Photoinactivation of tyrosinase sensitized by folic acid photoproducts

M. Laura Dántola*, Beatriz N. Zurbano, Andrés H. Thomas

Instituto de Investigaciones Fisiocuquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina

A R T I C L E I N F O

Article history:
Received 3 February 2015
Received in revised form 11 May 2015
Accepted 3 June 2015
Available online 6 June 2015

Keywords:
Tyrosinase
Folic acid
Folic acid photoproducts
Photosensitized processes
Reactive oxygen species
UV-A radiation
Vitiligo

A B S T R A C T

Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of biomolecules, accumulate in the skin of patients suffering from vitiligo, where there is a lack of melanin. Folic acid (PteGlu) is a conjugated pterin widespread in biological systems. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of PteGlu and its photoproducts (6-formylpterin and 6-carboxypterin). The reactions were followed by UV–Vis spectrophotometry, enzyme activity measurement, fluorescence spectroscopy and HPLC. In this work, we present data that demonstrate unequivocally that solutions of tyrosinase exposed to UV-A irradiation in the presence of PteGlu, undergo enzyme inactivation. However, PteGlu itself causes a negligible effect on the activity of the enzyme. In contrast, PteGlu photoproducts are efficient photosensitizers. The tyrosinase inactivation involves two different pathways: (i) a photosensitization process and (ii) the oxidation of the enzyme by the hydrogen peroxide produced during the photooxidation of PteGlu and its photoproduct. The former pathway affects both the active site and the tryptophan residues, whereas the latter affects only the active site. The biological implications of the results are discussed.

© 2015 Published by Elsevier B.V.

1. Introduction

Pterins, a family of heterocyclic compounds, are present in biological systems in multiple forms and play different roles ranging from pigments to enzymatic cofactors for numerous redox and one-carbon transfer reactions [1,2]. The most common pterin derivatives are 6-substituted compounds (Fig. 1). According to the molecular weight and the functional groups of these sub-stitutents, pterins can be divided into two groups: (i) unconjugated pterins, containing substituents with one carbon atom or a short hydrocarbon chain, and (ii) conjugated pterins, with larger substituents containing a p-aminobenzoic acid (PABA) moiety.

Folic acid, or pteroyl-L-glutamic acid (PteGlu), is a conjugated pterin widespread in biological systems, whose chemical structure is composed of three moieties: a 6-methylpterin (Mep) residue, a PABA residue, and a glutamic acid (Glu) residue (Fig. 1). In living systems, PteGlu is present in multiple forms including molecules attached to several glutamate residues and dihydro and tetrahydro pterin derivatives. Mammals do not synthesize folates and therefore they have to get them from food. The main form of folates in human plasma is 5-methyltetrahydrofolate (SCH2-H4PteGlu) [3,4]. This compound is oxidized to corresponding dihydropterin derivatives at pH close to 7 [5], such as skin pH. It is known that 7,8-dihydrofolic acid is oxidized by reactive oxygen species, like hydrogen peroxide (H2O2) and singlet oxygen (O2•), yielding PteGlu as one of the products [6,7]. Taking into account that in some pathological conditions the concentration of reactive oxygen species increases significantly, the oxidation of reduced folic acid derivatives can be occurred, yielding a source of folic acid in the cell.

In particular, folates are involved in DNA biosynthesis, repair, DNA methylation and aminoacid metabolism [8]. Folate requirements increase in periods of rapid cell division and growth, and,
and superoxide (30%) was from Merck.

6-carboxypterin (Cap, Fig. 1) [16,17]. 6-formylpterin (Fop, Fig. 1), which, in turn, is photooxidized to irradiation leads to oxidation of the 6-substituent to yield 400 nm) irradiation leads to oxidation of the 6-substituent to yield manifesting as white macules and patches. The photooxidation of characterized by the acquired loss of constitutional pigmentation catalyzes the first and rate-limiting step in melanin biosynthesis, (1.14.18.1)) is a copper-containing glycoprotein that, in mammals, L-dopaquinone [18]. This compound, in turn, undergoes fast oxidation and rearrangement to yield L-dopachrome.

as such, it is imperative that pregnant women, for example, keep folate concentrations at an appropriate level [9]. Folate deficiency in pregnant women has clearly been shown to be related to neural tube defects, such as spina bifida and anencephaly [10,11]. Recent research has demonstrated that folates regulate melanin biosynthesis and, hence, is present in human skin, because it is required for the novo production of tetrahydrobioppterin (H4Bip) in melanocytes and keratinocytes [12,13]. H4Bip acts as a cofactor for hydroxylation of L-phenylalanine via phenylalanine hydroxylase and regulates tyrosinase activity in melanosomes [14]. The synthesis of H4Bip is highly activated in vitiligo, a skin disorder which is characterized by the acquired loss of constitutional pigmentation manifesting as white macules and patches. The photooxidation of H4Bip yield bioppterin (Bip) [15], which under UV-A (315–400 nm) irradiation leads to oxidation of the 6-substituent to yield 6-formylpterin (Fop, Fig. 1), which, in turn, is photooxidized to 6-carboxypterin (Cap, Fig. 1) [16,17].

Tyrosinase ([l-tyrosine, l-dopa: oxygen oxidoreductase, EC 1.14.18.1]) is a copper-containing glycoprotein that, in mammals, catalyzes the first and rate-limiting step in melanin biosynthesis, the hydroxylation of l-tyrosine (Tyr) to 3,4-dihydroxy-l-phenylalanine (DOPA) and the subsequent oxidation of DOPA to l-dopaquinone [18]. This compound, in turn, undergoes fast oxidation and rearrangement to yield l-dopachrome.

Folates participate in photobiological processes, e.g. the derivative 5,10-methylenetetrahydrofolic acid acts as photoreceptor in DNA photolyases and cryptochromes [19]. In addition, the photodegradation of PteGlu has been discussed as one of the reasons for the development of skin tanning in evolution because the PteGlu depletion by natural exposure to sunlight can become physiologically relevant [20–24]. PteGlu decomposes under UV-A radiation in the presence of oxygen, yielding Fop, and p-aminobenzoyleglutamic acid (PABA–Glu) as photoproducts (Scheme 1) [25–30]. The rate of this process increases with irradiation time. The data point to an “auto-photo-catalytic” effect, wherein Fop acts as photosensitizer and photoinduces the oxidation of PteGlu [30]. In turn, Fop is transformed into Cap upon further photooxidation (Scheme 1). Reactive oxygen species, like H2O2 and superoxide anion (O2−) are formed during the photooxidation of PteGlu into Fop, and in the reaction where Fop is converted into Cap [30]. Therefore under irradiation of skin affected by vitiligo Fop and Cap are formed, very likely, due to the photolysis of both PteGlu and H4Bip. In fact, Cap has been isolated from the skin of patients suffering from vitiligo [31].

Several studies have demonstrated that pterin (Ptr), the parent and unsubstituted compound of oxidized pterins (Fig. 1), is able to photosensitize free amino acids, such as tryptophan (Trp) [32] and Tyr [33], peptides [34] and proteins, such as bovine serum albumin [35,36]. A very recent study has demonstrated that tyrosinase is inactivated by Ptr through a photosensitized process and suggested that the process is initiated by an electron transfer reaction from the enzyme to the triplet excited state of Ptr [37]. In 2003 it was reported that PteGlu is able to photoinduce DNA damage via its photolysis products [38]. More recently it was informed that protein damage takes place when albumin is exposed to UV-A radiation in the presence of PteGlu [39,40].

Taking into account that in some skin disease, such as vitiligo, the protection against UV radiation fails due to the lack of melanin, the photodegradation of PteGlu in vivo may occur in the depigmented patches of patients with this disease. We chose this compound because: it is more stable than most member of folate’s family and efficiently metabolized into biologically active derivatives, it is used in tablet form and in fortified foods for dietary supplementation [8,41] and its photooxidation products are the same oxidized pterins produced during the photooxidation of H4Bip. Therefore, the main aim of this work was investigated the capability of PteGlu and its photoproducts to photoinduced the inactivation of tyrosinase, the key enzyme in melanin biosynthesis.

2. Materials and methods

2.1. General

Pterin derivatives (PteGlu, Fop, Cap and Ptr) were purchased from Schircks Laboratories and used without further purification. Tyrosinase from mushroom (lyophilized powder, ≥1000 unit/mg solid), catalase from bovine liver (lyophilized powder, 10,700 unit/mg solid) and other chemicals were provided by Sigma Chemical Co. H2O2 (30%) was from Merck.
The pH measurements were performed using a pH-meter PHM220 (Radiometer Copenhagen) combined with a pH electrode PHC2011-8 (Radiometer Analytical). The pH of the aqueous solutions was adjusted by adding drops of HCl and NaOH solutions from a micropipette. The concentration of the acid and the base used for this purpose ranged from 0.1 M to 2 M. When necessary the samples were incubated using a low temperature bath/circulator R1 (Grant Instruments).

2.2. Steady-state irradiation

2.2.1. Irradiation setup
Air equilibrated aqueous solutions containing a given pterin derivative and tyrosinase were irradiated in quartz cells (1 cm optical path length) at room temperature using a Rayonet RPR lamp (Southern N. E. Ultraviolet Co.) with emission centered at 350 nm (bandwidth ~20 nm). To regulate the intensity of the incident light, the photolyses were performed at two different distances between the lamp and the sample (4 and 20 mm).

2.2.2. Actinometry
Aberchrome 540 (Aberchamics Ltd.) was used as an actinometer for the measurement of the incident photon flux density \(q_{n,p}\) at the excitation wavelength, which is the amount of incident photons per time interval \(q_{n,p}\) and divided by the volume \(V\) of the sample [42]. Aberchrome 540 is the anhydride form of the (E)-\(\alpha\)-(2,5-dimethyl-3-furylethylene)(isopropylidene)succinic acid which, under irradiation in the spectral range 316–366 nm leads to a cyclized form. The method for the determination of \(q_{n,p}\) has been described in detail elsewhere [43].

Taking into account the distance from the irradiation source to the sample, two different values of \(q_{n,p}\) were measured \(q_{n,p}^{1} = 1.7 \times 10^{-5}\) Einstein L\(^{-1}\) s\(^{-1}\) and \(q_{n,p}^{2} = 3.4 \times 10^{-6}\) Einstein L\(^{-1}\) s\(^{-1}\), for 4 and 20 mm, respectively. Values of the absorbed photon flux density \(q_{n,p}^{\nu}\) were calculated from \(q_{n,p}^{\nu}\) according to the Lambert–Beer law:
\[
q_{n,p}^{\nu} = q_{n,p}^{\nu} (1 - 10^{-A})
\]
where \(A\) is the absorbance of the reactant at the excitation wavelength.

2.3. Analysis of irradiated solutions

2.3.1. UV–Vis analysis
Electronic absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer. Measurements were made using quartz cells of 1 cm optical path length. The absorption spectra of the solutions were recorded at regular intervals of irradiation time.

2.3.2. High-performance liquid chromatography (HPLC)
Chromatographic analysis was performed using a Prominence instrument from Shimadzu (solvent delivery module LC-20AT, on-line degasser DGU-20A5, auto sampler SIL-20A HT, column oven CTO-10AS VP, photodiode array detector SPD-M20A). A Synergi Polar-RP column (150 x 4.6 mm, 4 μm, Phenomenex) was used for product separation. Solutions containing 7% of methanol and 93% of 10 mM NH\(_4\)OAc aqueous solution (pH 7.0) were used as the mobile phase. HPLC runs were monitored by UV–Vis visible spectroscopy at different wavelengths.

2.3.3. Enzyme activity
The tyrosinase activity was assayed according to the method of Pomerantz [44]. Briefly, the formation of \(\alpha\)-dopachrome was measured spectrophotometrically at 475 nm \((\varepsilon = 3600 \text{ M}^{-1} \text{ cm}^{-1})\). The reaction was performed at 37 °C in KH\(_2\)PO\(_4\) buffer 20 mM at pH 6.5 using \(\alpha\)-tyrosine 0.15 mg/mL (0.83 mM) as the substrate. The conversion of an inactive form of the catalytic site of the enzyme into an active form gives rise to a lag period before the reaction reaches maximal rate, which is a characteristic of the overall activity of the tyrosinase (oxidation of \(\alpha\)-tyrosine into \(\alpha\)-dopachrome) [45]. Therefore the enzyme activity (rate of formation of \(\alpha\)-dopachrome \((v)\), μM min\(^{-1}\)) was determined in the linear phase by measuring the slope of the curve of absorbance at 475 nm vs. time after the addition of the substrate.

2.3.4. Fluorescence spectroscopy
Fluorescence measurements were performed on air-equilibrated aqueous solutions of pterin derivatives and tyrosinase using a Single-Photon-Counting equipment FL3 TCSPC-SP (Horiba Jobin Yvon). The equipment has been previously described in detail [46]. Briefly, in steady-state measurements the sample solution in a quartz cell was irradiated with a 450 W Xenon source through an excitation monochromator. The fluorescence, after passing through an emission monochromator, was registered at 90° with respect to the incident beam using a room-temperature R928P detector. The total fluorescence intensities \(I_{\text{F}}\) were calculated by integration of the fluorescence band centered at ca. 340 nm. The tyrosinase fluorescence intensity was corrected for inner filter effect using the following equation [47]
\[
I_{\text{Fcorr}} = \frac{I_{\text{Fobs}}}{(1 + A_{\text{exc}} + A_{\text{em}})^{1/2}}
\]
where \(I_{\text{Fcorr}}\) and \(I_{\text{Fobs}}\) are the corrected and observed fluorescence intensities, respectively, and \(A_{\text{exc}}\) and \(A_{\text{em}}\) are the absorbance of the system at excitation and emission wavelengths, respectively.

3. Results and discussion

3.1. Evaluation of the photoinactivation of tyrosinase by PteGlu
To check the photochemical behavior of PteGlu, we carried out photolysis in the absence of substrates and the results observed were compatible with those reported in the literature [30]. Photooxidation of PteGlu under UV-A radiation may be divided into three stages (Fig. S1. Supporting material): (i) in the first phase, which follows a zero-order kinetics, PABA–Glu and Fop are photogenerated; (ii) in the second phase, Fop photoinduces the photooxidation of PteGlu and its degradation process is accelerated; (iii) in the third phase the degradation of Fop to Cap is the dominating process. This result indicated that the photodegradation of the sensitizer itself could not be avoided in the photolysis experiments performed in the presence of tyrosinase. Therefore, the irradiated samples were analyzed by HPLC to evaluate the PteGlu photooxidation.

To ascertain if PteGlu is able to photoinduce the inactivation of the enzyme, air-equilibrated aqueous solutions (1 mM KH\(_2\)PO\(_4\), pH 6.0) containing PteGlu and tyrosinase were irradiated at 350 nm during different periods of time. After the irradiation, the samples were analyzed by UV–Vis spectrophotometry, enzyme activity measurement, fluorescence spectroscopy and HPLC. Under these experimental conditions only PteGlu was excited (Fig. 1), whereas tyrosinase did not absorb radiation. The analysis of the treated solution showed that the activity of tyrosinase decreased significantly when the enzyme was exposed to UV-A radiation in the presence of PteGlu.

In control experiments, tyrosinase solutions were exposed to UV-A radiation in the absence of PteGlu and no inactivation of the enzyme was detected, thus excluding the possibility that spurious effects of direct light absorption by the enzyme could affect its activity. In another set of control experiments, tyrosinase
inactivation was not observed in a solution of PteGlu with tyrosinase that was kept in the dark, thus excluding the possibility of thermal reactions. The same result was also observed in dark control experiments carried out with Fop, Cap and Ptr instead of PteGlu.

The comparison of the kinetic profiles of PteGlu photodegradation and tyrosinase photoinactivation indicated that in the first four minutes of irradiation, the concentration of PteGlu did not change significantly, whereas no loss of the enzyme activity was registered (Fig. 2). It can be assumed that, in this time range, no photoproduct of PteGlu was generated. Therefore, PteGlu itself presented a negligible capability to photoactivate the enzyme.

After five min of irradiation, an important increase on the rate of photodegradation of PteGlu and on the rates of formation of Fop and Cap were observed (Fig. 2a). Therefore, a significant proportion of light was absorbed by Fop and Cap. Simultaneously, a considerable decrease of the enzyme activity was observed (Fig. 2b). Consequently, these results suggest that, in contrast to PteGlu, Fop and Cap photoinduce the inactivation of the enzyme.

3.2. Evaluation of the photoinactivation of tyrosinase by PteGlu photoproducts

To confirm that PteGlu photoproducts are able to photoinduce the inactivation of tyrosinase, the rate of enzyme inactivation was determined in experiments carried out under the same conditions as those used in the experiment of Fig. 2 (pH, absorbance at the irradiation wavelength (350 nm), irradiation source, optical geometry, etc), but changing the pterin derivatives used as a photosensitizer. After the irradiation, the samples were analyzed by UV–Vis spectrophotometry, enzyme activity measurement, and HPLC. The comparison of the rates of photoinactivation registered using the different pterin derivatives revealed that, in fact, Fop is a photosensitizer much more efficient than PteGlu (Fig. 3), which explains why the rate of tyrosinase photoinactivation increased with irradiation time when Fop is accumulated during the photooxidation of PteGlu. Cap and Ptr, in turn, have the same capability to generate inactivation of tyrosinase, and are less efficient than Fop (Fig. 3).

The comparison of the kinetic profiles of Fop degradation and enzyme activity in Fig. 3a, indicated that after 10 min of irradiation, almost 70% of the initial Fop was consumed to form Cap, with a linear decrease in the rate of enzyme inactivation. Taking into account that Cap is less efficient photosensitizer than Fop, it is expected that the rate of enzyme photoinactivation should be lower when the Fop concentration decreases as a function of irradiation time. In order to elucidate the reason of the kinetic behavior of the enzyme inactivation when Fop is used as photosensitizer, and taking into account that under UV-A radiation Fop generates one molecule of H2O2 for each molecule of Fop consumed (Scheme 1) [48], it was appropriate to explore the stability of tyrosinase in the presence of H2O2 (see next section).

3.3. Evaluation of the inactivation of tyrosinase by H2O2

The study of the stability of tyrosinase in the presence of H2O2 is very important from a biomedical point of view because patients with vitiligo accumulate high levels (mM) of H2O2 in their epidermis [49,50]. In addition, it has been suggested that photooxidation of pterins is one of the H2O2 sources in this depigmentation disorder [31]. Schallreuter et al. have studied the direct effect of H2O2 on the tyrosinase reaction. The results showed that the enzyme was activated by low concentrations of H2O2 (<300 μM), while at concentrations in the range 500–5000 μM the tyrosinase was inactivated [51]. Taking into account this report, since in the photooxidation of Fop, one molecule of H2O2 is produced per molecule of Fop consumed, the H2O2 formed in our experiments would not be able to produce the inactivation of tyrosinase. Therefore, to assess the participation of H2O2 in the photoinactivation of tyrosinase by Fop, air equilibrated aqueous solutions of tyrosinase and H2O2 (pH 6.0) were incubated at 20 °C in the dark for different times and then the activity of the enzyme was determined. Surprisingly, the data showed that tyrosinase was deactivated by low H2O2 concentrations (Fig. 4). These results, in disagreement with those reported by Wood et al. [51], suggest that the H2O2 produced during the photooxidation of PteGlu and its photoproducts is enough to cause, at least, a partial inactivation of the enzyme.

To further investigate the contribution of H2O2 in the deactivation of the enzyme during the photosensitized process, air equilibrated aqueous solutions of tyrosinase and Fop were exposed to UV-A radiation in the absence and in the presence of catalase, an enzyme that catalyzes specifically the decomposition of H2O2 into H2O and O2. Fop was chosen for this study because, according to the results shown so far, this derivative is the main sensitizer responsible for the photoactivation of the enzyme. The data obtained clearly showed that the photoactivation of tyrosinase was much more efficient in the absence than in the presence of catalase (Fig. 5), thus suggesting the participation of H2O2.

To discard potential interferences in the experiment shown in Fig. 5 and then to confirm the participation of H2O2 in the inactivation of tyrosinase upon irradiation in the presence of Fop, several controls were carried out. In first place, to determine if catalase is able to react with Fop under excitation, air equilibrated aqueous solution of the photosensitizer and catalase were irradiated with UV-A radiation. Concentration profiles showed that the rates of Fop photooxidation did not change in the presence of catalase (data not shown). In another control experiment, solutions of tyrosinase without photosensitizer were irradiated in the presence
and in the absence of catalase. No decrease of the activity of tyrosinase was registered in the presence of catalase, thus excluding the possibility that this enzyme directly affects the activity of tyrosinase (Fig. 5).

The results presented in this section clearly indicated that photoinactivation of tyrosinase in our reaction system takes place through two different types of pathways: (i) photosensitized reactions and (ii) the oxidation of the enzyme by H$_2$O$_2$. In the latter, H$_2$O$_2$ is produced in the photooxidation of PteGlu into Fop, and in the subsequent photooxidation of Fop into Cap and then this reactive oxygen species reacts with the enzyme causing its inactivation.

3.4. Effect on the tryptophan residues

Taking into account the photosensitization of Trp free and in polypeptide chains by Ptr previously reported, and that Trp is particularly susceptible to a variety of oxidizing agents [52], it is straightforward to expect that Trp residues of tyrosinase were

![Fig. 3. Evolution of tyrosinase activity (v), and concentrations of pterins in air-equilibrated aqueous solution containing tyrosinase and a given pterin derivative exposed to UV-A radiation as a function of the elapsed irradiation time (k$_{exc}$ = 350 nm, [tyrosinase]$_0$ = 2.3 μg/mL, 1 mM KH$_2$PO$_4$, pH = 6.0, q$_0$; V; 2 n; p)]. The photosensitizers used were: (a) Fop (A$_0$ (350 nm) = 0.50, [Fop]$_0$ = 4.4 μM); (b) Cap (A$_0$ (350 nm) = 0.50, [Cap]$_0$ = 65 μM); (c) Ptr (A$_0$ (350 nm) = 0.50, [Ptr]$_0$ = 104 μM).

![Fig. 4. Determination of the activity of tyrosinase as a function of incubation time at different concentrations of H$_2$O$_2$ ([tyrosinase]$_0$ = 23 μg/mL, T = 20 °C, 20 mM KH$_2$PO$_4$, pH = 6.0). For comparative purposes, the data are expressed as the percentage of the initial enzyme activity.]

![Fig. 5. Determination of the activity of tyrosinase as a function of irradiation time in the presence of catalase and absence of Fop (●), in the presence of Fop and absence of catalase (●) and in the presence of Fop and catalase (●) ([tyrosinase]$_0$ = 50 μg/mL, 1 mM KH$_2$PO$_4$, k$_{exc}$ = 350 nm, pH = 6.0, catalase (5800 U/mL), [Fop]$_0$ = 4.4 μM, q$_0$; V; 2 n; p)]. For comparative purposes, the data are expressed as the percentage of the initial enzyme activity.
affected by photosensitization with PteGlu and its photoproducts. Therefore, this point was investigated, taking advantage of the fluorescence properties of this amino acid [47], i.e. it is the only amino acid residue that absorbs at 285 nm and presents an intense emission band centered between 310 and 360 nm, depending on the protein local environment [47].

In tyrosinase the Trp residues are buried in hydrophobic environment when the protein is in the native state [53]. This enzyme contains also Tyr residues which act as intrinsic fluorescence probes, as well. In contrast to excitation at 295 nm, when excitation wavelength of 280 nm is used, both Tyr and Trp residues are excited. The comparison of fluorescence spectra of tyrosinase obtained by excitation at 280 and 295 nm showed that there are not changes in the shape and emission maximum of both spectra (data not shown), thus indicating that emission fluorescence comes mainly from Trp in tyrosinase, under this experimental conditions.

Therefore, to determine if the photosensitization process altered the Trp residues of the enzyme, emission spectra of air-equilibrated aqueous solutions containing tyrosinase and a given pterin derivative were recorded after different irradiation times. The typical emission band of Trp could be adequately registered when Fop and Cap were used as photosensitizers, as well. In contrast to excitation at 295 nm, when excitation wavelength of 280 nm is used, both Tyr and Trp residues are excited. The comparison of fluorescence spectra of tyrosinase obtained by excitation at 280 and 295 nm showed that there are not changes in the shape and emission maximum of both spectra (data not shown), thus indicating that emission fluorescence comes mainly from Trp in tyrosinase, under this experimental conditions.

As shown in Fig. 6, Trp emission decreased significantly as a function of time when tyrosinase was irradiated in the presence of Fop or Cap. This result suggests that, Trp residues are affected in the photosensitization process. The comparison of the Trp emission decrease registered using Fop or Cap as sensitizer revealed that, Fop is more efficient than Cap to produce an alteration in the Trp residues of tyrosinase.

As a control experiment, tyrosinase aqueous solutions were exposed to UV-A radiation during different periods of time in the absence of pterin derivatives. No changes in the total fluorescence intensity were detected, even after more than 10 min of irradiation, thus excluding the possibility that spurious effects of direct light absorption by the protein could affect its fluorescence (Fig. 6).
4. Conclusions

The photosensitizing properties of folic acid (PteGlu) and its photoproducts, 6-formylpterin (Fop) and 6-carboxypterin (Cap), compounds that accumulate in the skin of patients suffering from vitiligo, were investigated using the tyrosinase as oxidizable target. When solutions of tyrosinase were exposed to UV-A irradiation in the presence of PteGlu, enzyme inactivation took place. However, PteGlu itself caused a negligible effect on the activity of the enzyme. In contrast, PteGlu photoproducts were shown to be efficient photosensitizers, being Fop the most efficient sensitizer of the series. The tyrosinase inactivation took place through two different pathways: (i) a photosensitization process, in which excited states of pterin derivatives reacted with the enzyme, and (ii) the oxidation of the enzyme by the H2O2 produced during the photooxidation of PteGlu and its photoproducts. Upon irradiation Trp residues were altered, but only through pathway i) and at a rate lower than that corresponding to the photoinactivation.

Taking into account that PteGlu is involved in the melanin biosynthesis and that its photodegradation may occur in skin regions were the protection against UV radiation fails, the study of inactivation of tyrosinase, the key enzyme in melanogenesis, photoinduced by PteGlu photoproducts is relevant from a biomedical point of view and can have important ramifications.

Acknowledgements

The present work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Grant PIP 11220090100425), Agencia de Promoción Científica y Técnológica (ANPCyT; Grant PICT 2012-0508), and Universidad Nacional de La Plata (UNLP; Grant X586). B.N.Z. thanks CONICET for doctoral research fellowship. A.H.T. and M.L.D are research members of CONICET.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jphotobiol.2015.06.002.

References