the inverse exponential transform in Eq. (B.5) we
get an exact expression of AtTþ rðxÞ:

AtTþ r ¼
Xt

2½ �

l ¼ 0

t� l
l

� �
Arn h11þh22ð Þþt�2l

t� l
h21 � Jr�h11 � Ar
� �	 


�

� h11þh22ð Þ� t�1�2lð Þ � h12 � h21�h11 � h22ð Þ� lð Þ: ðB:6Þ
As in the “constant model” above, we can write an app-

roximation of AtTþ rðxÞ and give the invasion speed. See Eq. (10)
and Eq. (12) in text.
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