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Abstract We show that a group of 24 4×4 permutation matrices that proved suitable
for the study of chirality is a reducible representation of the group Td . Consequently,
all the mathematical properties of the former matrices can be easily inferred from the
table of characters of the latter group.We also show that the group of 4×4 permutation
matrices is isomorphic to a group of 3×3 ones that form an irreducible representation
of the elements of the group Td . We discuss the one-to-one correspondence between
the two sets of matrices. A similar analysis can be carried out with the point groupO.
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1 Introduction

With the purpose of studying the important problemofmolecular chirality, Capozziello
and Lattanzi [1,2] proposed an algebraic approach based on the well-known Fisher
projections that leads to 24 4×4 matrices that are the representations of the 4! permu-
tations of four objects. According to the authors these 24 matrices are representations
of the elements of the group O(4) and can be divided into a set of 12 matrices with
determinant +1 corresponding to the rotation group SO(4) and a set of 12 matrices
with determinant −1 that do not constitute a group. Before proceeding with present
discussion we want to point out that it is customary to name S4 the group of 24 per-
mutations of 4 objects andA4 the group of the 12 even permutations of 4 objects (the
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latter having 4 × 4 matrix representations with determinant +1). We will adhere to
this later notation from now on.

The authors argued that the 24 matrices “are not all independent: They can be
grouped as different representations of the same operators” [2]. Similar matrices share
the same characteristic polynomial and the authors found that there are just six inde-
pendent eigenvalues. In a series of subsequent papers the authors applied this algebraic
method to several molecular properties associated to chirality [3–6].

If we think of the permutation of the four objects as the permutation of the four
vertices of a tetrahedron we conclude that the 24 matrices should be representations
of the elements of the group Td that describes the symmetry of such a polyhedron
(see, e.g. [7]). In fact, the table of characters of the group Td exhibits exactly 24
symmetry operations grouped into 5 classes. It is therefore reasonable to assume that
the mathematical properties of the permutation matrices introduced by Capozziello
and Lattanzi should be derived from those of the symmetry operations of the point
group Td commonly discussed in books on group theory (see, e.g. [7]).

The purpose of this paper is to establish a connection between the group S4 and
the group Td in order to show that all the features of the permutation matrices already
follow from the well known results for the symmetry operations of the latter point
group. The main results are shown in Sect. 2 and in Sect. 3 we summarize them and
draw conclusions. In Appendix 1 we show the group of 24 4×4 permutation matrices
proposed by Capozziello and Lattanzi [2] and in Appendix 2 an isomorphic group of
24 3 × 3 matrices that are an irreducible representation for the elements of the group
Td .

2 Permutation matrices as representation of the symmetry elements of
the group Td

In order to facilitate the discussion of the connection between the permutation matri-
ces of the group S4 and the symmetry operations of the group Td we resort to the
notation introduced by Capozziello and Lattanzi [2] for the permutation matrices
G = {χi , i = 1, 2, . . . , 24} that we show in the Appendix 1 for completeness.

In general, two group elements χ j and χk are said to be conjugate if

χiχ jχ
−1
i = χk, (1)

for some χi ∈ G. If χl and χk are each conjugate to χ j then they are conjugate
to each other. All the mutually conjugated elements of a group are collected into a
class, and it can be proved that the number of classes equals the number of irreducible
representations (irreps) of the group (see, e.g. [7]). Table 1 shows the character table
for the group Td . It follows from (1) that det(χ j − λI) = det(χk − λI), where I = χ1
is the identity matrix. It is clear that all the matrices χ j belonging to the same class
share the same characteristic polynomial and, consequently, the same eigenvalues.

In the case of finite groups it is common to introduce the concept of order or
period of a group element χi that is the smallest positive integer such that χν

i = I.
All the elements that belong to the same class have the same period as follows from
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Table 1 Character table for Td point group

Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0
(
2z2 − x2 − y2, x2 − y2

)

T1 3 0 −1 1 −1 (Rx , Ry , Rz)

T2 3 0 −1 −1 1 (x, y, z) (xz, yz, xy)

(
χiχ jχ

−1
i

)ν = χiχ
ν
j χ

−1
i = χν

k . In addition to it, the eigenvalues of a matrix of order

ν satisfy λν = 1.
The properties outlined above enable us to establish the connection between the

permutation matrices χi and the elements of the group Td :

χ1 → E

χ2, χ3, χ4, χ6, χ8, χ9, χ10, χ12 → 8C3

χ5, χ7, χ11 → 3C2

χ̄1, χ̄2, χ̄3, χ̄6, χ̄8, χ̄11 → 6σd
χ̄4, χ̄5, χ̄7, χ̄9, χ̄10, χ̄12 → 6S4. (2)

Since C3
3 = C2

2 = σ 2
d = S44 = E it is clear why all the eigenvalues of the permutation

matrices χi found by Capozziello and Lattanzi [2] are given by the roots of λ3 = 1,
λ2 = 1 and λ4 = 1.

The class labelled 8C3 is given by four pairs of rotations by angles 2π/3 (C3) and
4π/3 (C2

3 ). This fact explains why χ2
2 = χ3 (and similar expressions for other pairs of

matrices belonging to the same class). A consequence of this result is that [χ2, χ3] = 0.
The class labelled 6S4 is given by three pairs of improper rotations by angles π/2 (S4)
and 3π/2 (S34 ) which explains why χ̄3

4 = χ̄10, etc., that leads to [χ̄4, χ̄10] = 0, etc..
These results extend those of Capozziello and Lattanzi [2] (Eqs. (12)-(15)) who only
mentioned the commutation among the 3C2 matrices.

We have recently resorted to group theory in order to study the properties of a
non-Hermitian anharmonic oscillator with symmetry Td [8]. In order to construct a
suitable matrix representation for the symmetry elements Xi of that group we resorted
to a group of 3 × 3 matrices Mi , i = 1, 2, . . . , 24, that are shown in the Appendix 2.
Thesematrices carry out the coordinate transformations xi = Mix for every symmetry
operation, where xi = (xi yi zi )T and x = (x y z)T . The effect of Xi on a function
f (x) is given by

Xi f (x) = f
(
M−1

i x
)

. (3)

The groups of matrices in the appendices 1 and 2 are isomorphic. In order to
appreciate their connection we define the vector
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t(x) =

⎛
⎜⎜⎝
t1(x)
t2(x)
t3(x)
t4(x)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x + y + z
−x − y + z
−x + y − z
x − y − z

⎞
⎟⎟⎠ , (4)

that satisfies

t.t = 4x.x,
4∑

i=1

ti = 0. (5)

The one-to-one correspondence between the 4× 4 matrices χi and the 3× 3 matrices
of Appendix 2 is given by χi t = t(M−1

i x) that follows from Eq. (3). Two particular
examples of this mapping are

χ3 →
⎛
⎝
0 0 −1
1 0 0
0 −1 0

⎞
⎠ ,

χ̄4 →
⎛
⎝

0 0 1
0 −1 0

−1 0 0

⎞
⎠ , (6)

the first case belonging to the class 8C3 and the second one to the class 6S4. The
remaining pairs can be found exactly in the same way. χi and Mi share the same
determinant and period but Mi exhibits one eigenvalue less that χi (see below).

The 4 × 4 matrix representation Γ is reducible. Using a well known expression
given by group theory (see e.g. [7]) we can easily decompose it into the irreps of the
group Td shown in Table 1. We obtain

Γ = A1 ⊕ T2, (7)

where the 3×3 part T2 is given by thematrices already shown in theAppendix 2.All the
matrices χi exhibit at least one eigenvalue λ = 1 that comes from the A1 contribution
and is missing in the matrices Mi . For example, the characteristic polynomial for the
matrices 6S4 is (λ + 1)(λ2 + 1) and that for 8C3 is (1 − λ)(1 + λ + λ2) = 1 − λ3

(compare with Eqs. (18) and (22) of Reference [2]).
We can transform the 4 × 4 matrices χi into the 3 × 3 matrices of Appendix 2 by

means of the following matrix equation:

RxtχiRt x = Mi ,

Rxt = 1

2

⎛
⎝
1 0 0 1
1 0 1 0
1 1 0 0

⎞
⎠ , Rt x =

⎛
⎜⎜⎝

1 1 1
−1 −1 1
−1 1 −1
1 −1 −1

⎞
⎟⎟⎠ (8)

where RxtRt x = I is the 3 × 3 identity matrix.
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3 Conclusions

We have shown that the 24 4×4 permutation matrices form a reducible representation
for the group Td . Consequently, all the properties of the permutation matrices derived
by Capozziello and Lattanzi [2] can be extracted with little calculation from the table
of characters shown in Table 1. For example, the value of the determinant follows
from the type of symmetry operation (rotation, reflection, improper rotation, etc.).
The eigenvalues of each matrix are determined by the order of the corresponding
group element which, together with the symmetry classes, are clearly indicated in the
character table.

The representation of the group elements in terms of permutation matrices is
reducible, one of the resulting irreps being associated to the matrix representation
of dimension 3 of the elements of the group Td in the basis set (x, y, z) for the irrep
T2. The 4 × 4 permutation matrices can be reduced to the 3 × 3 ones by means of a
pair of rectangular transformation matrices.

Finally, it is worth mentioning that one can carry out a similar analysis by means
of the point group O (see, e.g. [7]) and the following correspondence

χ1 → E

χ̄4, χ̄5, χ̄7, χ̄9, χ̄10, χ̄12 → 6C4

χ5, χ7, χ11 → 3C2 =
(
C2
4

)

χ2, χ3, χ4, χ6, χ8, χ9, χ10, χ12 → 8C3

χ̄1, χ̄2, χ̄3, χ̄6, χ̄8, χ̄11 → 6C2. (9)

Note that S4, Td and O are isomorphic as well as A4 and T .

Appendix 1: Permutation matrices

In this appendix we simply collect the 24 matrices, labelled according to the paper of
Capozziello and Lattanzi [2], that produce all the permutations of the elements ti of
the vector t in Eq. (4).

χ1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ2 =

⎛
⎜⎜⎝
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , χ3 =

⎛
⎜⎜⎝
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ (10)

χ4 =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ , χ5 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , χ6 =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ (11)

χ7 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , χ8 =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ , χ9 =

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ (12)
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χ10 =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , χ11 =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , χ12 =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ (13)

χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (14)

χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (15)

χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (16)

χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , χ̄1 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (17)

Appendix 2: 3× 3 matrix representation for the group Td

In what follows we show the 24 3 × 3 matrix representations of the elements of the
group Td grouped into the corresponding classes. Their traces yield the characters
of the irrep T2 shown in Table 1. Although we do not show it explicitly, there is a
one-to-one correspondence with the matrices of Appendix 1.

E =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ (18)

8C3
⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠ ,

⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠ ,

⎛
⎝
0 −1 0
0 0 −1
1 0 0

⎞
⎠ ,

⎛
⎝

0 0 −1
−1 0 0
0 1 0

⎞
⎠

⎛
⎝

0 1 0
0 0 −1

−1 0 0

⎞
⎠ ,

⎛
⎝

0 0 1
−1 0 0
0 −1 0

⎞
⎠ ,

⎛
⎝

0 −1 0
0 0 1

−1 0 0

⎞
⎠ ,

⎛
⎝
0 0 −1
1 0 0
0 −1 0

⎞
⎠ (19)

3C2 ⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠ ,

⎛
⎝
1 0 0
0 −1 0
0 0 −1

⎞
⎠ ,

⎛
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎠ (20)
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6S4
⎛
⎝

−1 0 0
0 0 −1
0 1 0

⎞
⎠ ,

⎛
⎝
0 0 −1
0 −1 0
1 0 0

⎞
⎠ ,

⎛
⎝

0 0 1
0 −1 0

−1 0 0

⎞
⎠ ,

⎛
⎝

0 1 0
−1 0 0
0 0 −1

⎞
⎠ ,

⎛
⎝

−1 0 0
0 0 1
0 −1 0

⎞
⎠ ,

⎛
⎝
0 −1 0
1 0 0
0 0 −1

⎞
⎠ (21)

6σd
⎛
⎝
1 0 0
0 0 1
0 1 0

⎞
⎠ ,

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ ,

⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝

0 −1 0
−1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝
1 0 0
0 0 −1
0 −1 0

⎞
⎠ ,

⎛
⎝

0 0 −1
0 1 0

−1 0 0

⎞
⎠ (22)
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