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We investigate the role of heavy quarks in the production of light flavored hadrons and in the
determination of the corresponding nonperturbative hadronization probabilities. We define a general mass
variable flavor number scheme for fragmentation functions that accounts for heavy quark mass effects, and
perform a global QCD analysis to an up-to-date data set including very precise Belle and BABAR results.
We show that the mass dependent picture provides a much more accurate and consistent description of
the data.
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I. INTRODUCTION

The effects of heavy quark masses in hard processes and
the appropriate definition of parton probability densities for
such species of quarks have been very actively studied in
recent years [1]. When a heavy quark participates in a hard
process, and the characteristic energy of the process under
consideration is not far from the heavy quark mass scale,
the most natural choice is to treat these particles as massive
throughout the calculation, rather than appeal to the more
conventional massless parton approximation. However,
when the scale of the process exceeds by far the mass
scale of the heavy quarks, not only do mass corrections
become negligible, but the all-order resummations implicit
in massless parton approaches become crucial. This
situation clearly represents a challenge for a precise and
consistent comparison of processes occurring at very
different energy scales, as necessarily happens in a global
QCD analysis designed to extract nonperturbative parton
distribution functions (PDFs) [2] or fragmentation func-
tions (FFs) [3,4] from the data. To overcome this problem,
in most modern global QCD analyses of data, the so-called
general mass variable flavor number (GMVFN) schemes
[5–8] for parton densities are introduced, as they allow one
to retain the advantages of massive schemes near the mass
thresholds and those of the massless approach at high
energies, smoothly interpolating between both regimes.
In fact, different GMVFN approaches have been applied

to the analysis of fragmentation probabilities of heavy
quarks into heavy flavored hadrons [9–12], but until now
little attention has been paid in this respect to light hadron

fragmentation processes. Since the charm and bottom
content in the proton is rather limited, the production of
light mesons via heavy quarks of course is strongly
suppressed relative to that via light quarks both in
proton-proton collisions and in semi-inclusive deep inelas-
tic scattering (SIDIS). Heavy quark corrections are thus
expected to be negligible for these processes. But that is not
the case for single inclusive electron-positron annihilation
(SIA) into light mesons, where the charm and bottom
contribution to the cross section is estimated to be com-
parable in size to that of the light flavors [13]. Whereas
charm and bottom mass corrections may still be negligible
in SIA experiments tuned at the mass of the Z boson,
they are certainly relevant at the energy scales of the more
recent BABAR and Belle experiments [14,15], which are
just above the bottom mass threshold.
In this paper we compute the single inclusive electron-

positron annihilation cross section with nonzero masses for
the charm and bottom quarks at first order in the strong
coupling constant αs, and we estimate the effects of
retaining these mass corrections in pion production.
Since we find the mass dependence to be large but we
want to keep the advantages of the next-to-leading order
(NLO) massless approximation at high energies, we define
a general mass variable flavor number scheme for frag-
mentation functions in the lines of the fixed-order-next-to-
leading-logarithm (FONLL) scheme [16,17], commonly
used for parton distribution functions (PDFs). We imple-
ment numerically this scheme in Mellin moment space for
the fast computation of the cross sections as required by
QCD global analyses, and we perform them including
recent Belle and BABAR data. The mass dependent picture
introduced by the GMVFN scheme is found to be relevant
in the extraction of fragmentation functions both in terms of
the quality of the fit to data and in the reduction of the
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normalization shifts applied to data that are customarily
included in global fits. The shape of the charm into a pion
fragmentation function, which contributes significantly to
the cross section at the energies of the Belle and BABAR
experiments, is noticeably modified relative to the results
obtained within a massless scheme. The bottom fragmen-
tation, constrained mainly by higher energy data, remains
similar to the one found in the massless approximation.

II. FACTORIZATION SCHEMES

Most analyses of quark fragmentation into light flavored
hadrons [3,4] rely on the massless perturbative QCD
approximation, supplemented with heavy quark mass
thresholds, where the corresponding heavy quarks become
active, contribute to cross sections, and enter the scale or
evolution equations [18]. This zero mass variable flavor
number (ZMVFN) scheme is the simplest framework to
compute the SIA cross section [19]:

dσ
dz

ZMVFN ¼
X

i¼q;g;h

σ̂ZMi ðz;QÞ ⊗ DZM
i ðz;QÞ; ð1Þ

where σ̂ZMi is the massless partonic SIA cross section into a
parton of flavor i, and DZM

i are the corresponding FFs, for
which we omit in what follows the dependence on the
scaled hadron energy fraction z. ⊗ represents the appro-
priate convolution over z, and Q is the center of mass
energy. DZM

i evolves in the scale Q through massless QCD
evolution equations for any parton flavor i, which include
light (q) and heavy (h) quarks and antiquarks and gluons
(g). Equation (1) gives a remarkably good approximation
at NLO and next-to-next-to-leading order well above mass
threshold mh [13,20], i.e. Q ≫ mh, but fails to account for
mass effects. Alternatively, in a massive scheme (M), heavy
quark masses are kept at the partonic cross section level,

dσ
dz

M¼
X

i¼q;g

σ̂Mi ðQ;mhÞ⊗DM
i ðQÞþ σ̂Mh ðQ;mhÞ⊗DM

h . ð2Þ

Light flavored FFs DM
q;gðQÞ still evolve through massless

QCD evolution equations in NLO, although heavy quark
loops contribute above Oðα2SÞ, and heavy quark FFs DM

h
decouple from the QCD evolution [21]. The massive
scheme gives a good description near the mass thresholds,
but fails to converge to the massless limit at high energies
because of potentially large logarithmic contributions
[αkSlog

kðmh=QÞ] present in the partonic cross sections σ̂Mi
that spoil the convergence of the perturbation expansion.
These logarithmic contributions are effectively resummed
in the renormalization group improved ZM approximation.
In fact, it has been shown [22,23] that in the massless limit,
i.e. Q ≫ mh,

σ̂Mi ðQ;mhÞ ⟶
mh→0

X

j¼q;g;h

σ̂ZMj ðQÞ ⊗ AjiðQ=mhÞ; ð3Þ

where all logarithmic contributions can be factorized in an
operator matrix Aij that is independent of the hard process
under consideration [11,12,24].
The advantages of both the zero mass and the massive

schemes can be exploited in a general mass (GM) scheme,
which defines the corresponding fragmentation probabil-
ities through

dσ
dz

GMVFN ¼
X

i¼q;g;h

σ̂GMj ðQ;mhÞ ⊗ DGM
j ðQÞ; ð4Þ

where a subtracted massive partonic cross section

σ̂GMj ðQ;mhÞ ¼
X

i¼q;g;h

σ̂Mi ðQ;mhÞ ⊗ A−1
ij ðQ=mhÞ ð5Þ

guarantees the correct massless behavior at high energies.
The fragmentation functions DGM

j ðQÞ obey standard evo-
lution equations as in the ZM scheme and the continuity
across the thresholds can be ensured by imposing the
following matching condition:

DGM
j ðmhÞ ¼

X

i¼q;g;h

Ajið1Þ ⊗ DM
i ðmhÞ; ð6Þ

analogously as in the FONLL scheme for PDFs [16,17].
In order to illustrate the effects arising from the use of the

different approximations for the partonic cross sections, in
Fig. 1 we show the charm and bottom contribution to the
SIA pion cross section (upper and lower panels, respec-
tively) as a function of the center of mass energy Q at two
reference values of z. For comparison, the same set of NLO
FFs that will be described in detail in the next section is
convoluted with the NLO massless (ZM) partonic cross
section (red solid lines), the full OðαSÞ massive (M) result
(black dashed lines), and the subtracted (GM) approxima-
tion (blue dot-dashed lines). Even though the scheme
defined by Eqs. (4)–(6) interpolates between the massive
behavior near thresholds and the desired zero mass limit at
Q ≫ mh, this solution is clearly not unique. The same
limits can be satisfied in alternative factorization schemes
where the convergence to the massless limit happens at a
lower or higher energy scale. For instance, substituting

σ̂GMj → σ̂GM
�

j ¼ ð1 − fðQÞÞσ̂Mj þ fðQÞσ̂GMj ð7Þ

into Eq. (4), with an fðQÞ that vanishes in the threshold
fðmhÞ ¼ 0, and saturates to 1 for Q ≫ mh such that
fðQÞ ¼ 1 − 2mh=Q, would delay the onset of the mas-
slesslike behavior, as shown for the charm contribution by
the grey dotted lines in the upper panels of Fig. 1, while
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σ̂GMj → σ̂GM
�

j ¼ ð1 − fðQÞÞσ̂GMj þ fðQÞσ̂ZMj ð8Þ

would suppress mass effects, as shown for the bottom
contribution in the lower panels. In any case, it is clear that
while the GM schemes introduce negligible corrections at
the energy scale of the LEP experiments, mass effects are
significant at the scales of Belle and BABAR. The remark-
ably precise measurements of the SIA cross section as a
function of z performed by these experiments allows one to
check whether a particular scheme is favored by the data.

III. GMVFN SCHEME GLOBAL
ANALYSIS FOR FFs

In this section, we discuss the actual relevance of heavy
quark mass corrections in charged pion production, imple-
menting different factorization schemes in a NLO QCD
global analysis for the extraction of FFs, performed along
the lines of that of Ref. [13]. The method for the global
analysis has been described in detail in [3,13]. It is based on
an efficient Mellin moment technique that allows one to
tabulate and store the computationally most demanding
parts of the NLO calculation of SIA, SIDIS, and proton-
proton hadroproduction cross sections prior to the actual
analysis. In this way, the evaluation of the relevant cross
sections becomes so fast that it can be easily performed
inside a standard χ2 minimization. At variance with [13],
where SIA cross sections were evaluated only in the ZM
approximation, here they are extended to the GM frame-
work, which requires one to define different contours in
the complex moment space to perform the Mellin inver-
sion. Hadroproduction and SIDIS cross sections are still

computed in the ZM framework, to asses in this first step
the impact introduced by SIA corrections. Nevertheless, the
heavy quark contributions to these processes are negligibly
small. Also a minor difference with [13] is that we remove
from the data sets included in the analysis TASSO and
OPAL light flavor tagged data, which have comparatively
large errors.
In Table I we compare the quality of a fit performed

within the standard ZMVFN factorization scheme, and a
GMVFN variant where the prescriptions of Eqs. (7) and (8)
have been adopted for the charm and bottom coefficients,
respectively, as in the example of Fig. 1. Among the
different prescriptions we have explored, the above men-
tioned one reproduces best the data, significantly better
than in the ZMVFN scheme, with much lower χ2i per data
values and smaller normalization shifts Ni. No significant
improvement is found with more sophisticated weight
functions fðQÞ. On the other hand, the most simple
subtraction of Eq. (5) produces fits of much poorer quality,
suggesting that such prescription oversubtracts for charm,
and converges much slower to the massless limit than the
data require for bottom.
As expected, heavy quark mass effects are most notice-

able for Belle and BABAR experiments, since at their
relatively low center of mass energies heavy quarks are
far from behaving as massless. On the other hand, even
though these experiments are above the bottom threshold
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FIG. 1. Charm and bottom contribution to the SIA cross section
computed with different approximations for the partonic cross
sections and the same set of FFs.

TABLE I. Individual χ2 values and normalization shifts Ni for
the data sets included in global analyses where the ZMVFN and
GMVFN schemes have been implemented.

Data No. data ZMVFN GMVFN
Experiment type in fit Ni χ2=data Ni χ2=data

ALEPH [25] inclusive 22 0.968 0.982 0.994 1.059
BABAR [14] inclusive 39 1.019 1.967 1.002 1.492
Belle [15] inclusive 78 1.044 0.250 1.019 0.141
DELPHI [26] inclusive 17 0.978 0.394 1.003 0.547

uds tag 17 0.978 1.224 1.003 0.559
b tag 17 0.978 0.618 1.003 0.459

OPAL [27] inclusive 21 0.946 1.329 0.970 0.757
SLD [28] inclusive 28 0.938 1.000 0.963 0.696

uds tag 17 0.938 1.253 0.963 0.665
c tag 17 0.938 2.000 0.963 1.165
b tag 17 0.938 0.653 0.963 0.582

TPC [29] inclusive 17 0.997 1.865 1.006 1.641
uds tag 9 0.997 0.222 1.006 0.222
c tag 9 0.997 0.656 1.006 0.478
b tag 9 0.997 1.067 1.006 1.211

COMPASS [30] π� (d) 398 1.003 0.952 1.008 0.962
HERMES [31] π� (p) 64 0.981 1.156 0.986 1.092

π� (d) 64 0.980 1.677 0.985 1.620
PHENIX [32] π0 15 1.174 0.953 1.167 0.960
STAR [33] π�, π0 38 1.205 0.821 1.202 0.889
ALICE [34] π0 11 0.696 3.027 0.700 2.836
TOTAL: 924 χ2=dof¼1.079 χ2=dof¼0.977

ROLE OF HEAVY QUARKS IN LIGHT HADRON … PHYSICAL REVIEW D 94, 034037 (2016)

034037-3



2mb, where the bottom should be considered as an active
flavor in the ZMVFN scheme, the bottom is actually
strongly suppressed, a feature that is well accounted for
in the GMVFN scheme. In Fig. 2 we show the differences
between the fit estimates and Belle and BABAR data,
against the relative experimental error. The 68% and
90% C.L. limit bands for the GMVFN estimates are also
included.
Notice that there is also a considerable improvement in

the description of data from experiments at a higher energy
scale. The difference between the massless and the mass
dependent picture comes in this case from the fact that the
QCD scale dependence preserves the difference between
the charm fragmentation probabilities constrained by lower
energy data, as shown in Fig. 3. The bottom fragmentation
probability is mainly constrained by high energy flavor
tagged SIA data, for which mass dependent corrections
become negligible, and therefore the results for this flavor
in both pictures agree. The GMVFN however guarantees
that the bottom contribution at lower energies is conven-
iently suppressed, improving the overall agreement and
consistency. No significant differences are found for the
light flavors, which are constrained mainly by light flavor
tagged SIA and SIDIS data.
It is worthwhile mentioning that heavy quark fragmen-

tation functions into pions are found to be larger than those
corresponding to the light flavors both in the GMVFN and
the ZMVFN approximations, and as in previous ZMVFN
analyses. This suggests not only that the perturbative
coefficients we have computed are strongly dependent
on the quark masses, but also that the nonperturbative
hadronization mechanisms encoded in the fragmentation
functions are clearly sensitive to the quark masses. In this

picture, massive quarks would have more strong decay
channels than their almost massless counterparts.

IV. CONCLUSIONS AND OUTLOOK

We have shown that an accurate determination of the
fragmentation probabilities of quarks and gluons into
pions, matching the precision of the present generation
of hadroproduction experiments, requires a picture sensi-
tive to heavy quark dynamics. Such a picture was presented
here, together with the results of a NLO QCD global
analysis where it was implemented. Heavy quark mass
dependence is especially relevant in single inclusive elec-
tron-positron annihilation into pions, where the detailed
energy scale dependence of the charm contribution and the
suppression of the bottom above their respective thresholds
is non-negligible. These effects are expected to be even
more apparent in global fits to data on the production of
heavy flavored mesons from different observables at differ-
ent energy scales, where the mass dependent fragmentation
probabilities are dominant.
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