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The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD)

fields is studied in the context of test particle simulations. This problem is relevant to the solar

wind and the solar corona due to the compressible nature of the flow in those astrophysical

scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations

of the MHD equations with a strong background magnetic field. In order to explore the flow

compressibility effect over the particle dynamics, we performed different numerical experiments:

an incompressible case and two weak compressible cases with Mach number M¼ 0.1 and

M¼ 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are

well known to form aligned current sheets in the direction of the guide magnetic field. What we

call protons and electrons are test particles with scales comparable to (for protons) and much

smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass

ratio me=mi. For these test particles, we show that compressibility enhances the efficiency of proton

acceleration, and that the energization is caused by perpendicular electric fields generated between

currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic

motion, with no effect of compressibility observed. Another set of numerical experiments takes

into account two fluid modifications, namely, electric field due to Hall effect and electron pressure

gradient. We show that the electron pressure has an important contribution to electron acceleration

allowing highly parallel energization. In contrast, no significant effect of these additional terms is

observed for the protons. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960681]

I. INTRODUCTION

Turbulence is a ubiquitous phenomenon in many astro-

physical environments, in which a wide variety of temporal

and spatial scales are involved. This is the case of the solar

wind or the interstellar medium where the energy is trans-

ferred from large to small kinetic scales where the energy is

dissipated. In the macroscopic description of a plasma, mag-

netohydrodynamics (MHD) turbulence is the result of the

nonlinear interaction of fluctuations of the velocity and mag-

netic fields, leading to a spatial intermittency that is associ-

ated with coherent structures, and where the dissipation is

concentrated in strong gradient regions that impact the heat-

ing, transport and particle acceleration in plasmas.1

The efficiency of MHD turbulence to accelerate charged

particles and its importance in space physics has been

reported by many different authors,2–4 but the great variety

of scales involved in turbulence and the particle dynamics

makes this a challenging problem. On long timescales

(large eddy turnover times), dynamics is governed by sto-

chastic acceleration, and momentum diffusion is the main

acceleration mechanism which has been mainly applied for

cosmic-ray energization studies and frequently addressed by

quasi-linear theory (QLT).5–7 In diffusion studies, MHD tur-

bulence is commonly represented as a random collection of

waves, and that representation lacks coherent structures that

have an important role at particle scales.8

Dmitruk et al.,9 using test particle simulations in static

electromagnetic fields obtained from a direct numerical sim-

ulation (DNS) of the MHD equations, showed that particle

energization at dissipation scales is due to current sheets, and

the acceleration mechanism depends on the particle gyrora-

dii. By static electromagnetic fields, here we mean that the

fields are dynamically computed in a turbulent and self-

consistent MHD simulation, and then a snapshot is extracted

and the fields are frozen to compute particle trajectories and

acceleration.

Using a more sophisticated model, but still using static

turbulent electromagnetic fields, Dalena et al.10 showed

essentially the same results. Electrons initially moving with

Alfv�en velocity experience parallel (to the guide magnetic

field) acceleration by parallel electric fields inside current

sheet channels. On the other hand, protons are accelerated in

a two stage process: Initially, they are parallelly accelerated

and gain substantial energy in a short time. Then, when the

proton gyroradius becomes comparable to the current sheet

thickness, protons are accelerated perpendicular to the guide

field.

Effects of compressible MHD on particle energization

have been reported in diffusion studies,11,12 where super-

sonic turbulence was considered. There are also reports of

test particle pitch angle scattering in compressible MHDa)Electronic mail: caangonzalez@df.uba.ar
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turbulence13 considering the second order Fermi acceleration

by weak compressible MHD running simultaneously the test

particles and MHD fields, and imposing a scattering rate. It

was found that compressibility is important to produce non-

thermal particles. Additionally, there are other studies where

test particles and fields are simultaneously advanced in time.

Weidl et al.14 and Teaca et al.15 used an incompressible

MHD model, analyzing the effect of the correlation between

magnetic and velocity fields on pitch-angle scattering and

particle acceleration. They found that imbalanced turbulence

(nonzero cross-helicity in the system) reduces the particle

acceleration and also the pitch angle scattering.

In the present work, we are interested in the compress-

ibility effect on particle acceleration by coherent structures

in static electromagnetic fields stemming from a direct

numerical simulation of the MHD equations, and in the iden-

tification of the fields which accelerate the particles. We ana-

lyze the particle behavior for three different situations: an

incompressible case, and two weakly compressible cases

with differing values of the sonic Mach number. We also

consider the effect of the Hall current and of electron pres-

sure in the acceleration. The organization of this paper is as

follows: In Section II, we describe the model employed in

our investigation, the equations and properties of turbulent

MHD fields, and the test particle model including the param-

eters that correlate particles and fields. In Sections III and

IV, we show the properties of proton and electron dynamics.

Finally, in Section V, we discuss our findings and present

our conclusions.

II. MODELS

The macroscopic description of a plasma adopted here

is the system of the three-dimensional compressible MHD

equations: the continuity (density) equation, the equation of

motion, the magnetic field induction equation, and the equa-

tion of state. These are Eqs. (1)–(4), respectively, which

involve fluctuations of the velocity field u, magnetic field b,

and density q. We assume a large-scale background mag-

netic field B0 in the z-direction, so that the total magnetic

field is B ¼ B0 þ b

@q
@t
þr � uqð Þ ¼ 0; (1)

@u

@t
þ u � ru ¼ �rp

q
þ J� B

4pq
þ � r2uþrr � u

3

� �
; (2)

@B

@t
¼ r� u� Bð Þ þ gr2B; (3)

p

qc
¼ constant: (4)

Here, p is the pressure, � is the viscosity, g is the magnetic

diffusivity, and J ¼ r� B is the current density. We assume

a polytropic equation of state p=p0 ¼ ðq=q0Þc, with c ¼ 5=3,

where p0 and q0 are, respectively, the equilibrium (reference)

pressure and density. We consider two weak compressible

cases with Mach number (M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0=q0

p
) equal to M¼ 0.1

and M¼ 0, 25. Additionally, in order to have a reference to

measure the effect of compressibility on particle accelera-

tion, we consider an incompressible case (with r � u ¼ 0

and q¼ a uniform constant).

The magnetic and velocity fields are here expressed in

Alfv�en speed units; a characteristic plasma velocity is given

by the parallel Alfv�en wave velocity along the mean mag-

netic field vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffi
4pq0

p
. An Alfven speed based on field

fluctuations can also be defined as v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2i=4pq0

p
. The

ratio of the fluctuating to the mean magnetic field is

hbi=B0 � 0:1. The ratio of fluid equilibrium pressure p0 to

magnetic pressure B2
0, the so-called b of the plasma, is

b ¼ p0=B2
0 ¼ 1=ðM2B2

0Þ ¼ 0:25. We take v0 as a unit for

velocity and magnetic field fluctuations. We use the isotropic

MHD turbulence correlation length L as a characteristic

length (also called the energy containing scale), defined as

L ¼ 2p
Ð
ðEðkÞ=kÞdk=

Ð
EðkÞdk where E(k) is the energy at

wavenumber k. The value of this scale for our simulations is

L¼ 1.3, as compared to the box size Lbox ¼ 2p. The unit

timescale t0, also called eddy turnover time, is derived from

the unit length and the fluctuation Alfven speed t0 ¼ L=v0.

We note that our simulations do not have exact equipartition

between magnetic and kinetic energy, this ratio being

Em=Ek � 0:8. The initial magnetic and velocity field fluctua-

tions populate an annulus in Fourier k-space defined by a

range of wavenumbers with 3 � k � 4, with constant ampli-

tudes and random phases.

The MHD equations are solved numerically using a

Fourier pseudospectral method with periodic boundary con-

ditions in a cube of size Lbox; this scheme ensures exact

energy conservation for the continuous time spatially dis-

crete equations.16 The discrete time integration is done with

a high-order Runge-Kutta method, and a resolution of (2563)

Fourier modes is used. For the kinematic Reynolds number

R ¼ v0L=� and the magnetic Reynolds number Rm ¼ v0L=g,

we take R ¼ Rm ¼ 1000, which are limited here by the avail-

able spatial resolution.

When the turbulence is fully developed, a broad range of

scales develops, from the outer scale L to the Kolmogorov dis-

sipation scale ld ¼ ð�3=�dÞ1=4
, with �d being the average rate

of energy dissipation. For the simulations, it is ld � 1=32. We

then employ a snapshot of this turbulent MHD state in which

to evolve the test particles. The behavior of a test particle in

an electromagnetic field is described by the nonrelativistic

particle equation of motion

dv

dt
¼ a Eþ v� Bð Þ; dr

dt
¼ v: (5)

The nondimensional electric field E is obtained from the

Ohm’s law normalized with E0 ¼ v0B0=c as follows:

E ¼ �u� Bþ J

Rm
: (6)

Finally, the adimensional parameter a relates particles

and MHD field parameters

a ¼ Z
mp

m

L

qii

; (7)
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where qii is the proton inertial length given by

qii ¼ mpc=ðe
ffiffiffiffiffiffiffiffiffiffi
4pq0

p
Þ, m is the mass of the particle, mp is the

mass of the proton, and Z is the atomic number (Z¼ 1 for

protons and electrons). The inverse 1/a represents the nomi-

nal gyroradius, in units of L and with velocity v0 and mea-

sures the range of scales involved in the system (from the

outer scale of turbulence to the particle gyroradius). One

could expect a value a� 1 specially for space physics and

astrophysical plasmas. This represents a huge computational

challenge due to numerical limitations. As stated above, we

consider here a dissipation length scale ld � 1=32, which is

also of the order of the current sheet thickness.

In the fixed MHD turbulence state, 10 000 test particles

are randomly distributed in the computational box and the

equation of motion of particles subject to the MHD electro-

magnetic field are solved using a second-order Runge-Kutta

method. Furthermore, we use high order spline interpolation

to compute the field values on each particle position.

Particles are initialized with a Gaussian velocity distribu-

tion function with a root mean square (rms) value of the order

of the Alfven velocity. It is well known that the particle gyro-

radius has a significant influence on acceleration, and our aim

in this paper is to explore the compressibility effect on accel-

eration of large gyroradius and small gyroradius particles. In

Sec. III, we show two different compressible cases with Mach

number M¼ 0.25 and M¼ 0.1, as well as an incompressible

case. In all cases, the mean magnetic field is set to B0¼ 10.

We present the behavior of protons with a nominal (speed v0)

gyroradius 1/32, and electrons (me ¼ mp=1836) with nominal

gyroradius 1/58 752.

III. FLOW COMPRESSIBILITY EFFECTS (FCEs)

In Figure 1, a three-dimensional view of the z-component

of the current density Jzðx; y; zÞ is shown at t ¼ 2:5t0 for the

incompressible case and a compressible case with M¼ 0.25. It

is observed that current sheets are aligned in the direction of

the guide magnetic field. It can also be seen that in both cases

the structures are similar, but more corrugated in the compress-

ible case and smoother in the incompressible one. It is worth

mentioning that we used the same initial conditions for all the

simulations. Coherent structures like these show the natural

tendency of the MHD equations to develop strong gradients

leading to many reconnection zones, which is well known to

be one of the mechanisms behind the charged particle

acceleration. Figure 2 shows the spectrum of kinetic (top) and

magnetic energy (bottom) for the compressible cases with

M¼ 0.25 and M¼ 0.1, and the incompressible case. In the

inertial range, there are almost no differences between the

compressible and incompressible energy spectra for both mag-

netic and velocity fields, although slightly more energy at large

scales is observed in the incompressible case. On the other

hand, at wavenumbers beyond the dissipation scale (that is, for

k� 32), an excess of energy is observed as the Mach number

is increased. This feature is more evident for the kinetic energy

spectrum than for the magnetic energy spectrum. Since protons

mostly interact with structures of that size, this can be an

important effect on proton acceleration. In order to explore the

importance of compressible effects on MHD fields, we make a

Helmholtz decomposition of the velocity field, presented in the

inset in Fig. 2, where v̂TðkÞ ¼ ðI� k̂k̂ÞuðkÞ represents the

solenoidal (incompressible) part and v̂LðkÞ ¼ ûðkÞ � v̂TðkÞ is

the irrotational (compressive) component. It is observed that at

FIG. 1. Three-dimensional view of the

parallel current density Jzðx; y; zÞ.
(Left) Incompressible and (right) com-

pressible case with Mach number

M¼ 0.25 at t=t0 ¼ 2:5.

FIG. 2. (Top) Kinetic energy spectrum for compressible cases with Mach

numbers M¼ 0.25 (solid line), M¼ 0.1 (dashed line), and incompressible

case (dashed-dotted line); the inset shows the ratio between solenoidal and

irrotational (compressive) components of the velocity field for compressible

runs. (Bottom) Magnetic energy spectrum for the three cases mentioned

before, using the same labels.
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high k the velocity field spectrum is strongly compressible, and

that compression becomes more prominent at higher turbulent

Mach number. The large k effects in the compressible kinetic

spectrum may be attributed to the emergence of shock-like

structures that enhance the energy in the smallest scales, as

compared to the incompressible case.

Protons. We remark here that what we call “protons”

are test particles with gyroradius comparable to the dissipa-

tive scale of the MHD turbulence, although the MHD

approximation is only marginally valid at those small scales.

Figure 3 shows the time evolution for the mean value of the

perpendicular v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
(top) and parallel vk ¼ vz (bot-

tom) proton velocity, relative to B0, for the compressible

(M¼ 0.25, M¼ 0.1) cases and the incompressible case. The

typical acceleration process observed in previous studies is

evident, proton are accelerated perpendicularly with respect

to B0, while they are less accelerated parallelly.

Moreover, the compressibility effect on particle acceler-

ation is clearly observed. Protons are highly accelerated as

compressibility of the fluid increases, for both perpendicular

and parallel directions. Acceleration of protons is also

observed in the incompressible case (see inset plot), but the

value of the velocity reached at the end of the simulation is

much lower than in both compressible cases, even with rela-

tively small values of the Mach number M as the ones con-

sidered here.

Figure 4 shows the probability distribution function

(PDF) of the perpendicular x-component (left) and of the par-

allel z-component (right) of the electric field for the compress-

ible and incompressible cases. The PDF shows that, as

compression increases, long tails in the distribution arise and

higher values of the perpendicular electric field are achieved.

Additionally, the core part of the distribution function for the

incompressible case is thicker than for the compressible cases.

On the other hand, the PDF of the parallel electric field shows

very little effect of increasing compressibility. In order to bet-

ter understand the dynamics of protons, in Figure 5 we show

the current density Jzðx; y; zÞ together with the trajectory of

one of the most energetic protons, for the compressible

M¼ 0.25 case. The visualization was done using the software

VAPOR.17 It is observed that on the surrounding of the parti-

cle trajectory there are many current sheets, which contribute

to the proton energization. Figure 6 shows the values of quan-

tities following the trajectory of the most energetic proton,

that is, the most energetic proton is identified and the values

of several quantities along the trajectory of this proton are

obtained: (a) the current density Jz, (b) electric field compo-

nents Ex;Ey;Ez, (c) proton velocity components vx; vy; vz, and

(d) root mean square displacement of the proton. The panels

on the left correspond to the compressible M¼ 0.25 case, and

the panels on the right correspond to the incompressible case.

It is observed that when there is a change of the sign in

the current density Jz, there is also an increment in the per-

pendicular components of the electric field that the particle

experiences, and concurrently there is an increment of the

FIG. 3. Particle mean square velocity as a function of time: (Top) Proton

perpendicular velocity v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
for two different Mach number cases,

M¼ 0.25 (solid line), M¼ 0.1 (dashed line), and the incompressible case

(dashed-dotted line); the inset shows a detail of the proton perpendicular

mean square velocity for the incompressible case. (Bottom) Proton parallel

velocity vk ¼ vz for M¼ 0.25, M¼ 0.1, and incompressible case, with the

same labels for the lines.

FIG. 4. Probability density function of

electric field components in the simula-

tion. (Left) Perpendicular x-component

for M¼ 0.25 (solid line), M¼ 0.1

(dashed line), and incompressible

(dashed-dotted line). (Right) Parallel z-

component of the electric field using the

same labels.
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proton velocity. This situation is repeatedly observed in time

as the energy of the proton increases.

A possible explanation for the change of sign in the cur-

rent density is that the particle is entering and leaving two

neighboring current sheets with different polarities while

experiencing a strong perpendicular electric field between

those current sheets. The perpendicular electric field is stron-

ger as the compression of the fluid increases. (This can be

noticed by comparing panels on the left and right of Figure 6.)

Consequently, the velocity increment is larger in the com-

pressible case than in the incompressible case. This situation

can be generalized for many particles in the simulation, result-

ing in the increase of the root mean square velocity for the

ensemble of particles.

The reason for greater perpendicular electric field in the

compressible cases can be understood in terms of the mag-

netic flux pileup that accompanies the interaction of adjacent

flux tubes in turbulence.18 While current sheets typically

form between interacting flux tubes, when the flux tubes are

driven together by the turbulent flow, there is also frequently

a magnetic flux pileup near the boundary. This compression

of the magnetic field occurs in the incompressible case as

well, but clearly can be greater when the material elements

themselves are compressible. The pileup phenomenon is

readily seen to be associated with reversal of the electric cur-

rent density. Furthermore, the parallel magnetic flux

increases due to this compression, requiring a circulation of

the perpendicular electric field vector, thus setting the scene

for betatron acceleration.10

Electrons. What we call “electrons” are test particles

with gyroradius much smaller than the dissipative scale of

MHD turbulence. At those scales, MHD is not expected to

be valid anymore. However, we maintain the correct ratio of

electron to proton mass, me=mp ¼ 1=1836. In Sec. IV, we

discuss other relevant effects at those scales.

Figure 7 shows the time evolution for the perpendicular

(top) and z-component (bottom) of electron rms velocity for

the compressible (M¼ 0.25, M¼ 0.1) and incompressible

cases. It should be mentioned that we are showing a short

time simulation of electrons here. This is due to the high

computational cost of integrating the trajectory of electrons

in a flow, as electrons require a very small time step (to rep-

resent a physical small gyroradius). The total time reached in

the electron simulations is of the order of almost 3000 elec-

tron gyroperiods. Electrons present the typical parallel ener-

gization reported in previous works. Besides, there is no

evidence that compression of the MHD fields substantially

enhances the electron acceleration, as electrons gain almost

the same energy regardless the compressible level of the

fluid. Since the gyroradius of electrons is smaller than any of

the length scales of structures in the fields, when electrons

find a current sheet they travel along magnetic field lines and

there is not so much difference between compressible and

incompressible cases.

Also, the perpendicular rms velocity shows that elec-

trons are initially accelerated but quickly exhibit a constant

perpendicular energy. Constant perpendicular energy is con-

sistent with near conservation of the magnetic moment,

which is one of the adiabatic invariants of charged particle

dynamics in a magnetic field.

It is important to remark that over longer timescales, of

the order of many turnover times, electrons can obtain very

high parallel energy, and it is likely that the motion will no

longer be adiabatic. In that case, electrons can reach other

regions and interact with structures that generate other possi-

ble acceleration mechanisms, such as those that involve pitch

angle-scattering, betatron acceleration, etc.

IV. ELECTRON PRESSURE EFFECTS (EPEs)

In this section, we consider additional effects in the elec-

tric field which were not taken into account in Sec. III. As

will be seen, these effects are important for the electrons but

not so for the protons. Adopting a generalized Ohm’s law

from a two-fluid plasma description, the electric field

becomes

E ¼ �u� Bþ �

q
J� B� �rpe þ

J

Rm
; (8)

written in a dimensionless form.

The additional terms as compared to Eq. (6) are the Hall

effect term J� B=q and the electron pressure gradient term

FIG. 5. (Left) View of the parallel

current density Jzðx; y; zÞ. (Right)

Trajectory of one of the most energetic

protons; the z-component of the current

density is shown in the transparent vol-

ume rendering.
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rpe. The dimensionless coefficient � multiplying terms is

the Hall parameter

� ¼ qii

L
; (9)

which relates the ion inertial length scale with the energy

containing scale. For consistency with the test particles defi-

nition (see Eq. (7)), we set the value of the Hall parameter

� ¼ 1=a ¼ 1=32 in our simulations, where 1/a is the nominal

gyroradius of the protons. In the MHD description, it is

assumed that plasma protons and electrons are in thermal

equilibrium, i.e., their pressures are pe¼ pi. Then pe ¼ p=2

with p ¼ pe þ pi the total pressure. It is worth mentioning

that Dmitruk and Matthaeus19 previously analyzed the Hall

effect only, not considering electron pressure effects, and did

not see a significant contribution of this effect in the particles

acceleration.

In order to measure the effect of electron pressure on

test particle energization, we compared the proton and elec-

tron energization for the case with M¼ 0.25, taking into

account the flow compressibility effect (FCE) only, and the

flow compressibility effect plus the electron pressure effect

(FCEþEPE). The results are shown in Figures 8 and 9.

Figure 8 shows the perpendicular (top) and parallel rms

velocity (bottom) for protons. It is observed that no signifi-

cant contribution of EPE occurs for proton energization, and

the main particle acceleration mechanism remains the inter-

action with current sheets as discussed in Sec. III.

In contrast, a very different situation is observed for

electrons, as shown in Figure 9. The electron behavior is no

FIG. 6. (a) Parallel current density, (b)

the three components of the electric

field, (c) velocity components, and (d)

rms displacement as a function of time

for the most energetic particle: (Left)

compressible M¼ 0.25 case and (Right)

incompressible case. The gray vertical

dashed-lines show the moments when

current is reversed.
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longer magnetized, and the non constant perpendicular

energy (top panel) represents non-adiabatic motion. As seen

in Fig. 9 (bottom panel), a very high parallel energy (that is,

high square parallel velocity) is reached in a short time,

showing the importance of the EPE for electrons in com-

pressible MHD.
V. DISCUSSION

We investigated the effect of compressible MHD turbu-

lence on particle energization, using test particle simulations

in frozen electromagnetic fields obtained from direct numeri-

cal solutions of the MHD equations. We found that flow

compressibility affects the energization of protons (i.e., in

the context of this work, test particles with gyroradius of the

order of the MHD dissipation scale), while no significant

effect is observed for electrons (particles with gyroradius

much smaller than the MHD dissipation scale) as compared

with the incompressible case.

Protons are accelerated by the perpendicular electric

field generated on the interface of current sheets, and they

gain substantial energy as they encounter these structures.

Moreover, the perpendicular electric field between current

sheets is greater as compression of the fluid increases, lead-

ing to a higher proton acceleration.

On the other hand, small gyroradii particles remain mag-

netized and gain parallel energy as they travel along mag-

netic field lines almost aligned with B0. No effect of

compressibility is noted for these kind of particles, and this

is because the compressible modes in magnetohydrodynam-

ics are perpendicular propagating modes (k?B0). As a result,

no difference in the parallel electric field obtained from static

MHD fields is presented.

An interesting result is that when the model includes

electron pressure gradients effects in the electric field,

obtained from the generalized Ohm’s law, one finds substan-

tially greater parallel energization of electrons. In contrast, no

significant changes are obtained for the proton energization

FIG. 7. (Top) Time evolution of the perpendicular rms velocity for elec-

trons, for the compressible cases with M¼ 0.25 (solid line), M¼ 0.1 (dashed

line), and the incompressible case (dotted-dashed line). (Bottom) Time evo-

lution of the parallel rms velocity for electrons, using the same notation.

FIG. 8. Proton mean square velocity as a function of time considering flow

compressibility effects (FCE), and considering flow compressibility plus

electron pressure effects (FCEþEPE): (Top) Proton perpendicular velocity

v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
with FCE (solid line) and with FCEþEPE (dashed line),

both for the case with M¼ 0.25. (Bottom) Proton parallel velocity vk ¼ vz,

with the same labels for all curves.

FIG. 9. Electron mean square velocity as a function of time considering flow

compressibility effects (FCE), and considering flow compressibility effects

plus electron pressure effects (FCEþEPE): (Top) Electron perpendicular

velocity v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
for FCE (solid line) and FCEþEPE (dashed line)

for the case M¼ 0.25. (Bottom) Mean square parallel (v2
z ) electron velocity.

Note that increase in FCE only case is small as in Fig. 7.
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with the inclusion of the electron pressure gradient effects

and of Hall currents.

The main aim of this paper was to analyze the case of

weakly compressible turbulence, often appropriate to study

the solar wind and other astrophysical scenarios, even though

these plasmas can sometimes attain a strongly compressible

state (M � 1). We can thus conclude that at least for low tur-

bulent Mach number, compression can enhance particle

energization associated with coherent structures, and there-

fore, it has important implications for the study of particle

acceleration by turbulent fields. In the incompressible case,

which is the limit of infinite sound wave velocity, protons

can still be accelerated, but less than in the compressible

case. The incompressible case thus served as a reference to

measure the influence of compression on particle accelera-

tion. Also, the incompressible case can still be relevant for

some real physical scenarios, such as the fast solar wind

which might energize particles as well.15

We close with a remark concerning the importance of

trapping effects in acceleration of particles to higher energies

in compressible turbulence. In general, for effective energiza-

tion, the particles must be exposed to a suitable electric field,

but also the trajectory of the particle must allow a long expo-

sure time of the particle to the accelerating field. In the present

case, parallel acceleration of electrons occurs when their gyro-

radii are small compared to the width of mean field-aligned

current channels, as noted previously by Dmitruk et al.9

Analogous trapping effects due to confinement in magnetic

“islands” have been noted in various systems from two

dimensional MHD20 to fully kinetic particle in cell (PIC) sim-

ulations.21 In those scenarios, small gyroradius particle is

trapped for a period of time sufficient for them to experience

substantial parallel energization. Depending on parameters,

this may be either heating (more particles, lower energies) or

acceleration (less particles but higher energy). On the other

hand, protons, having larger gyroradius, will not be easily

trapped in current channels, which often are a few proton iner-

tial scales in width.

The perpendicular acceleration mechanism described

previously9,10 and elaborated on here provides a way to accel-

erate protons (and heavier ions) due to perpendicular electric

fields. The region of interaction between flux tubes provides

the possibility of generating regions of effective acceleration

that may lie between reversing currents. Although these may

be very complex regions in three dimensions, in a simplified

two dimensional picture, these can be flux pileup regions

with gradients of the perpendicular electric field. This trans-

verse compression of the magnetic field may occur even

when the turbulence is incompressible. It is, however, intui-

tively clear that compressibility will permit greater pileup

and greater perpendicular electric field gradients. In addition,

to produce an efficient accelerator, the particles must also be

trapped in the accelerating region for sufficient time. The pre-

sent numerical experiments also suggest that compressibility

of the turbulence, acting near and within the regions between

reversing currents, may provide substantially enhanced trap-

ping for some particles. This is needed to explain the signifi-

cantly greater perpendicular acceleration observed here when

the turbulence is compressible.
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