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Quantum-speed-limit bounds in an open quantum evolution
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Quantum mechanics dictates bounds for the minimal evolution time between predetermined initial and final
states. Several of these quantum-speed-limit (QSL) bounds were derived for nonunitary dynamics using different
approaches. Here, we perform a systematic analysis of the most common QSL bounds in the damped Jaynes-
Cummings model, covering the Markovian and non-Markovian regimes. We show that only one of the analyzed
bounds cleaves to the essence of the QSL theory outlined in the pioneer works of Mandelstam and Tamm and of
Margolus and Levitin in the context of unitary evolutions. We also show that all QSL bounds analyzed reflect the
fact that in our model non-Markovian effects speed up quantum evolution. However, it is not possible to infer
Markovian or non-Markovian behavior of the dynamics by analyzing only the QSL bounds.
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I. INTRODUCTION

Knowing the fundamental limits that quantum mechanics
imposes on the maximum speed of evolution between two
distinguishable states is of utmost importance for quantum
communication [1], computation [2], metrology [3], and many
other areas of quantum physics. In particular, the presence
of decoherence [4,5] makes the estimation of the minimal
duration time of a process of key value in the design of quantum
control protocols and in the implementation of quantum
information tasks.

The quantum-speed-limit (QSL) time, τ , is defined as the
minimal time a quantum system needs to evolve between an
initial and a final state separated by a given predetermined
distance [6,7]. The pioneering work on this subject was
conducted by Mandelstam and Tamm (MT) [8], who derived
a bound for the evolution time of a system between two pure
orthogonal states through a unitary dynamics generated by a
time-independent Hamiltonian Ĥ . The resulting lower bound
for the evolution time was given as t � τMT ≡ �π/2〈�Ĥ 〉,
where 〈�Ĥ 〉 =

√
〈Ĥ 2〉 − 〈Ĥ 〉2 denotes the mean standard

deviation of the energy of the system. Several years later,
Margolus and Levitin (ML) [9,10] studied the same problem
and arrived at a different bound, i.e., t � τML ≡ π�/2〈Ĥ 〉,
where 〈Ĥ 〉 is the mean energy. Therefore, for unitary dynamics
connecting two orthogonal pure states, the bound for the
quantum speed limit is not unique and the result was usually
given by combining these two independent bounds and looking
for the tightest: t � max[τMT; τML] [11].

For nonunitary dynamics the extension of the MT approach
was given in [6] using the Bures fidelity [12–14] between the
initial and the final states. From their approach two bounds can
be extracted, which we call τmin

t and τ av
t .

*wisniacki@df.uba.ar

The first minimal evolution time, τmin
t , corresponds to the

time required by the process to traverse a distance equal to
the geodesic length between the two states ρ̂0 and ρ̂t . This
time can be estimated with little information on the dynamics
and could depend on the actual time t only implicitly through
state ρ̂t .

The second QSL bound, τ av
t , involves a definition of the

average speed of evolution,Vav
t (in frequency units), calculated

in terms of the quantum Fisher information along the evolution
path. Both QSL bounds, τmin

t and τ av
t , are tight for an evolution

along the geodesic path between the initial and the final
states. This continuous-in-time tightness feature is important
to engineering evolutions that achieve the minimal time of
evolution set by quantum mechanics. However, here we show
that the explicit dependence of the average velocity,Vav

t , on the
actual evolution time t , makes τ av

t an inconsistent estimate of
the minimal evolution time. This is shown in the well-known
damped Jaynes-Cummings (DJC) model. On the contrary,
τmin
t , gives a finite estimate of the minimal evolution time for

all times at which the asymptotic state is essentially reached.
Other QSL bounds have been given in the literature for

nonunitary evolutions [7,15–17]. Some of them [7,16] are also
based on the definition of velocities, Vt (in frequency units),
which depend explicitly on the actual evolution time t . We
show that all these bounds also give inconsistent estimates of
the minimal evolution time. In the case of the QSL bound in [7],
we have also demonstrated another drawback: it does not show
continuous-in-time saturation, i.e., an evolution path where the
bound is tight for all times. Thus, we argue that for nonunitary
evolutions, τmin

t is, within the analyzed QSL bounds, the only
one that sticks close to the essence of the QSL theory. This
essence is to estimate not the actual evolution time, but the
minimal time needed to connect two states separated by a
given distance.

Another interesting aspect of the QSL bounds for open
systems that was recently discussed in the literature is
their connection with the non-Markovian character of the
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nonunitary evolutions [7,18,19]. In fact, it was suggested in
Ref. [7] that one of their proposed QSL bounds could include
enough information on the dynamics to be correlated with the
Markovianity or non-Markovianity of the system evolution. In
particular, it was remarked that the non-Markovian effects as-
sociated with the information backflow from the environment
could lead to faster quantum evolution and hence to shorter
QSL times. Similar statements were made in [18] and [19]. We
can say that the statement that the non-Markovianity speeds up
the quantum evolution and that this feature can be inferred from
the behavior of the QSL bounds is widespread [15]. Here, we
consider the DJC model in the rotated-wave approximation
(RWA) but with a detuning between the peak frequency of
the spectral density and the transition frequency of the qubit
whose dynamics can be tuned from essentially Markovian
to non-Markovian. We found that in the DJC model the
non-Markovian effects indeed speed up the quantum evolution.
Comparing all the QSL bounds analyzed, over a wide range
of parameters that control the system, with a measure of
the non-Markovianity of the evolution, we show that all of
them are systematically smaller in the region of parameters
corresponding to non-Markovian effects with respect to their
values in the region of parameters corresponding to Markovian
behavior of the dynamics. In this sense we can say that the QSL
bounds analyzed reflect the speedup of quantum evolution due
to non-Markovian effects in the DJC model. However, we
have shown that the converse is not true, so there are regions
of parameters that cannot be associated with non-Markovian
behavior of the dynamics where the QSL bounds are as
small as in the region of parameters where the dynamics is
essentially non-Markovian. Therefore, it is not possible to
infer the speedup of quantum evolution due to non-Markovian
effects from the QSL bounds analyzed.

The paper is organized as follows. In Sec. II we summarize
the three approaches to deriving the QSL bounds treated in
this work and analyze the conditions for their saturation. Next,
in Sec. III we review the model used to test our statements:
the DJC model for a zero-temperature reservoir within the
RWA, whose dynamics can be tuned from Markovian to non-
Markovian regimes. Our results are reported in Sec. IV, and
in Sec. V we conclude with some final remarks.

II. QUANTUM-SPEED-LIMIT BOUNDS
FOR OPEN SYSTEMS

A desirable feature for any QSL time bound is to be tight.
This means that there is always an evolution that allows its
saturation. Here, we summarize the derivation of the QSL
bounds given in [6], [7], and [16] and we briefly analyze
the conditions for their saturation. In particular, we focus on
whether or not a continuous-in-time saturation exists, i.e., an
evolutionary path that, for every time, saturates the bound.

A. QSL bounds in terms of the quantum Fisher information

The approach in [6] is based on the Bures fidelity [13]
between the initial and the final states, i.e.,

FB(ρ̂0,ρ̂t ) = Tr(
√√

ρ̂0ρ̂t

√
ρ̂0). (1)

The authors prove that, among all the metrics based on
the Bures fidelity, the tightest lower bound for the Bures
length [20],

∫ t

0

√
FQ(t ′)/4dt ′, is given by the Bures angle,

arccos (FB[ρ̂0,ρ̂t ]) [12,14], i.e.,

L(ρ̂0,ρ̂t ) ≡ arccos (FB(ρ̂0,ρ̂t )) �
∫ t

0

√
FQ(t ′)/4 dt ′. (2)

Here, FQ(t), is the quantum Fisher information along the path
determined by the system evolution and its square root is
proportional to the instantaneous speed of separation between
two neighboring states. Eq. (2) implies that the length of the
geodesic that connects ρ̂(0) with ρ̂(t) is always shorter than
the length of the actual path.

The geometric interpretation of Eq. (2) allows us to set up
two types of minimal evolution time for two states separated by
a given predetermined distance. The first, which we call τmin

t ,
corresponds to the time it takes the system to travel (along the
actual evolution path) the same length as the geodesic’s length
between the two states, i.e.,

L(ρ̂0,ρ̂t ) =
∫ τmin

t

0

√
FQ(t ′)/4 dt ′. (3)

It is important to realize that knowing FQ(t) along the path,
in principle, requires less information than knowing exactly
the actual dynamics of the system. In this way, this QSL time
follows the essence of the QSL theory because, knowing the
initial and final state but not knowing the actual evolution
time t , we can estimate a lower bound for the evolution time.
This is well illustrated, for example, for any unitary evolution
generated by a time-independent Hamiltonian, whereFQ(t) =
4〈(�Ĥ )2〉ρ̂0/�

2 for all times. So, in this case we only need the
variance of the energy of the system to estimate the bound,

τmin
t = �L(ρ̂0,ρ̂t )/

√
〈(�Ĥ )2〉ρ̂0 , (4)

that for orthogonal pure states, i.e.,L(ρ̂0,ρ̂t ) = π/2, is equal to
τMT. The QSL bound τmin

t allows us to define the speed-limit
“velocity” (in frequency units),

Vmin
t ≡ L(ρ̂0,ρ̂t )

τmin
t

, (5)

which depends on t only implicitly through the final state ρ̂t .
The second QSL bound comes directly from rearranging

Eq. (2),

t � L(ρ̂0,ρ̂t )

Vav
t

≡ τ av
t , (6)

where we define the “average speed of evolution” as

Vav
t ≡ (1/t)

∫ t

0

√
FQ(t ′)/4 dt ′. (7)

In the case of unitary evolution generated by a time-
independent Hamiltonian we have that Vav

t =
√

〈(�Ĥ )2〉ρ̂0/�

does not depend on the actual time of evolution t , and
τ av
τ = τmin

t . For nonunitary evolutions the times τ av
t and τmin

t

do not need to be equal, and in general, Vav
t depends explicitly

on t , contrary to the velocity Vmin
t in Eq. (5). Later we show, in

a specific system, that τmin
t < τ av

t and the explicit dependence
of Vav

t on t makes τ av
t an inconsistent estimate of the minimal

evolution time between ρ̂0 and ρ̂t .
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It is clear, from the geometric character of the inequality in
Eq. (2) that the saturation τ = τmin

t or τ = τ av
t is only possible

whenever the system evolution is through a geodesic path, so
in this case we have τ = τmin

t = τ av
t for all values of t . Thus,

both bounds, τ = τmin
t and τ = τ av

t , are continuously tight,
i.e., their saturation is continuously in the variable t along the
evolutions over geodesics.

B. QSL bounds in terms of different operator norms

Deffner and Lutz [7] derived three different QSL bounds for
a pure initial state ρ̂0 = |ψ0〉 〈ψ0| employing the von Neumann
trace inequality for operators. As in Ref. [6] their approach
also uses the Bures angle, L(ρ̂0,ρ̂t ) = arccos(

√〈ψ0|ρ̂t |ψ0〉),
in order to measure the predetermined distance between the
initial and the final states. The derivation can be summarized
as follows. First, from the time derivative of the Bures angle
and using that x � |x|, we can arrive at

2 cos (L) sin (L)L̇ � |〈ψ0| ˙̂ρt |ψ0〉| = | Tr(ρ̂0 ˙̂ρt )|. (8)

Next, we use the von Neumann trace inequality for Hilbert-
Schmidt class operators,1

| Tr(ρ̂0 ˙̂ρt )| � σ1(t) = ‖ ˙̂ρt‖op, (9)

where σ1(t) is the largest singular value of ˙̂ρt , and because
this operator is Hermitian, σ1(t) is equal to its operator norm,
denoted ‖ . . . ‖op. Together with the inequality, Eq. (9), we use
the set of inequalities for trace class operators,

‖Â‖op � ‖Â‖hs � ‖Â‖tr, (10)

where ‖Â‖tr ≡ Tr(
√

Â†Â) = ∑
i σi is the trace norm and

‖Â‖hs ≡
√

Tr(Â†Â) =
√∑

i σ
2
i is the Hilbert-Schmidt norm.

Gathering all the inequalities the authors arrive at

2 cos (L) sin (L)L̇ � ‖ ˙̂ρt‖op � ‖ ˙̂ρt‖hs � ‖ ˙̂ρt‖tr, (11)

and integrating over time, we finally obtain

sin2(L(ρ̂0,ρ̂t )) �
∫ t

0
‖ ˙̂ρt ′ ‖op dt ′

�
∫ t

0
‖ ˙̂ρt ′ ‖hs dt ′ �

∫ t

0
dt ‖ ˙̂ρt‖tr. (12)

These inequalities are valid for any density operator
evolution, and in the same way as Eq. (2), Eq. (12) serves
as the starting point to derive QSL bounds if we define

Vop,tr,hs
t ≡ (1/t)

∫ t

0
||Lt (ρ̂t ′)||op,tr,hs dt ′. (13)

Then the three QSL bounds derived in [7] are

t � τ
op,tr,hs
t = sin2 [L(ρ̂0,ρ̂t )]

Vop,tr,hs
t

. (14)

1For two Schmidt class operators Â and B̂ the von Neumann
trace inequality is Tr(ÂB̂) �

∑
i σiλi , where the sum is over the

singular values, σi and λi , of the operators, Â and B̂, respectively, in
descending order, σ1 � σ2 � . . . and λ1 � λ2 � . . . [21].

Because Vop
t � Vhs

t � V tr
t , the greater QSL bound is τ

op
t . Later

we show, in a specific system, that τ
op
t > τmin

t , and the explicit
dependence ofVop

t on t makes τ
op
t also an inconsistent estimate

of the minimal evolution time between ρ̂0 and ρ̂t .
We note that the inequalities in Eq. (12) do not have a clear

geometric interpretation, so the conditions for their saturation
[which leads to the saturation of the QSL bounds in Eq. (14)]
are not as evident. In the case of τ

op
t , the saturation corresponds

to

sin2(L(ρ̂0,ρ̂t )) =
∫ t

0
dt ‖ ˙̂ρt‖opl. (15)

In order to have saturation over a given evolution path, we
need to satisfy the equalities in Eqs. (8) and (9) for all times t .
So, the mean 〈ψ0| ˙̂ρt |ψ0〉 = Tr(ρ̂0 ˙̂ρt ) should be positive along
the path. Let us suppose that this is the case, so now we want
to see if it is possible to saturate Eq. (9) at all times t , i.e.,
Tr(ρ̂0 ˙̂ρt ) = σ1(t) ≡ ‖ ˙̂ρt‖op > 0 along some evolutionary path.
In order to see that this is not possible, we first observe that the
von Neumann trace inequality Tr(ρ̂0 ˙̂ρt ) � σ1(t) is saturated
along an evolution path iff ρ̂0 and ˙̂ρt are simultaneously
unitarily diagonalizable for all evolution times. This means
that σ1(t) must be the eigenvalue of ˙̂ρt associated with the
time-independent common eigenvector, |ψ0〉, of ˙̂ρt and ρ̂0.
Therefore, the structure of the evolved state should be

ρ̂t =
(

1 +
∫ t

0
σ1(t ′) dt ′

)
ρ̂0 + Ât , (16)

where Ât has a support in the subspace orthogonal to the
subspace spanned by ρ̂0 ≡ |ψ0〉〈ψ0|. But because we assume
that Eq. (8) is saturated at all times, we have σ1(t) > 0 at
all times. So, ρ̂t in Eq. (16) is not a physical state for all
t > 0, because otherwise we would have, for the probability
of finding the evolved state in the initial state,

T r(ρ̂0ρ̂t ) = 1 +
∫ t

0
σ1(t ′) dt ′ > 1, (17)

where we use that ρ̂0Ât = 0 at all times. Therefore it is not
possible to find an evolutionary path where Eq. (9) is saturated
at all times if Eq. (8) is also saturated at all times. The saturation
t = τ

op
t can be possible only for certain times t along a given

path of the system evolution. This contrasts clearly with t =
τ av
t = τmin

t , which is a continuous-in-time saturation along a
geodesic evolutionary path.

C. QSL bound using the notion of quantumness

The derivation of a QSL bound in [16] follows a very
different approach based on the notion of “quantumness”.
Quantification of the nonclassical character of a quantum
system has recently attracted much attention [22,23]. In
particular, the notion of quantumness associated with the
noncommutativity of the algebra of observables [22,23] was
defined as

Q(ρ̂a,ρ̂b) = 2‖[ρ̂a,ρ̂b]‖2
hs

= −4Tr
[
(ρ̂aρ̂b)2 − ρ̂2

a ρ̂
2
a

]
, (18)

such that 0 � Q(ρ̂a,ρ̂b) � 1. Note that Q(ρ̂a,ρ̂b) = 0 iff
[ρ̂a,ρ̂b] = 0 [22,23], which means that ρ̂a and ρ̂b are diagonal
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in the same basis. In that sense Q(ρ̂a,ρ̂b) is a witness of the
coherences that state ρ̂b has in the basis of eigenstates of ρ̂a , and
vice versa. Therefore, in system evolution, the quantumness,
Q(ρ̂0,ρ̂t ), as a function of time, monitors the generation of
coherences in the evolved state ρ̂t , in the eigenstate basis of
the initial state ρ̂0.

Contrary to the approaches described in the previous
sections, in order to get a QSL bound, the approach in [16]
does not use explicitly any distance between the initial and
the final state. Instead, from the definition of the quantumness
Q(ρ̂0,ρ̂t ), the authors use the Cauchy-Schwarz inequality, i.e.,
| Tr(Â†B̂)| � ‖Â‖hs‖B̂‖hs, to obtain

|Q̇(ρ̂0,ρ̂t )|√
Q(ρ̂0,ρ̂t )

� 2
√

2 ‖[ρ̂0, ˙̂ρt ]‖hs, (19)

where Q̇(ρ̂0,ρ̂t ) = 4 Tr(Â†
t B̂t ), with Ât ≡ [ρ̂0,ρ̂t ] and B̂t ≡

[ρ̂0, ˙̂ρt ]. Now, for the integration in time of the left-hand side
of Eq. (19), they use that∫ t

0

|Q̇(ρ̂0,ρ̂t ′ )|√
Q(ρ̂0,ρ̂t ′ )

dt ′ �
∣∣∣∣
∫ Q

0

dQ′
√

Q′

∣∣∣∣ = 2
√

Q(ρ̂0,ρ̂t ). (20)

Therefore, they finally obtain

√
Q(ρ̂0,ρ̂t )/2 �

∫ t

0
‖[ρ̂0, ˙̂ρt ′ ]‖hs dt ′. (21)

A QSL bound, τ
quant
t , can be set up from the inequality in

Eq. (21) in the same way that τ av
t , was set up from the inequality

in Eqs. (2) or the bounds, τ
op,tr,hs
t , from the inequalities in

Eq. (12), i.e.,

t � τ
quant
t =

√
Q(ρ̂0,ρ̂t )/2

Vquant
t

, (22)

where we define the time-average velocity in frequency units,

Vquant
t ≡ 1

t

∫ t

0
‖[ρ̂0, ˙̂ρt ′ ]‖hs dt ′. (23)

In order to have saturation in Eq. (21), therefore t = τ
quant
t ,

for all times over a given evolutionary path, we need to satisfy
the equalities in Eqs. (19) and (20) for all times t . Let us
suppose that the rate of change of the quantumness, Q̇(ρ̂0,ρ̂t ),
is positive along the evolutionary path, so the equality, Eq. (20),
is saturated along the path. This means that the rate of
generation of coherences in ρ̂t , in the basis of eigenstates of
ρ̂0, is positive at all times: something that could be possible. In
order to saturate Eq. (19) at all times along some evolutionary
path, we need that

B̂t = ξt Ât , (24)

with ξt a real function of time. Because we assume that
Q̇(ρ̂0,ρ̂t ) = 4ξt Tr(Â†

t Ât ) � 0 we have that ξt � 0 at all times.
This means that (i) ˙̂ρt = ξt ρ̂t or (ii) ρ̂0 and ˙̂ρt − ξt ρ̂t are diago-
nal in the same basis, at all times along some evolutionary path.
Option (i) is not possible because, imposing the normalization
condition on the evolved state, we arrive at

∫ t

0 ξt ′ dt ′ = 0 at
all times, a condition that cannot be satisfied unless ξt = 0 at
all times. But ξt = 0 at all times, corresponds to the trivial
evolution where the evolved state remains equal to ρ̂0 at all
times. However, condition (ii) can be satisfied, for example, in

the cases of quasiclassical models consisting of evolved states
diagonal in the eigenbasis of the initial state ρ̂0 at all times,
with only their eigenvalues changing along the evolutionary
path [24]. Therefore, the QSL bound, τ av

t , in principle, can be
saturated continuously in time along some evolutionary paths.

III. THE JAYNES-CUMMINGS MODEL
FOR A ZERO-TEMPERATURE RESERVOIR

In this section, we present a simple physical model that will
serve as a platform to study all the QSL bounds presented in
the previous section. We consider the exactly solvable damped
Jaynes-Cummings model for a two-level system interacting
with a bosonic quantum reservoir at zero temperature, in
both the resonant and the detuning regimes [5,25–30]. The
Hamiltonian of the system is given by Ĥ = Ĥ0 + ĤI . The
free Hamiltonian of the qubit and the modes of the reservoir is
Ĥ0 = ω0σ̂z + ∑

k ωkb̂
†
kb̂k , while ĤI = ∑

k gkb̂kσ̂+ + g∗
k b̂

†
kσ̂−

is the interaction Hamiltonian between them (gk is the coupling
strength between the qubit and mode k). Here, ω0, is the
energy difference between the two levels of the system, σ̂±
are the increasing and decreasing operators for the qubit,
and σ̂z is a Pauli operator. The operators, b̂

†
k and b̂k , are

the creation and annihilation operators for the bosonic modes
whose frequencies are ωk . In the limit of an infinite number
of reservoir modes and a smooth spectral density, this model
leads to the reduced qubit’s evolution given by the exact master
equation,

˙̂ρt = − ist

2
[σ̂z,ρ̂t ]

+ γt

(
σ̂−ρ̂t σ̂+ − 1

2
σ̂+σ̂−ρ̂t − 1

2
ρ̂t σ̂+σ̂−

)
, (25)

with st = −2Im{Ġ(t)/G(t)} and γt = −2Re{Ġ(t)/G(t)} the
time-dependent Lamb shift and the decay rate, respectively [5].
The solution of this master equation is given by the channel
[5,28]

ρ̂t = �t [ρ̂0] =
[|G(t)|2ρee G(t)ρeg

G(t)∗ρ∗
eg 1 − |G(t)|2ρee

]
, (26)

where the initial state of the qubit is

ρ̂0 =
[
ρee ρeg

ρ∗
eg 1 − ρee

]
(27)

in the basis, |z; ±〉, of eigenstates of the free Hamiltonian of the
qubit. The function, G(t), is the solution to the equation Ġ(t) =
− ∫ t

0 dτf (t − τ )G(τ ), with G(0) = 1 and where f (t − τ ) is
the two-point correlation function of the reservoir, i.e., the
Fourier transform of the spectral density J (ω). For a Lorenzian
spectral density, J (ω) = γ0λ

2/2π [(ω − ωc)2 + λ2] (λ is its
width, ωc is its peak frequency, and γ0 is an effective coupling
constant), we obtain the result [30]

f (t) = 1
2γ0λe−λ|t |(1−iδ/λ), (28)

with δ = ω0 − ωc the detuning between the peak frequency of
the spectral density and the transition frequency of the qubit.
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Therefore,

G(t) = e− λ t
2 (1−i δ

λ
)

[
λ

�

(
1 − i

δ

λ

)
sinh

(
�t

2

)

+ cosh

(
�t

2

)]
, (29)

where � = λ
√

(1 − iδ/λ)2 − 2γ0/λ and the time-dependent
decay rate is

γt = γ0 Re

(
2 sinh

(
�t
2

)
�
λ

cosh
(

�t
2

) + (1 − i δ
λ

) sinh
(

�t
2

)
)

. (30)

Note that if we measure the time in units of 1/λ, the function
G(t), and therefore the decay rate γt , depends on only two
parameters, i.e., γ0/λ and δ/λ.

An important feature of the DJC model is that different
regimes of the parameters γ0/λ and δ/λ can be associated
with Markovian and non-Markovian effects on the evolution.
In the limit γ0/λ 	 1 and δ/λ 	 1, we get, for the decay
rate, γt = γ0/(1 + coth(λt/2)), which is a strictly increasing
positive function of time that, when λt 
 1, corresponds to
γt ∼ γ0. Because γt = γ0/(1 + coth(λt/2)) � 0 at all times,
Eq. (25) is a Markovian master equation [27] in the regime
γ0/λ 	 1 and δ/λ 	 1. However, away from this regime, in
order to check the Markovianity or non-Markovianity of the
dynamics, it is necessary to monitor the distinguishability of
any two states along the evolution. This is because the accepted
notion of Markovianity that we use here is based on the idea
that for Markovian processes any two quantum states become
less and less distinguishable under the dynamics, leading to a
continuous loss of information into the environment [27].

The trace norm of the difference, ρ̂1 − ρ̂2, is used to define
the trace distance,

D(ρ̂1,ρ̂2) = 1
2 ||ρ̂1 − ρ̂2||tr = 1

2 Tr |ρ̂1 − ρ̂2|, (31)

which is a measure of the distance between the two quantum
states [13]. This measure has the nice property that it can
be interpreted as a measure of the distinguishability of ρ̂1

and ρ̂2 [31]. Therefore, based on the trace distance, the
characterization of the non-Markovian character of a quantum
process, given by the map ρ̂t = �t [ρ̂0], can be stated as
follows: a quantum map ρ̂t = �t [ρ̂0] is non-Markovian if and
only if there is a pair of initial states, ρ̂0,1 and ρ̂0,2, such that
the trace distance between the corresponding evolved states
increases at a certain time t , i.e.,

σ (t,ρ̂0,1,ρ̂0,2) ≡ d

dt
D(�t [ρ̂0,1],�t [ρ̂0,2]) > 0, (32)

where σ (t,ρ̂0,1,ρ̂0,2) denotes the rate of change of the trace
distance at time t corresponding to the initial pair of states
[31]. For a non-Markovian process, information must flow
from the environment to the system for some interval of time,
and thus we must have σ > 0 for this time interval. A good
measure of non-Markovianity of the channel should witness
the total increase in the distinguishability over the whole time
evolution, i.e., the total amount of information flowing from
the environment back into the system. This suggests defining
a measure N (�t ) for the non-Markovianity of a quantum

FIG. 1. Density plot of the non-Markovianity of the channel cor-
responding to the DJC model, measured by the expression in Eq. (33)
for the initial states, ρ̂e = |x; +〉〈x; +| and ρ̂g = |x; −〉〈x; −|, and a
total time of evolution such that λt = 1000. See the text for details.

process through [27]

N (�t ) = max{ρ̂0,1,ρ̂0,2} N (�t,ρ̂0,1,ρ̂0,2), (33)

with

N (�t,ρ̂0,1,ρ̂0,2) =
∫

σ>0
dt σ (t,ρ̂0,1,ρ̂0,2). (34)

For a general process the maximization over the initial states
ρ̂0,1 and ρ̂0,2, in N (�t ), is a difficult task. However for the
DJC model considered here, when δ �= 0, it was shown in
[31] thatN (�t ) = N (�t,ρ̂e,ρ̂g), where ρ̂e = |x; +〉〈x; +| and
ρ̂g = |x; −〉〈x; −|, with |x; ±〉 the eigenstates of the Pauli
operator σ̂x . In Fig. 1 we show the behavior of the measure
N (�t ) as a function of the parameters γ0/λ and δ/λ, which
control the DJC model.

FIG. 2. Trace distance D(ρ̂t ,ρ̂f ) between the final stationary state
ρ̂f = |z; −〉〈z; −| and the evolved state ρ̂t of the qubit in the DJC
model, as a funtion of the scaled time λt . The dotted green line
corresponds to the Markovian regime, with δ/λ = 0.1 and γ0/λ =
0.1, and the solid blue line to the non-Markovian regime with δ/λ =
0.1 and γ0/λ = 104. In both cases the initial state of the evolution is
ρ̂i = |x; +〉〈x; +|.
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FIG. 3. QSL bounds as a function of the final time of the evolution
corresponding to the DJC model, starting with the initial state of the
qubit ρ̂i = |x; +〉〈x; +|. (a) An example in the Markovian regime
with δ/λ = 0.1 and γ0/λ = 0.1; (b) an example in the non-Markovian
regime with δ/λ = 0.1 and γ0/λ = 104. The dotted green line
represents τ

quant
t ; the short-dashed redline, τ

op
t ; the long-dashed blue

line, τ av
t and the solid red line, τmin

τ .

FIG. 4. The average speed as a function of the final time of the
evolution in the DJC model, with the initial state of the qubit ρ̂i =
|x; +〉〈x; +|. (a) An example in the Markovian regime with δ/λ = 0.1
and γ0/λ = 0.1; (b) an example in the non-Markovian regime with
δ/λ = 0.1 and γ0/λ = 104. The dotted green line represents Vquant

t

[Eq. (23)]; the short-dashed red line, Vop
t [Eq. (13)]; the long-dashed

blue line, Vav
t [Eq. (6)]; and the solid red line, Vmin

t [Eq. (5)].

IV. RESULTS: QSL BOUNDS IN THE DJC MODEL

The DJC model is a very suitable framework in which to
analyze all the QSL bounds discussed in the previous section.
Our goal is to examine which of the bounds stay close to the
essence of the QSL theory, giving consistent estimates for the
minimal evolution time to reach the final state from the initial
one within the framework of open quantum evolutions.

The reduced evolution of the qubit in the DJC model in
Eq. (26) has a stationary state for all values of the parameters
δ/λ and γ0/λ. Indeed, no matter which is the initial state and
due to the fact that limt→∞ G(t) = 0, the asymptotic final
state is ρ̂f = |z; −〉〈z; −|. The speed at which an evolved state
approaches the stationary state is different in the Markovian
versus non-Markovian regimes. This is clearly shown in Fig. 2,
where we plot the trace distance, D(ρ̂t ,ρ̂f ), between the
evolved state of the qubit ρ̂t and its stationary state ρ̂f as
a function of time for two different parameters that control the
environment and its interaction with the qubit. The initial state
is ρ̂i = |x; +〉〈x; +|, however, similar results were obtained for
any other ρ̂i (not shown). We see that in the Markovian regime
(δ/λ = 0.1 and γ0/λ = 0.1) the stationary state is reached at
times λt > 100, while in the non-Markovian regime (δ/λ =

FIG. 5. Density plot of the non-Markovianity over a state evolu-
tion path in the DJC model, measured by the expression in Eq. (35),
calculated from the initial state, ρ̂e = |x; +〉〈x; +|. The time of
evolution is (a) λt = 1 and (b) λt = 100.
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FIG. 6. Density plot of the QSL bounds as a function of the parameters γ0/λ and δ/λ. The initial state is ρ̂i = |x; +〉〈x; +| and the final
time of evolution is λt = 1. (a) τ

quant
t , (b) τ

op
t , (c) τ av

t , and (d) τmin
t . See text for details

0.1 and γ0/λ = 10 000) the final state ρ̂f is approached at
earlier times (λt ≈ 16). This shows the speedup of evolution
in the non-Markovian regime.

Let us now consider the behavior of the different QSL
bounds as a function of the final time of evolution λt shown
in Fig. 3. We remark that equivalent results were obtained for
any other initial pure state (not shown). We can appreciate in
Fig. 3 that for times λt > 100 when, in either the Markovian or
the non-Markovian regime, the qubit has reached the stationary
state ρ̂f (see Fig. 2), only the bound τmin

t remains constant. The
other bounds grow approximately linear. This behavior is due
to the fact that, in the denominator of the definitions of τ av

t , τ op
t ,

and τ
quant
t [Eqs. (6), (14), and (22), respectively], the “average

velocities” (in frequency units), Vav
t , Vop

t , and Vquant
t appear,

which depend on the actual evolution time t . These average
velocities go to 0 when the stationary state is achieved, while
the quantities in the numerator of the definitions of the bounds
remain constant. This is shown in Fig. 4, where we plot Vav

t ,
Vop

t , and Vquant
t as a function of the evolution time λt , and we

also plot Vmin
t , which is defined in Eq. (5).

The results shown in Figs. 3 and 4 clearly show that none
of the bounds, τ av

t , τ op
t , and τ

quant
t , give a consistent estimate of

the minimal time to achieve the final state ρ̂f = |z; −〉〈z; −|
starting from the initial state ρ̂i = |x; +〉〈x; +|. Moreover,
the average velocities, Vav

t , Vop
t , and Vquant

t , show the same
asymptotic behavior as the instant speed of evolution, given
by

√
FQ(τ )/4, which for λτ > 100 also goes to 0. This fact

goes against the essence of the QSL theory, which pursues
the estimation of the speed-limit velocity of the evolution
between two states. On the contrary, τmin

t gives a consistent
estimate of the minimal time needed to reach ρ̂f from ρ̂i and,
also, provides a quantum speed limit of evolution.

Although we have shown that only one of the QSL
bounds presented in Sec. II gives a reliable estimate of the
minimum evolution time, we now study the connection of these
bounds with the non-Markovianity character of the evolution
[7,18,19].

The measureN (�t ) in Eq. (33) is suitable for characterizing
the degree of non-Markovianity of a quantum channel �t .
However, in order to establish a possible link between the
QSL bounds and the non-Markovian effects of the dynamics it
is more appropriate to define a measure of non-Markovianity
over the actual trajectory of the system, i.e., from the initial
state ρ̂0 to the final one ρ̂t , which enters into the definition of

FIG. 7. Density plot of the QSL bounds as a function of the parameters γ0/λ and δ/λ. The initial state is ρ̂i = |x; +〉〈x; +| and the final
time of evolution is λt = 100. (a) τ

quant
t , (b) τ

op
t , (c) τ av

t , and (d) τmin
t . The density color scale in the range 0–70 is used in (a)–(c), while the one

in the range 0–20 is used in (d). This shows that τmin
t is a better estimate of the minimal evolution time between state ρ̂i and state ρ̂λt=100.
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the QSL bounds. In this way, we define

Ñ (t ; �t,ρ̂0) =
∫ t

0,σ̃>0
σ̃ (t ′,ρ̂0,ρ̂t ′ ) dt ′

=
∫ t

0

|σ̃ (t ′,ρ̂0,ρ̂t ′ )| + σ̃ (t ′,ρ̂0,ρ̂t ′ )

2
dt ′, (35)

which depends on the final time t , and where

σ̃ (t,ρ̂0,ρ̂t ) ≡ d

dt
D(ρ̂0,�t [ρ̂0]). (36)

In Fig. 5 we show the density plot of Ñ (t ; �t,ρ̂0) as a
function of the parameters γ0/λ and δ/λ for an initial state ρ̂i =
|x; +〉〈x; +| and two final evolution times: λt = 1 [Fig. 5(a)]
and λt = 100 [Fig. 5(b)]. Comparing Fig. 1 and Fig. 5, we
can see similar qualitative behavior of the two measures of
non-Markovianity as a function of the two parameters, γ0/λ

and δ/λ, that control the dynamics of the channel.
In order to compare the non-Markovianity measure Ñ

with the QSL bounds we compute them for the same region
of parameters γ0/λ and δ/λ and also considering the initial
state ρ̂i = |x; +〉〈x; +|. In Fig. 6 we show the QSL bounds
calculated for a final state at λt = 1, and in Fig. 7 for a
final state at λt = 100. The region of large Ñ in Fig. 5(a)
corresponds to small values of all of the QSL bounds in Fig. 6.
The same result can be observed comparing Fig. 5(b) and
Fig. 7. In this sense, large non-Markovianity implies small
QSL bounds. This is a manifestation of the speedup of the
quantum evolution in the non-Markovian regime that we
show in Fig. 2. But looking at the value of the QSL bounds
for different values of the parameters γ0/λ and δ/λ, it is
not possible to infer which are the parameter regions of
non-Markovian behavior of the channel. For example, the
region of small values of the QSL bounds in the lower-right
corner of Figs. 6(b)– 6(d) and the region of intermediate values
in Fig. 6(a) do not correspond to the region of parameters with
high values of the measure Ñ in Fig. 5(a). Exactly the same
analysis can be done for the case λt = 100, which is plotted
in Figs. 5(b) and 7.

V. CONCLUSIONS

Two quantum states are not perfectly distinguishable unless
their supports do not overlap. This means that states that are
close in Hilbert space are less distinguishable, so the distance
between states fixes the degree of distinguishability between
them. Therefore, in order to connect with a physical evolution
two states with some fixed degree of distinguishability, it
is necessary to go at least the same distance that separates
the two states. This is the origin of the minimal time of
evolution settled by quantum mechanics. The quantum-speed-
limit (QSL) theory is devoted to establishing lower bounds of

this minimal time of evolution, and its origin dates back to the
pioneering works of Mandelstam and Tamm and of Margolus
and Levitin on unitary evolutions connecting pure states. It
is important to note that the loss of distinguishability between
near-neighbor states in quantum mechanics is intrinsic and has
nothing to do with the precision of the measurement apparatus
used to distinguish them. This contrasts with the classical case,
where the states of the system are given by points in the phase
space, whose distinguishability is not related to the distance
between them.

A reasonable requirement that any expression correspond-
ing to a QSL bound for the minimal time of evolution between
two states must satisfy is that if we apply the formula in
the context of a given dynamics, the result must be close
to the minimal time of evolution, and not to the actual
time of evolution between the states (unless the bound has
been saturated). In this work we have analyzed the QSL
bounds for the minimal time of evolution in open quantum
systems [6,7,16] and have shown that only one, given in [6],
effectively verifies this basic requirement. This was done using
the damped Jaynes-Cummings model, which, for any initial
state, has the same stationary state. So, we have revealed
that the QSL bounds in [7] and [16] grow indefinitely with
the actual evolution time, while the final state is essentially
reached at finite times. On the contrary, the QSL bound in
[6] remains constant for any time greater than the time at
which the stationary state is essentially reached. We have also
demonstrated that, contrary to the QSL bounds in [6] and [16],
the QSL bound in [7] cannot be saturated continuously in time
along a quantum evolution path.

In relation to the possible link between non-Markovian
effects and the behavior of QSL bounds we found that all
of the analyzed bounds have lower values in a parameter
region that matches the parameter region where the speedup of
quantum evolution due to non-Markovian effects takes place in
the damped Jaynes-Cummings model. However, we have also
shown that there is a parameter region of lower values of all
the analyzed bounds that does not correspond to the region of
non-Markovian effects on the evolution. In this sense, we have
demonstrated, with a counterexample, that the statement that
non-Markovian effects on quantum evolution can be studied
through the QSL bounds is false.
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