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The formulation of the interaction of matter with singular light fields needs special care. In a recent article
[G. F. Quinteiro et al., Phys. Rev. A 91, 033808 (2015)] we have shown that the Hamiltonian describing the
interaction of a twisted-light beam having parallel orbital and spin angular momenta with a small object located
close to the phase singularity can be expressed only in terms of the electric field of the beam. Here we complement
our study by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta.
Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and
azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written
solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge invariant.
Furthermore, it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic
moment approximations.

DOI: 10.1103/PhysRevA.95.012106

I. INTRODUCTION

Typically, when studying the interaction of light with
nanometer-sized structures the characteristic length scale of
the light field is much larger than the size of the structure. In
this case it is usually sufficient to consider plane-wave-like or
spatially homogeneous beams. This does not hold anymore if
the structure is placed at or close to a singular point of a light
beam.

A prominent example for such a singular light beam is
twisted light (TL), also called optical vortex light or light
carrying orbital angular momentum (OAM), which has a
phase singularity at the beam axis. A variety of new effects
have been predicted and observed in the study of TL beams,
spanning pure optics [1–3] and the interaction with atoms
[4,5], molecules [6], ions [7,8], Bose-Einstein condensation
[9], and solid-state systems [10–15]. All these effects promise
interesting new applications to material processing [16],
communications [17], lasers [18–20], spintronics [21], and
particle manipulation [22].

Another class of spatially strongly inhomogeneous light
beams is that of radially and azimuthally polarized beams,
which can be realized as linear combinations of TL beams with
opposite angular momentum and circular polarization. These
beams have received much attention for their high potential in
applications. Due to their strong longitudinal-field component
with high intensity and degree of focusing, they prove
useful in fields such as micro-Raman spectroscopy [23] and
material processing [24,25] and as optical tweezers for metallic
particles [26]. It was also suggested that a strong longitudinal
component can help to excite intersubband transitions in
quantum wells [27] and light-hole states in quantum dots [21].
These states are technologically challenging to address, since
conventional fields can only excite them if the beam propagates
perpendicular to the growth direction of the sample, which

*gquinteiro@df.uba.ar

typically requires cleaving the structure. From a theoretical
perspective it has also been demonstrated that these fields can
be classically entangled in a way similar to what we find in
quantum mechanical systems [28].

It is becoming increasingly clear that the interaction of
highly inhomogeneous light fields, and in particular of singular
fields like TL [29], with atoms or solids is nontrivial and
needs special care in the theoretical description. Of course,
one can always work with the minimal coupling Hamiltonian;
however, its use entails some disadvantages. For example, it
lacks direct connection to the electromagnetic fields, the real
quantities accessible in experiments. Therefore, care has to be
taken when changing the gauge that in general will modify
the vector potential without changing the fields. Clearly, since
physics is gauge invariant, as long as no further approximation
is performed, all gauges have to be equivalent. However,
it is well known that this does not hold anymore when
approximations are made, e.g., when the basis of the quantum
states involved in the calculations is truncated. An example
is given in Ref. [30], where it has been shown that in the
electric-field gauge the two-photon transition rate in hydrogen
converges rapidly with very few intermediate states, while for
the minimal coupling Hamiltonian convergence is very slow.
Also, when using variational wave functions for molecular
orbitals big differences between the two gauges have been
found [31].

We have shown recently in Ref. [32] that for highly
inhomogeneous beams the formulation of the light-matter
interaction had to be revisited and demonstrated that previous
formulations meant for smooth fields are not the most suitable
ones to treat TL, especially when the interaction with small
structures close to the phase singularity is considered. Using
elementary gauge transformations, we further developed a
gauge, the TL gauge, which allowed us to cast the Hamiltonian
in a form containing the electric field only.

Though having an appealing form, the TL gauge developed
in Ref. [32] is only applicable to a certain subclass of TL
beams, which can be explained as follows. Twisted-light beams
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FIG. 1. Electric-field profile in the xy plane for antiparallel
(left) and parallel (right) TL propagating along the z direction with
topological charge � = 1.

can be discriminated into two topologically different classes
depending on the combination of circular polarization (or spin
angular momentum) and topological charge (or OAM). If
circular polarization and topological charge have the same
sign, we call this the parallel class, while for opposite sign the
beams are called antiparallel. One example of the electric-field
profile for the two classes is shown in Fig. 1. One can
immediately see the difference in the spatial profiles of the
beams, which even by evolving in time will not transform
into each other. Returning to the TL-matter interaction, we
have shown that the TL gauge can only be applied to the
parallel class [32] since it does not account for a magnetic
coupling, which turns out to be crucial in the antiparallel
class.

In this paper we extend the description of the TL-matter
interaction to the family of antiparallel TL beams by including
both electric and magnetic interaction terms. We will show that
for antiparallel beams with OAM larger than one the magnetic
interaction becomes unusually strong. The formulation can
also be directly applied to the interaction of radially or
azimuthally polarized beams with small structures close to
the beam center. The light-matter Hamiltonian derived here
shares the benefits of our previous TL gauge, namely, it
is intuitive and easy to use. Thereby, this article completes
the gauge-invariance formulation of the TL-matter interaction
close to the phase singularity.

We organize the article as follows. Section II describes the
modes of twisted light, providing the expressions for electric
and magnetic fields close to the phase singularity. Like in
our previous paper, we will restrict the explicit formulas to
Bessel modes. Since the derivation only relies on the behavior
close to the phase singularity, however, the general features
are also valid for other types of beams, e.g., Laguerre-Gauss
(LG) beams. The derivation and formulation of the TL-matter
Hamiltonian in terms of electric and magnetic fields are
given in Sec. III followed by a discussion of the resulting
Hamiltonian in Sec. IV. Section V treats the case of radially
and azimuthally polarized fields. A summary is presented in
Sec. VI.

II. BESSEL SINGULAR FIELDS

The most significant feature of TL is its topological charge
� that adds OAM via the phase exp(i�ϕ), where ϕ is the

angle in cylindrical coordinates {r,ϕ,z} for a beam centered
around r = 0 and propagating in the z direction. This implies a
phase singularity at r = 0 whenever � �= 0. Another important
parameter is the handedness of the circular polarization
denoted by σ = ±1. The combination of the signs of � and σ

leads to the distinction into the parallel [sgn(σ ) = sgn(�)] and
the antiparallel [sgn(σ ) �= sgn(�)] classes. In the radial modes
one distinguishes between LG and Bessel modes. The main
difference between these types is their radial localization, i.e.,
their behavior for large values of r . Close to the beam axis they
behave similarly. In this paper we will restrict ourselves to the
case of Bessel beams because they are exact solutions of the
full Helmholtz equation [33] and therefore can be applied also
beyond the limits of the paraxial approximation. Furthermore,
they are nondiffracting beams, such that the radial profiles are
independent of the propagation coordinate z.

Bessel beams can be derived from the vector potential in the
Coulomb gauge, as explained in Appendix A. We are interested
in the description of the light-matter interaction close to the
phase singularity. Thus, we approximate the full fields given in
Appendix A in the region qrr � 1, where 1/qr is a measure of
the beam radius. This is basically done by expanding the Bessel
functions J�(qrr) ∝ (qrr)|�| [32]. To simplify the notation here
we will assume � > 0. The extension to negative values is
straightforward. Note that the formulas for the full fields given
in Appendix A hold for arbitrary values of �.

Separating the propagating phase from the mode functions
according to E(r,t) = 1

2 Ẽ(r)ei(qzz−ωt) + c.c. and B(r,t) =
1
2 B̃(r)ei(qzz−ωt) + c.c., where c.c. denotes the complex conju-
gate, the electric field for circular polarization σ = ±1 reads

Ẽx(r) = i
E0

2��!
(qrr)�ei�ϕ, (1a)

Ẽy(r) = −σ
E0

2��!
(qrr)�ei�ϕ, (1b)

Ẽz(r) = σ
E0

2�+σ (� + σ )!

qr

qz

(qrr)�+σ ei(�+σ )ϕ, (1c)

with the electric-field amplitude E0, the frequency ω, and the
wave vector components qz and qr . The latter quantities are
related by q2

z + q2
r = (nω/c)2, n being the refractive index of

the medium.
From Eqs. (1) we already notice a qualitative difference

between the parallel and the antiparallel class: While in the
parallel class the electric field close to the origin is dominantly
in plane, in the antiparallel class the z component becomes
dominant. The differences are even more pronounced in the
case of the magnetic field, which for σ = +1 (parallel class)
is given by

B̃x(r) = B0

2��!

[
1 + 1

2

(
qr

qz

)2]
(qrr)�ei�ϕ, (2a)

B̃y(r) = i
B0

2��!

[
1 + 1

2

(
qr

qz

)2]
(qrr)�ei�ϕ, (2b)

B̃z(r) = −i
B0

2�+1(� + 1)!

qr

qz

(qrr)�+1ei(�+1)ϕ, (2c)
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with B0 = (qz/ω)E0, while for σ = −1 (antiparallel class) it
reads

B̃x(r) = − B0

2��!

{[
1 + 1

2

(
qr

qz

)2]
− �

2

(
qr

qz

)2

e−i2ϕ

+ 1

2

(
qr

qz

)2 4�(� − 1)

(qrr)2
e−i2ϕ

}
(qrr)�ei�ϕ, (3a)

B̃y(r) = i
B0

2��!

{[
1 + 1

2

(
qr

qz

)2]
+ �

2

(
qr

qz

)2

e−i2ϕ

− 1

2

(
qr

qz

)2 4�(� − 1)

(qrr)2
e−i2ϕ

}
(qrr)�ei�ϕ, (3b)

B̃z(r) = −i
B0

2�−1(� − 1)!

qr

qz

(qrr)�−1ei(�−1)ϕ . (3c)

For the magnetic field, the dependence on r is strongly
modified by the combination of polarization and topological
charge. In the parallel class it behaves similarly to the electric
field; in particular, the in-plane components dominate and
vary as (qrr)�. In the antiparallel class for � = 1, like in
the case of the electric field, the z component becomes
dominant, behaving as (qrr)(�−1). Even more interesting, for
antiparallel beams with � � 2 there are second-order terms
in the ratio qr/qz proportional to (qrr)�−2 in the in-plane
components. Being solutions of the full wave equation, for
Bessel beams qr/qz may take any value and such terms may
become important under strong focusing. This is the reason
why one cannot write the interaction Hamiltonian only in
terms of electric fields, as can be done in the TL gauge for
beams in the parallel class [32].

III. FORMULATING THE INTERACTION IN TERMS
OF ELECTRIC AND MAGNETIC FIELDS

We derive the TL-matter Hamiltonian in the Poincaré
gauge. The starting point are the general formulas [34]

A(r,t) = −
∫ 1

0
du u r × B(ur,t), (4a)

U (r,t) = −
∫ 1

0
du r · E(ur,t). (4b)

These potentials are inserted in the standard minimal
coupling Hamiltonian

H = 1

2m
[p − qA(r,t)]2 + V (r) + qU (r,t), (5)

where V (r) denotes a static potential for the particle with
charge q and mass m. Assuming that the term proportional to
A2 is negligible, which is well justified for typical magnetic-
field strengths in a light beam, the coupling to the electric field
is then described by the Hamiltonian

He = qU (r,t), (6)

while for the coupling to the magnetic field we obtain

Hm = − q

2m
[p · A(r,t) + A(r,t) · p]. (7)

We are interested in the interaction of the beam with flat
nanosized structures with radial extensions much smaller than
the beam waist located around z = 0 and r = 0. Therefore, we
can use the approximate field profiles of Eqs. (1)–(3) and take
the propagating phase factor at z = 0. We adopt the convention
r⊥ = r r̂.

A. Electric interaction

We first consider the interaction with the electric field, for
which we already derived the TL gauge for the parallel class.
Using the electric field from Sec. II, we can easily evaluate
the integral in Eq. (4b). Note that the transverse components
of the parallel and antiparallel beams have the same r

dependence (qrr)|�|, while for the z component (qrr)|�+σ |. In
total, according to Eq. (6), the electric Hamiltonian for the
interaction with a particle with charge q is

He = − 1

|�| + 1
qr⊥ · E⊥(r⊥,t) − 1

|� + σ | + 1
qzEz(r⊥,t),

(8)

where E⊥ = (Ex,Ey) and we call qr⊥ the in-plane dipole
moment d, although the interaction is actually multipolar. We
also want to stress the appearance of the prefactors due to
the vortex structure of the field. Equation (8) is in agreement
with our previous results [32], but is valid for the parallel and
antiparallel classes.

Next we want to check whether the approximation z = 0
assuming a flat structure holds. For this we include the next
order of the Taylor expansion in z of the field E(r,t) ≈
1
2 Ẽ(r⊥)[1 + iqzz]e−iωt + c.c. Also for this field Eq. (4b) can
be readily evaluated, giving rise to a second-order contribution
to the interaction Hamiltonian according to

H (2)
e ∼ −qz

1

|�| + 1
qzr⊥ · E⊥(r⊥,t)

− qz

q

|� + σ | + 2
qz2Ez(r⊥,t). (9)

As example we could think of a planar nanostructure excited
by optical fields. For instance, a disk-shaped quantum dot [35]
with 2–5 nm height impinged at normal incidence by a light
pulse of qz = 2π/λ = 0.01 nm−1 yields qz|z| < 0.05. Indeed,
we see that the first term dominates, which is ensured by
the condition qz|z| � 1. It is worth mentioning that there are
situations in which higher orders are required; for instance,
due to the parity of the initial �i and final �f states involved
in the optical transition, the term 〈�f |{−[1/(|�| + 1)] r⊥ ·
E⊥(r⊥,t)}|�i〉 might be zero.

B. Magnetic (orbital) interaction

Now we turn to the interaction induced by the magnetic
parts of the field. Using Eqs. (4a) and (7) as well as the
identities p · (r × B) = (p × r) · B and (r × B) · p = B · (p ×
r), we obtain

Hm = q

2m
(p × r) ·

∫ 1

0
du u B(ur⊥,t)

+ q

2m

∫ 1

0
du u B(ur⊥,t) · (p × r). (10)
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Using that the commutator [B(r,t),(p × r)] is small (see
Appendix B), we put together both terms in Eq. (10),
simplifying our interaction to

Hm = q

m

[∫ 1

0
du u B(ur⊥,t)

]
· (p × r). (11)

Inserting the magnetic fields from Sec. II, the evaluation of the
integral is straightforward, resulting in

Hm = 2

|�| + 2 − j
B⊥(r⊥,t) ·

[
q

2m
(p × r)

]

+ 2

|� + σ | + 2
Bz(r⊥,t)ẑ ·

[
q

2m
(p × r)

]
, (12)

with j = 2 for antiparallel beams with � � 2 and j = 0
otherwise.

We will call [−(q/2m)(p × r)] the magnetic moment mB ,
keeping in mind that the interaction terms is a multipolar
interaction. Of course, in the simplest case of homogeneous
fields B(0,t) one recovers the well-known magnetic dipole
interaction Hm = −mB · B(0,t).

IV. ANALYZING THE HAMILTONIAN

For compactness and to reinforce the resemblance to
well-known formulas used for smooth fields, we may define
effective fields

Eeff(r⊥,t) = 1

|�| + 1
E⊥(r⊥,t) + 1

|� + σ | + 1
Ez(r⊥,t)ẑ,

Beff(r⊥,t) = 2

|�| + 2 − j
B⊥(r⊥,t) + 2

|� + σ | + 2
Bz(r⊥,t)ẑ,

which allows us to write the complete Hamiltonian in an
appealing form

H = p2

2m
+ V (r) − Eeff(r⊥,t) · d − Beff(r⊥,t) · mB, (13)

which is local depending solely on the position vector r
and intuitive reminiscent of the well-known dipole-moment
interactions. We next discuss some features of our gauge as
well some separate cases to illustrate the effects of TL-matter
interaction.

A. Comparison to the multipolar expansion

Using simple arguments, the Hamiltonian (13) can be
compared to the multipolar expansion [34]. When expanding
the electric field terms in Eq. (13), we regain the lowest-
order multipolar terms. For example, if � = 1 the transverse
electric field E⊥(r,t) ∝ (qrr) and the interaction He = − 1

2 r⊥ ·
E⊥(r,t) ∝ r2 is electric quadrupolar in r . If the OAM is
increased to � = 2, the interaction becomes He ∝ r3, an
electric octupole. This is in agreement with our previous
findings [32].

B. Transverse (x y) components

In the paraxial approximation and also in most cases of
interest, the transverse components of the fields play a major

role. In this case, the Hamiltonian reduces to the simple form

H⊥
int = − 1

|�| + 1
E⊥(r⊥,t) · d

− 2

|�| + 2 − j
B⊥(r⊥,t) · mB. (14)

For the parallel class it can be shown that the electric
component always dominates. For this, we remind the reader
that the magnetic 2n-pole interaction is weaker than the electric
2n-pole interaction. This is clearly the case for homogeneous
fields: With the use of 〈p〉 = −i(m/�)〈[r,H0]〉, the magnetic
dipole interaction −〈mB〉 · B(0,t) ∝ |(〈r × p〉)| ∝ 〈r〉2, while
the electric dipole interaction −〈d〉 · E(0,t) ∝ 〈r〉. For parallel
beams of TL, the r dependence of magnetic and electric fields
is the same [(qrr)�] and the argument for homogeneous fields
can be used to assert that the strongest interaction is the electric
one.

For the antiparallel class, one has to be more careful and
reconsider the fields given in Eqs. (1) and (3). For � = 1 both
fields are proportional to r and for the same arguments as
above, the electric field dominates. More interesting is the case
� = 2. On the one hand, the electric interaction is d · E(r,t) ∝
r(qr r)2 ∝ r3, an electric octupole. On the other hand, the
magnetic field is constant (no singularity) and its interaction is
thus magnetic dipolar with B(r,t) · (p × r) ∝ 〈r〉2. This indi-
cates that the magnetic interaction dominates close to r = 0.
Our conclusion is supported by Zurita-Sánchez and Novotny’s
[36] study on the interaction of a spherical quantum dot with
focused azimuthally polarized beam, where the transition rate
is larger for the magnetic interaction. For the cases � > 2, we
also find that the magnetic field, which is proportional to r�−2,
overcomes the electric field, proportional to r�. In contrast
to the TL gauge, the Hamiltonian (14) accounts for both
electric and magnetic fields and is therefore able to capture
all cases of handedness of polarization σ and topological
charge �.

C. Longitudinal (z) component

The interaction Hamiltonian for the z components of the
field can be written as

Hz
int = − 1

|� + σ | + 1
Ez(r⊥,t)dz

− 2

|� + σ | + 2
Bz(r⊥,t)mB,z. (15)

For the z components of the field, using the same arguments
as above, the electric field dominates over the magnetic one in
all cases.

V. EXTENSION TO RADIALLY AND AZIMUTHALLY
POLARIZED FIELDS

Radially and azimuthally polarized beams can be built
as a superposition of two antiparallel twisted light beams
having {� = 1,σ = −1} and {� = −1,σ = 1}. Azimuthally
polarized fields are given by the sum of these beams. In the
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approximation of small r the fields read

E(az)
ϕ = E0(qrr)ei(qzz−ωt) + c.c.,

E(az)
r = E(az)

z = 0 (16)

and

B(az)
r (r,t) = −B0(qrr)ei(qzz−ωt) + c.c.,

B(az)
ϕ (r,t) = 0,

B(az)
z (r,t) = −2iB0

qr

qz

ei(qzz−ωt) + c.c. (17)

Likewise, the radially polarized fields given by the difference
of the two antiparallel beams are

E(rad)
r (r,t) = iE0(qrr)ei(qzz−ωt) + c.c.,

E(rad)
ϕ (r,t) = 0,

E(rad)
z (r,t) = −2

qr

qz

E0e
i(qzz−ωt) + c.c. (18)

and

B(rad)
ϕ (r,t) = iB0

[
1 +

(
qr

qz

)2]
(qrr)ei(qzz−ωt) + c.c.,

B(rad)
r (r,t) = B(rad)

z = 0. (19)

Evidently, for both types of fields all in-plane components,
varying as (qrr), vanish at the origin. In contrast, at r = 0 the
azimuthally polarized beam is characterized by a nonvanishing
z component of the magnetic field, while the radially polarized
beam exhibits a nonvanishing z component of the electric field.
Thus, close to the beam center both fields are dominated by
their longitudinal contributions.

Due to the particular mixture of polarization and topological
charge, the prefactors containing |� + σ | and |�| in Eqs. (8) and
(12) are the same for each single {�,σ } field. Thus, radially
and azimuthally polarized beams can be directly used in
the Hamiltonian expression (13). Working out the interaction
terms for the z components of the fields, we find for the radially
polarized field

He = −E(rad)
z (r⊥,t)dz (20)

and for the azimuthally polarized field

Hm = −B(az)
z (r⊥,t)mB,z. (21)

Note that there is no prefactor, since all z components have no
phase singularity.

VI. CONCLUSION

We have revisited the mathematical formulation of the TL-
matter interaction close to the phase singularity. In follow-up
to the TL gauge [32], we have extended the gauge-invariant
formulation by applying a transformation to the Poincaré
gauge to both classes (parallel and antiparallel) of TL as
well as to azimuthally and radially polarized beams. The
Hamiltonian includes both electric and magnetic interaction,
which is important because for a particular combination
of orbital and spin momenta the TL-matter interaction is
dominated by the magnetic field, a very uncommon situation
in optics. An important advantage of the Hamiltonian is that

it is written solely in terms of fields, overcoming issues of
gauge invariance. The expression is both local and intuitive,
resembling well-known formulas used to study smooth light
fields.
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APPENDIX A: POTENTIAL AND FIELDS
FOR BESSEL BEAMS

Using again the separation of the propagating phase from
the mode function according to A(r,t) = 1

2 Ã(r)ei(qzz−ωt) +
c.c., the Coulomb-gauge vector potential of Bessel beams is
[32]

Ã(r) = A0

[
eσ J�(qrr)ei�ϕ − iσez

qr

qz

J�+σ (qrr)ei(�+σ )ϕ

]
,

(A1)

with frequency ω; wave vectors qz and qr , related by q2
z + q2

r =
(nω/c)2; A0 the amplitude; and n the index of refraction of
the medium. Here J� denotes the Bessel function and eσ =
(ex + iσey) is the polarization, with ex (ey) the unit vector in
the x (y) direction. The scalar potential can be chosen to be
	(r,t) = 0 such that the fields are calculated in the standard
way via E = − ∂

∂t
A and B = ∇ × A, which for the electric

field yields

Ẽx(r) = iE0J�(qrr)ei�ϕ, (A2a)

Ẽy(r) = −σE0J�(qrr)ei�ϕ, (A2b)

Ẽz(r) = σE0
qr

qz

J�+σ (qrr)ei(�+σ )ϕ, (A2c)

with E0 = ωA0. The magnetic field reads

B̃x(r) = σB0

[(
1 + q2

r

2q2
z

− q2
r

2q2
z

ei2σϕ

)
J�(qrr)ei�ϕ

+ q2
r

2q2
z

(� + σ )
2

qrr
J�+σ (qrr)ei(�+2σ )ϕ

]
, (A3a)

B̃y(r) = iB0

[(
1 + q2

r

2q2
z

+ q2
r

2q2
z

ei2σϕ

)
J�(qrr)ei�ϕ

− q2
r

2q2
z

(� + σ )
2

qrr
J�+σ (qrr)ei(�+2σ )ϕ

]
, (A3b)

B̃z(r) = −iB0
qr

qz

J�+σ (qrr)ei(�+σ )ϕ, (A3c)

with B0 = qzA0 = (qz/ω)E0. The behavior close to the beam
center given in Sec. II is obtained from the expansion

Jν(z) = zν

2νν!

[
1 − z2

4(ν + 1)
+ · · ·

]
, (A4)

valid for ν � 0 and the relation J−ν(z) = (−1)νJν(x).

012106-5



G. F. QUINTEIRO, D. E. REITER, AND T. KUHN PHYSICAL REVIEW A 95, 012106 (2017)

APPENDIX B: COMMUTATOR [B(r,t),(p × r)]

Considering linear materials and that p × r = −r × p,

[B(r,t),(p × r)] = r · [p × B(r,t)]

= −i�r · [∇ × B(r,t)]

= −i�μεr · ∂E(r,t)
∂t

, (B1)

where in the last line we used the Ampère-Maxwell equation
and the fact that the current j(r,t) (the source of E and B) is
far away and can be disregarded. For a monochromatic field

∂tE(r,t) = −iωE(r,t) and με = 1/c2, then the correction to
the magnetic Hamiltonian Hm is

Hm =
∫ 1

0
du u

q

2m
[B(ur,t),(p × r)]

= −q

2

�ω

mc2

∫ 1

0
du u2r · E(ur,t). (B2)

Thus, the correction has a structure similar to the electric
Hamiltonian, however with a prefactor �ω/mc2 
 10−5. It
can therefore be safely disregarded.

[1] D. L. Andrews, Structured Light and its Applications: An
Introduction to Phase-Structured Beams and Nanoscale Optical
Forces (Academic, New York, 2008).

[2] K. E. Ballantine, J. F. Donegan, and P. R. Eastham, Sci. Adv. 2,
e1501748 (2016).

[3] K. Yamane, Y. Toda, and R. Morita, Opt. Express 20, 18986
(2012).
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