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h i g h l i g h t s

• PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken.
• PT-symmetric multidimensional Hamiltonians appear to show PT phase transitions.
• We study the PT-Stark effect on three different central-field models.
• They exhibit completely different spectra in terms of a parameter g .
• The spectra range from complex for all g to real for all g .
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a b s t r a c t

We discuss three Hamiltonians, each with a central-field part H0
and a PT-symmetric perturbation igz. When H0 is the isotropic
Harmonic oscillator the spectrum is real for all g because H is
isospectral to H0 + g2/2. When H0 is the Hydrogen atom then
infinitelymany eigenvalues are complex for all g . If the potential in
H0 is linear in the radial variable r then the spectrum of H exhibits
real eigenvalues for 0 < g < gc and a PT phase transition at gc .

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is known since long ago that some non-Hermitian operators may exhibit real eigenvalues [1,2].
This fact remained a somewhat exotic mathematical subject till Bender and Boettcher [3] suggested
that those operators may exhibit unbroken parity-time (PT) symmetry. From then on the problem
quickly developed into a prolific field of research [4] (and references therein).
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In a roughly general way we may say that most of the studied problems are represented by
Hamiltonian operators of the form H = H0 + λH ′, where H0 is parity-invariant PH0P = H0 and
H ′ is parity antisymmetric PH ′P = −H ′, where P is the parity operator. If λ = ig is imaginary (where
g is obviously real) then H is PT symmetric: PTHPT = H , where T is the time-reversal operator [5].

In the beginning, most of the models studied were mainly one-dimensional [3,4,6,7] in which case
H0 only exhibits parity symmetry and its eigenfunctionsψ (0) are even or odd: Pψ (0)

= ±ψ (0) but later
the researchers began to look formultidimensional examples [8–22]. Itwas suggested that space–time
(ST) symmetry could be a suitable generalization of the PT one [23]. In this case SH0S = H0 and
SH ′S = −H ′, where S is a unitary operator such that SĎ = S−1

= S. Most of the effort was devoted to
find new multidimensional non-Hermitian Hamiltonians with real spectra.

In the multidimensional case H0 and H may exhibit more complex symmetry that is conveniently
described by means of group theory [23–25]. In this way Fernández and Garcia [26,27] and Amore
et al. [28,29] found that some ST-symmetric Hamiltonians exhibit broken ST symmetry for all values
of g . The main conjecture was that ST symmetry may be unbroken for some values of g provided that
S is the onlymember of a class in the point group forH0 [28]. This appeared to be the casewhen S = P .
In particular, some of the results of Fernández and Garcia [26,27] and Amore et al. [28,29] appear to
contradict the main conjecture put forward by Klaiman and Cederbaum [23].

The purpose of this paper is the discussion of three PT-symmetric Hamiltonians for which H0 =

p2/2 + V (r) exhibits central-field symmetry and H ′
= z. The resulting Hamiltonian H exhibits cylin-

drical symmetry andmay be viewed as a kind of Stark effect with imaginary electric field. In Section 2
we outline the main ideas of PT symmetry as well as a simple argument based on perturbation theory
[26–29]. In Section 3 we briefly discuss the general case. In Sections 4–6 we show that the models
with V (r) = r2/2, V (r) = −1/r , and V (r) = r , respectively, exhibit completely different spectra.
Finally, in Section 7 we summarize the main results of the paper and draw conclusions.

2. Parity-time symmetry

Let A = PT = A−1 be the antiunitary operator given by the product of the parity P and time-
reversal T operators [5,3]. The Hamiltonian operator H is said to be PT symmetric if

AHA−1
= H. (1)

If

Hψ = Eψ, (2)

then

AHψ = AHA−1Aψ = HAψ = AEψ = E∗Aψ. (3)

If Aψ = aψ , a being a complex number, then we say that PT symmetry is unbroken and E = E∗. It is
not difficult to prove that |a| = 1. Fernández and Garcia [30] found a case in which Aψ ≠ aψ and still
E is real. They proposed the supposedlymore general conditionHAψ = EAψ for the occurrence of real
spectrum; that is to say, when ψ and Aψ are two linearly independent eigenfunctions of H with the
same eigenvalue E. This situation does not take place unless the spectrumofH is degenerate. However,
further analysis reveals that both conditions are equivalent. In fact, if we choose ϕ = c1ψ + c2Aψ ,
where c∗

2 = ac1 and c∗

1 = ac2, then Aϕ = aϕ. It is worth adding that none of these conditions is of
practical utility to predict whetherH will have real eigenvalues or not because one commonly ignores
the effect of A on the eigenvectors of H .

Most of the examples studied so far are of the form

H = H0 + λH ′, (4)

where

PH0P = H0, TH0T = H0, PH ′P = −H ′, TH ′T = H ′ (5)
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and λ = ig , where g is real. Since TλH ′T = λ∗TH ′T = −λH ′ then AHA = H . Some useful information
on the spectrum of H is given by the perturbation series

E =


j=0

E(j)λj, (6)

because if at least one coefficient of odd order E(2i+1) is nonzero then E is expected to be complex for
sufficiently small g . In such a case the PT-phase transition [14] takes place at the trivial Hermitian limit
g = 0. If we write H(λ)ψm = Em(λ)ψm then PH(λ)ψm = PH(λ)PPψm = H(−λ)Pψm = Em(λ)Pψm.
If ψm and Pψm are linearly dependent, then Em(−λ) = Em(λ) and all the perturbation corrections of
odd order vanish; otherwise Pψm = ψn, Em(−λ) = En(λ) and we cannot draw a conclusion so easily.
The latter case may only take place when the spectrum of H is degenerate. In many cases it suffices to
calculate the simplest, straightforward perturbation correction of first order E(1) [26–29].

3. Stark effect

Consider the Hamiltonian operator

H = −
1
2
∇

2
+ V (r)+ λz, (7)

where V (r) is spherically symmetric (depends only on r). The eigenfunctions of H0 = H(λ = 0)

H0ψ
(0)
ν l m = E(0)ν l ψ

(0)
ν l m, (8)

are also eigenfunctions of the angular momentum operators L2 and Lz

L2ψ (0)
ν l m = l(l + 1)ψ (0)

ν l m,

Lzψ
(0)
ν l m = mψ (0)

ν l m,

l = 0, 1, . . . , m = 0,±1, . . . ,±l. (9)

In spherical coordinates the eigenfunctions can be factored as

ψ
(0)
ν l m(r, θ, φ) = Rν l(r)Ym

l (θ, φ), (10)

where Rν l(r) is the radial part, ν = 0, 1, . . ., is the radial quantum number and Ym
l (θ, φ) are the

spherical harmonics. Since the eigenvalues of H0 do not depend on m they are at least (2l + 1)-fold
degenerate.

The perturbation H ′
= z breaks the degeneracy of the spectrum of H0 but the states with m > 0

remain two-fold degenerate because the eigenvalues of H do not depend on the sign of the magnetic
quantum numberm.

Since

Pψ (0)
ν l m = (−1)lψ (0)

ν l m, (11)

and PzP = −z the matrix elements

zν
′ l′m
ν l m =


ψ
(0)
ν l m

 z ψ (0)
ν′ l′m


, (12)

are zero when l− l′ is even. The perturbation corrections of first order to the energy E(1)νlm are given by
the eigenvalues of the matrix with elements zν

′ l′m
ν l m . We will discuss three examples in the subsequent

sections.

4. Isotropic harmonic oscillator

When

V (r) =
1
2
r2 (13)
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the Schrödinger equation is exactly solvable and the eigenfunctions and eigenvalues are given by

ψn1 n2 n3(x, y, z) = ϕn1(x)ϕn2(y)ϕn3(z + λ),

Ek =


k +

3
2


−

1
2
λ2, k = n1 + n2 + n3,

n1, n2, n3 = 0, 1, . . . , (14)

where ϕn(q) is an eigenfunction of the one-dimensional harmonic oscillator HHO = −
1
2

d2

dq2
+

1
2q

2.
Since

Aψn1 n2 n3(x, y, z) = ψn1 n2 n3(−x,−y,−z)∗ = ϕn1(−x)ϕn2(−y)ϕn3(−z + λ∗)

= (−1)kψn1 n2 n3(x, y, z), (15)

then the PT symmetry is unbroken for all g which accounts for the fact that the eigenvalues in Eq. (14)
are real for all g .

Although in this case the approximate analysis based on perturbation theory may appear to
be unnecessary we carry it out anyway merely for comparison purposes. To begin with, note that
Pψ (0)

n1 n2 n3(x, y, z) = (−1)kψ (0)
n1 n2 n3(x, y, z). The perturbation correction of first order to a given energy

level E(0)k is given by matrix elements of the form

zm1 m2 m3
n1 n2 n3 =


ψ (0)

n1 n2 n3

 z ψ (0)
m1 m2 m3


, (16)

that vanish for all degenerate states because k = n1+n2+n3 = m1+m2+m3. Therefore, E
(1)
k = 0 for

all the states of the PT Stark effect in the isotropic harmonic oscillator. This result is consistent with
the form of the exact eigenvalues (14) that depend on g2.

There is another way to prove that the PT symmetry for this problem remains unbroken for all
values of g . The proof is based on the fact that H can be written in terms of a similarity transformation
of H0:

H = UH0U−1
+

g2

2
, U = e−gpz , (17)

where pz = −i d
dz . Obviously, H0 and UH0U−1 are isospectral [31].

5. Hydrogen atom

The unperturbed eigenvalues for the Coulomb interaction

V (r) = −
1
r
, (18)

are given by

E(0)n = −
1

2n2
, n = ν + l + 1. (19)

Therefore, there are pairs of degenerate states ψ (0)
νlm, ψ

(0)
ν′ l′m for which l − l′ = ν ′

− ν is odd and the
correspondingmatrix elements zν

′ l′m
ν l m (12) are nonzero. In such cases, which for real λ give rise towhat

is commonly known as linear Stark effect [32,33], the perturbation correction of first order is nonzero
and the eigenvalues of H are complex for g ≠ 0.

The Schrödinger equation for this problem is separable in parabolic coordinates and the exact
calculation of the perturbation corrections in terms of the parabolic quantum numbers n1 = 0, 1, . . .,
n2 = 0, 1, . . . and m = 0,±1, . . . is straightforward [34]. It is customary to write the perturbation
series

Enq|m| =

∞
j=0

E(j)nq|m|
λj, (20)
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Fig. 1. Real and imaginary parts of the lowest eigenvalues of the PT-symmetric Stark effect in hydrogen.

in terms of the quantum numbers n = n1 + n2 + |m| + 1 and q = n1 − n2 [34]. All the coefficients of
odd order vanish when q = 0 but the states with q ≠ 0 are expected to be complex when g ≠ 0.

The argument based on perturbation theory just outlined is sufficient to conclude that this model
exhibits complex eigenvalues when g ≠ 0 and that the PT phase transition [14] takes place at the
trivial Hermitian limit g = 0. Nevertheless, we will show some numerical results to illustrate the
point. Here we choose the most efficient method of Benassi and Grecchi [35] that is based on the
separation of the Schrödinger equation in squared-parabolic coordinates. Since the details of this
approach have been given elsewhere [35–37], here we just show the results. Fig. 1 shows the real
and imaginary parts of the lowest eigenvalues. It is clear that the PT phase transition takes place at
the trivial Hermitian limit as already argued above.

The remarkable difference between the spectra of this problem and the previous one can be traced
back to the symmetry of H0. The general central-field model is invariant under the group O(3) while,
on the other hand, the hydrogen atom is invariant under the group O(4) [38]. Such higher symmetry
is due to the conservation of the Runge–Lenz vector in the latter model. Thus, the higher symmetry of
H0 appears to be the reason why the PT symmetry is broken for all g in the perturbed hydrogen atom.
While the kth harmonic-oscillator eigenvalue E(0)k is (k+1)(k+2)

2 -fold degenerate, the nth eigenvalue of
the hydrogen atom E(0)n is n2-fold degenerate. The greater degeneracy of the latter model allows the
appearance of nonzero matrix elements zν

′ l′m
ν l m and nonzero perturbation corrections of first order.

6. Linear potential

As a nontrivial example we consider the linear potential

V (r) = r. (21)

In this case we cannot solve the eigenvalue equation for H0 exactly but we can nevertheless calculate
the perturbation correction of first order to any energy level E(0)ν l because it is determined by matrix
elements of the form

zν l m
′

ν l m =


ψ
(0)
ν l m

 z ψ (0)
ν l m′


, (22)

which vanish for all sets of quantum numbers as argued in Section 3. Therefore, E(1)ν l |m|
= 0 and there

is a chance that PT symmetry may be unbroken for sufficiently small g .
We can calculate approximate eigenvalues by means of diagonalization of a suitable matrix

representation of the Hamiltonian. For simplicity, herewe choose the nonorthogonal Slater-type basis
set

B =

rne−αrYm

l (θ, φ), n, l, |m| = 0, 1, . . .

. (23)

Present numerical results show that this problem exhibits the usual spectral pattern common to
most PT-symmetric Hamiltonians studied by other authors; that is to say, unbroken PT symmetry
for 0 < g < gc . For sufficiently small values of g the eigenvalues are real. As g increases two
eigenvalues approach each other, coalesce at an exceptional point [39–42] gi ≥ gc becoming a pair of
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Fig. 2. Lowest eigenvalues withm = 0 for the potential V (r, z) = r + igz.

Fig. 3. Lowest eigenvalues withm = 1 for the potential V (r, z) = r + igz.

Fig. 4. Lowest eigenvalues withm = 2 for the potential V (r, z) = r + igz.

complex conjugate numbers for g > gi. This behaviour is illustrated by Figs. 2–4, for m = 0, 1, 2,
respectively. Those results were obtained by diagonalization of the matrix representation of the
Hamiltonian operator in the Slater basis set (23) with α = 2. The irregular lines reflect errors in
the calculation of the eigenvalues originated in the quasi linear dependence of the basis set. This
shortcoming of the present approach becomesmore noticeable as the number of radial basis functions
increases. Although our numerical results are not extremely accurate and are restricted to the lowest
eigenvalues for the reason just indicated, they appear to suggest that the smallest exceptional point
gc may be nonzero and that there is a PT phase transition at such point. We think that a more accurate
calculation is not necessary to illustrate the difference between this model and the other two ones
discussed above.

7. Conclusions

In this paperwehave discussed threeHamiltonians given by three different central-fieldHermitian
parts and the same non-Hermitian PT-symmetric perturbation. Although at first sight they appear to
be similar, they exhibit completely different spectra. In the case of the isotropic harmonic oscillator
the PT symmetry is unbroken and the spectrum is real for all g . The reason is thatH andH0 are related
by the similarity transformation (17). On the other hand, the PT symmetry is broken for all g in the
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case of the hydrogen atom. Quite in between the linear radial potential appears to exhibit unbroken
PT symmetry for all 0 < g < gc and a phase transition at some gc that we were unable to determine.

The remarkable difference among the spectra of such seemingly similar Hamiltonians is due to the
symmetry of H0. As a general rule the higher the symmetry of H0 the more likely the occurrence of
complex eigenvalues and the Hamiltonian for the hydrogen atom exhibits the greatest symmetry by
far. We have already discussed the effect of symmetry in earlier papers [26–29] but we have not seen
such a remarkable difference in the behaviour of the non-Hermitian Hamiltonians.

In closing we want to stress the fact that perturbation theory provides a useful hint about the
nature of the spectra of a given non-Hermitian Hamiltonian. If a perturbation correction of odd order
(we typically look for the first one) is nonzero thenweknow that the spectrum is complex for all values
of g (or at least for sufficiently small g). If all the available perturbation corrections of odd order are
zero then there is a chance of finding real spectrum for some values of g . Obviously, this case should
be investigated by more accurate calculations. As the symmetry of H0 increases, then also increases
the dimension of its eigenspaces and, consequently, the dimension of the matrix representation of
the perturbation in those eigenspaces. As a result it also increases the chance of nonzero perturbation
corrections of first order.
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