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Abstract We review the orbital stability of the planar circular restricted three-body
problem, in the case of massless particles initially located between both massive bodies.
We present new estimates of the resonance overlap criterion and the Hill stability limit,
and compare their predictions with detailed dynamical maps constructed with N-body
simulations. We show that the boundary between (Hill) stable and unstable orbits is
not smooth but characterized by a rich structure generated by the superposition of
different mean-motion resonances which does not allow for a simple global expression
for stability.

We propose that, for a given perturbing massm1 and initial eccentricity e, there are
actually two critical values of the semimajor axis. All values a < aHill are Hill-stable,
while all values a > aunstable are unstable in the Hill sense. The first limit is given
by the Hill-stability criterion and is a function of the eccentricity. The second limit is
virtually insensitive to the initial eccentricity, and closely resembles a new resonance
overlap condition (for circular orbits) developed in terms of the intersection between
first and second-order mean-motion resonances.
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1 Introduction

The question of orbital stability in the circular restricted three-body problem (CR3BP)
is a long-standing and complex problem. Our particular interest can be summarized
in the following manner. Assume a massless particle (e.g. asteroid) orbiting a central
star with mass m0 and perturbed by a massive planet m1. We will denote by a the
osculating semimajor axis of the particle, e its eccentricity, λ the mean longitude and
$ the longitude of perihelion. Elements with subindex 1 correspond to the perturber,
whose orbit is considered circular (i.e. e1 = 0) and exterior to that of the particle
(a < a1). We will also assume that all motion is restricted to the plane. Under these
considerations, given a certain eccentricity e for the particle, and fixing the angles at a
certain value, what is the critical semimajor axis that separates the domains of stable
and unstable motion?

This problem has been addressed by different methods, depending on the type of
stability under consideration. The simplest is the so-called Hill Stability, in which an
initial condition is said to be stable if its Jacobi constant CJ is larger than the value
CL1

it acquires at the L1 Euler-Lagrange point of the system. The particle will then
be trapped within a Hill zero-velocity region that excludes the position of m1. The
trajectory will never be able to cross the orbit of the perturber and will therefore
remain bounded.

The outcome of initial conditions that do not satisfy the Hill Stability criterion
is not obvious. While the condition CJ > CL1

is sufficient for stability, it is not
necessary. It is possible to find solutions that do not comply with this inequality, but
are nevertheless stable, at least for times of the order of Gyrs (e.g. Gladman 1993). As
we will show in this paper, some of these initial conditions lie within the librational
domain of mean-motion resonances, but others are non-resonant.

A second estimator, this time of orbital instability, is the Resonance Overlap crite-
rion, based on the work of Chirikov (1979) and first applied to the three-body problem
by Wisdom (1980). As its name indicates, it postulates that global chaos (and there-
fore orbital instability) is triggered by the overlap of adjacent mean-motion resonances
(MMRs). Wisdom concentrated on the case of circular orbits (e = 0) and first-order
commensurabilities. His overlap criterion stipulates that instability will occur whenever
the distance between two consecutive MMRs is smaller or equal to the sum of their
libration widths.

Using an analytical model which would later be known as the Second Fundamental
Model for Resonance (SFMR, Henrard and Lemaître 1983) and assuming that the sum
of the libration widths could be approximated by twice the size of the inner separatrix
of the commensurability farther from the perturber, Wisdom (1980) estimated that
the averaged semimajor axis a∗overlap leading to overlap may be approximated by:

a∗overlap = a1

[
1−D

(
m1

m0

)2/7]
(1)

where D = 1.3 is a constant. This expression assumes initial conditions such that the
resonant angles σ are zero, where the libration region of first-order resonances is at its
maximum.

Malhotra (1998) and Deck et al. (2013) presented new calculations of the overlap
limit, using a similar analytical model description for the resonant Hamiltonian but
with different degrees of approximations. Deck et al. (2013), for example, took into
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account that adjacent resonances do not have the same libration half-widths, while
both papers considered slightly different expressions for the resonance half-width. Their
results show the same functional form in terms of the planetary mass, although with
different numerical coefficients: D = 1.4 in the case of Malhotra (1998) and D = 1.46
for Deck et al. (2013).

Duncan et al. (1989) avoided analytical methods and attacked the problem using
numerical simulations with a symplectic mapping. Their results once again yielded the
same dependence onm1/m0, but with a larger coefficient:D = 1.49. Consequently, the
so-called (m1/m0)

2/7-law appears extremely robust to the modeling of the problem,
although the numerical factor shows a significant spread and is less reliable.

The case of eccentric orbits (e > 0) is more problematic. While numerical exper-
iments by Quillen and Faber (2006) seem to indicate that there should not be any
significant different in the resonant overlap limit for moderate eccentricities, analyti-
cal studies of Mustill and Wyatt (2012) and Deck et al. (2013) point in the opposite
direction. Both papers predict that even for low values of the eccentricity the overlap
distance occurs much farther from the planets and, more surprisingly, the dependence
with the planetary mass changes to (m1/m0)

1/5.

In this paper we revisit the resonance overlap criterion and its relation with the
Hill stability limit. For the overlap calculations, we once again make use of the second
fundamental model of resonance but present a new approach to the calculation of the
overlap condition. The main difference with respect to previous studies is twofold. First,
we show that for circular orbits there is no outer separatrix, and thus the basic idea of
equating the resonance separation to the sum of the separatrix widths is not obvious.

Second, we show that second-order mean-motion resonances are also important in
determining the instability limit, even for initial conditions where their libration widths
is minimum. Curiously, this new overlap criterion is very similar as obtained with the
classical model, although systematically closer to the planet. We also show that our
new overlap criterion can be used as a empirical estimate for the critical semimajor
axis (which we denote by aunstable) that marks the beginning of the chaotic sea and
completely unstable orbits.

For the Hill Stability, we present simple expressions to calculate this limit for any
initial condition, and compare their predictions with the resonance overlap. We show
that both criteria are different but complementary; while aunstable marks the lower
limit for global orbital instability, Hill stability marks the end of the stable and bounded
motion. In between lies a rugged region of the phase space dominated by complex
resonant structures where both stable and unstable orbits may be found.

Finally, we analyze the case of eccentric orbits. We find that even for e ∼ 0.4
the expression for aunstable deduced for circular orbits is a very good indication of
the global chaotic domain. The Hill Stability limit, however, is very sensitive to this
parameter, and the transition region between both regimes grows with the eccentricity.
Therefore a single criterion cannot be proposed as a unique law separating stable from
unstable motion, especially for eccentric orbits.
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2 The Resonant Hamiltonian

2.1 Delaunay and Resonant Canonical Variables

Since we will be working within the Hamiltonian formalism, we will introduce the usual
modified Delaunay canonical variables:

L =
√
µa ; λ

S =
√
µa(1−

√
1− e2) ; −$ (2)

Λ ; λ1

where µ = Gm0 and G denotes the gravitational constant. Since the longitude of
pericenter of the planet is constant, it does not appear as a variable of the dynamical
system. Λ is the canonical momentum associated to λ1, and its value is not known a
priori. The Hamiltonian of the system in the extended phase space can be written as:

F (L, S, Λ, λ,$, λ1) = −
µ2

2L2
+ n1Λ−R(L, S, λ,$, λ1; a1, e1, $1), (3)

where n1 is the mean motion of the perturber and R represents the disturbing function
due to the gravitational perturbations of m1.

Let us now suppose that the massless particle lies in the vicinity of a generic
(p+ q)/p mean-motion resonance with the perturber, such that

(p+ q)n1 − pn ' 0, (4)

where n is the mean motion of the particle and both p and q are positive integers. It
is then convenient to introduce a set of resonant canonical variables (S,N,Λ′, σ, ν,Q)
which are related to the Delaunay variables through

S ; qσ = (p+ q)λ1 − pλ− q$
N = S − L− Λ ; qν = −(p+ q)λ1 + pλ+ q$1

Λ′ = pΛ+ (p+ q)L ; qQ = λ− λ1,
(5)

where qQ is the synodic angle. The inverse transformation can be obtained easily after
some cumbersome algebraic manipulations, and yields:

S ; M = σ + (p+ q)Q

L =
p

q
(N − S) + 1

q
Λ′ ; M1 = −ν + pQ

Λ = − (p+ q)

q
(N − S)− 1

q
Λ′ ; $ = $1 − σ − ν,

(6)

whereM andM1 are the mean anomalies. Since the transformation (L, S, Λ, λ,$, λ1)→
(S,N,Λ′, σ, ν,Q) is canonical, the Hamiltonian of the extended phase space is pre-
served.
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2.2 Averaging over the Synodic Angle

In the vicinity of a mean-motion resonance, both σ and ν are slowly varying angles (i.e.
long-period variables) while Q has a high frequency of the order of the orbital periods
of the bodies. Moreover, the amplitude of the short-period variations are usually much
smaller than their resonant and secular counterparts, and therefore have little effect
on the long-term evolution of the system. It is thus useful to average the Hamiltonian
with respect to Q and eliminate the short-period variations.

The averaging is usually accomplished through a perturbation technique such as
Hori’s method (Hori 1966, see also Ferraz-Mello 2007). Basically, we search for a Lie-
type canonical transformation

B(S∗, N∗, Λ′∗, σ∗, ν∗, Q∗) : (S,N,Λ′, σ, ν,Q)→ (S∗, N∗, Λ′∗, σ∗, ν∗, Q∗) (7)

to new (primed) variables such that the new Hamiltonian F ∗ is independent of Q∗.
Although the construction of B is complicated when extended to high orders of the
small parameter (here the ratiom1/m0), when restricted to first order it can be simply
thought as the definite integral of F over Q in the interval [0, 2π]. The same proce-
dure can also be performed numerically, yielding a semi-analytical expression for the
averaged Hamiltonian (e.g. Moons and Morbidelli 1993, Beaugé 1994).

Whichever the method adopted, we obtain a new function F ∗(S∗, N∗,∆′∗, σ∗, ν∗)
which is cyclic in Q∗. Consequently, the corresponding canonical momenta Λ′∗ is an
integral of motion of the system. Notice from the transformations (6) that Λ′∗ just
appears as an additive constant in the relation between the momenta. So, independently
of the initial conditions, we can just choose Λ′∗ = 0 and simplify both the Hamiltonian
and the canonical transformations.

In the averaged variables, the momenta in the Delaunay and resonant sets are
related via:

L∗ =
p

q
(N∗ − S∗) ; Λ∗ = − (p+ q)

q
(N∗ − S∗), (8)

and the averaged Hamiltonian F ∗ can be written as:

F ∗(S∗, N∗, σ∗, ν∗) = −µ
2q2

2p2
(N∗−S∗)−2− (p+ q)

q
n1(N

∗−S∗)−R∗(S∗, N∗, σ∗, ν∗),
(9)

where R∗ is now the disturbing function averaged over short-period terms. We define
the value of L∗ at exact resonance as:

µ2

L∗res
3 = n∗res =

(p+ q)

p
n1, (10)

and consider only initial conditions close to exact resonance. We can then expand the
unperturbed part of F ∗ as a Taylor series around L∗res. Retaining only second-order
terms, we can write:

F ∗(S∗, N∗, σ∗, ν∗) ' −A0(N
∗ − S∗)2 +A1(N

∗ − S∗)−R∗(S∗, N∗, σ∗, ν∗), (11)

where Ai are positive constants that depends only on p, q and the masses:

A0 =
3p2µ2

2q2L∗res
4 ; A1 =

3pµ2

qL∗res
3 . (12)
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2.3 The Circular Problem

We now consider the case where m1 moves in a circular orbit (i.e. e1 = 0). The dis-
turbing function is only function of σ, the auxiliary angle ν is cyclic and the associated
momentum N∗ is an integral of motion. From equations (5) and (8) we can write:

N∗ = S∗ +
q

p
L∗ =

√
µa∗

(
(p+ q)

p
−
√
1− e∗2

)
= const. (13)

This implies that, given any initial values of the mean semimajor axis and eccentricity,
their time evolution will preserve the value of N∗. Both orbital elements are thus not
independent, but coupled. The complete Hamiltonian can now be written as:

F ∗(S∗, σ∗;N∗) = −µ
2q2

2p2
(N∗ − S∗)−2 − (p+ q)

q
n1(N

∗ − S∗)−R∗(S∗, σ∗;N∗),
(14)

which is a single degree-of-freedom system parametrized by N∗.
We now turn our attention to the expression of R∗(S∗, σ;N∗) adopted for most

analytical resonance models. From the Laplace expansion of the disturbing function,
we will retain only the lowest-order secular and resonant terms, and thus write:

R∗ =
Gm1

a1

(
ĝ0,0(α

∗) + ĝ0,1(α
∗)e∗

2
+ ĝ1,0(α

∗)e∗ cosσ∗
)
. (15)

In the case of first-order resonances, the expressions for the coefficients can be found
in Brouwer and Clemence (1961) or Murray and Dermott (1999), and read:

ĝ0,0(α
∗) =

1

2
b
(0)
1/2(α

∗)

ĝ0,1(α
∗) =

1

8

[
2α∗Dα + α∗

2
D2
α

]
b
(0)
1/2(α

∗)

ĝ1,0(α
∗) = −1

2

[
2(p+ q) + α∗Dα

]
b
(p+q)
1/2 (α∗),

(16)

where Dα ≡ d/dα is the differential operator, and b(j)1/2 are Laplace coefficients.
We will make two additional approximations. First, we will evaluate all coefficients

at the exact resonance α∗res = a∗res/a1. Since the perturbation is small compared to
the unperturbed Hamiltonian, and we are only interested in the vicinity of the exact
resonance, then the error committed here is not significant. Second, we will approximate
the eccentricities by:

e∗ '
√

2S

L∗
'

√
2S

L∗res
. (17)

The same arguments mentioned before are valid here, and again the error generated by
this approximation is not relevant, at least up to eccentricities of the order of e ∼ 0.5.

Introducing these simplifications into (14), we can write the complete averaged
resonant Hamiltonian for the circular problem as:

F ∗(S∗, σ∗;N∗) = −A0(N
∗ − S∗)2 +A1(N

∗−S∗)−C1S
∗−C2

√
2S∗ cosσ∗, (18)
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where we have dropped constant terms, and the new coefficients are given by

C1 =
Gm1

a1L∗res
ĝ0,1(α

∗
res) ; C2 =

Gm1

a1
√
L∗res

ĝ1,0(α
∗
res). (19)

Expression (18) constitutes a very simple analytical model for mean-motion resonances
in the circular restricted three-body problem and, apart from the Taylor expansion of
the unperturbed part, is identical to the Second Fundamental Model of Resonance
(Henrard and Lemaître 1983).

2.4 Fixed Points and Separatrix

For first-order (q = 1) resonances, all fixed points are located in either σ∗ = 0 or
σ∗ = π, and parametrized by the value of N∗. If this parameter is less than a critical
value

N∗c =
1

2A0

[
A1 + C1 +

(
27

4
A0C

2
2

)1/3]
, (20)

the system contains a single (stable) fixed point at σ∗ = 0. Conversely, if N∗ > Nc, the
Hamiltonian F ∗ contains three fixed points: two centers (one located at σ∗ = 0 and a
second one at σ∗ = π) plus one unstable point at σ∗ = π. The corresponding values of
the momentum S∗ can be calculated analytically solving the equations of motion. The
results, given in complex trigonometric and hyperbolic functions, can then be converted
back to a∗ and e∗.

Figure 1 plots the families of fixed points for the 2/1 MMR, adopting Jupiter
(present mass) as the perturber. The gray curves correspond to different values of
N∗ = const, and the critical value N∗c is marked by a light black dashed curve.
The top half-plane (positive values of e∗ cosσ∗) correspond to σ∗ = 0, and the fixed
points define what is usually known as the pericentric branch. All fixed points of
the pericentric branch are linearly stable. They have low eccentricity far from exact
resonance (shown here as a broad vertical red line), but the value of e∗ increases as
a∗ → a∗res. In no case, however, does the fixed point intersect the nominal location of
the resonance, but is always located at smaller values of the semimajor axis.

The bottom half-plane corresponds to σ∗ = π. For low eccentricities, the solu-
tions are again stable, and form what is known as the apocentric branch. For higher
eccentricities (broad dashed curve) the solutions are unstable and correspond to the
hyperbolic fixed points from which stem the separatrix of the libration regions.

Ferraz-Mello (1988) found a simple expression relating the semimajor axis and
eccentricity for all fixed points. Although his calculations employed the asymmetric
expansion of the disturbing function (Ferraz-Mello 1987), the same procedure can be
followed in the case of the SFMR. We begin writing the condition dσ∗/dt = 0 for the
fixed points as

2A0(N
∗ − S∗)−A1 − C1 −

C2√
2S∗

cosσ∗ = 0, (21)

where we will consider the resonant angle equal to either zero or π. Instead of expressing
this as an algebraic equation in S∗, we recall that L∗ = p(N∗−S∗)/q from which we
can simply obtain:

C2√
2S∗

cosσ∗ = 2A0
q

p
L∗ −A1 − C1 = 2A0

q

p

(
L∗ − L∗c

)
, (22)
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Fig. 1: Broad black curves show the families of fixed points for the 2/1 MMR in the
(a∗/a1, e

∗) plane, considering Jupiter as the perturber. The top half-plane (positive
values of e∗ cosσ∗) correspond to σ∗ = 0, while the bottom half-plane corresponds to
σ∗ = π. The position of the nominal resonant mean semimajor axis is marked by a
broad red vertical line. The gray curves correspond to different values of N∗ = const
(with N1 < . . . < N4). the critical value N∗c is marked by a light black dashed curve.

where

L∗c =
p

q

A1 + C1

2A0
(23)

constitutes the equilibrium value of the Delaunay variable.
We next approximate

√
2S∗ ' e∗

√
L∗ ' e∗

√
L∗res and, after some simple substi-

tutions, obtain the eccentricity e∗ and the value of L∗ for all fixed points:

1

e∗
cosσ∗ =

2A0q

C2p

√
L∗res

(
L∗ − L∗c

)
. (24)

Values of L∗ < L∗c give rise to the pericentric branch, while other values generate the
apocentric and hyperbolic families. Note, however, that the value of N∗ is implicit
in this equation, which may complicate the calculation of the libration width. Also,
there is no information of the stability of each solution, which must be estimated by
additional calculations. Finally, (24) predicts that the stable and unstable branches are
completely symmetrical (or anti-symmetrical) with respect to L∗c . This is not exactly
true, but sufficiently accurate for most purposes.
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Fig. 2: Structure of the 2/1 MMR for the restricted three-body problem with Jupiter
in a circular orbit. Thin continuous lines show the locus of stable solutions (pericentric
branch), while broad curves mark both branches of the separatrix. The libration region
appears only for N∗ ≥ N∗c (shown with a dashed black curve). Note that the inner
branch of the separatrix extends to values of e∗ cosσ∗ < 0 which implies σ∗ = π.

The main advantage of (24), however, is its simplicity and ease of use. It also shows
clearly the hyperbolic natures of the pericentric and apocentric branches and how the
locus of fixed points tend to parabolic orbits as we approach exact resonance.

For N∗ > N∗c we can calculate the borders of the libration region. These will be
given by the values of K =

√
2S∗ cosσ∗, with σ∗ = 0, π such that the Hamiltonian

coincides with the value at the hyperbolic fixed point. Together with the value of N∗

we can then transform them into orbital elements and calculate the values: (a∗in, e
∗
in)

and (a∗out, e
∗
out). The first pair will define the branch of the separatrix separating the

libration zone from the inner circulation region or, more correctly, its intersection with
the σ∗ = 0, π axis, while the second will mark the appearance of the outer circulation
domain.

Figure 2 shows the structure of the MMR with Jupiter as the perturber (present
mass). The red curves were calculated using the SFMR Hamiltonian (18), while the
black curves show results using a semi-analytical model for the resonant Hamiltonian
in which the averaged disturbing function is evaluated numerically at every point.
The SFMR shows very good agreement with the exact calculation, especially for low
eccentricities, which justifies the use of the analytical model for near-circular orbits.
However, the SFMR systematically underestimates the libration width, a datum that
will be taken into consideration in later stages of this work.
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To simplify our notation, we will denote by inner separatrix the locus of points
separating the inner circulation region from the librational domain, calculated for all
N∗ ≥ Nc. Similarly, we will refer to the boundary between the libration and outer
circulation domains as the outer separatrix of the resonance. Note that the inner
branch of the separatrix extends below e∗ cosσ∗ = 0, indicating that it is also present
for σ∗ = π; thus, the limit of the librational domain for circular orbits (e∗ = 0) is not
given by the curve N∗ = N∗c but for larger values of the integral of motion.

An important feature of Figure 2 that has received little attention is the fact that
the outer separatrix does not extend down to circular orbits. Although for every value
of N∗ > Nc the system contains both an inner and outer branch, these appear in the
(a∗, e∗) plane with different eccentricities. This is a natural outcome of the fact that
both sets (a∗in, e

∗
in) and (a∗out, e

∗
out) must lead to the same value of N∗.

If we analyze this figure for a given (fixed) value of the eccentricity, then for e∗ ≥
0.18 both branches of the separatrix will be present and the librational domain will be
contained within. For e∗ < 0.18, however, there is no outer branch of the separatrix. In
other words, for this range of eccentricities all values of the semimajor axis a∗ < ares
will yieldN∗ < Nc and will thus correspond to a circulation. There is in fact a libration
region, but is much smaller, and limited by the inner separatrix and the value of the
semimajor axis such that N∗ = Nc.

3 The Classical Resonance Overlap Criterion

Wisdom (1980) established what may be called the condition for the classical resonance
overlap in the CR3BP. Following the ideas of Walker and Ford (1969) and Chirikov
(1979), overlap is said to occur when, for a given value of the mean eccentricity e∗, the
distance ∆a∗res between adjacent mean-motions resonances is smaller or equal to the
sum of their libration widths∆a∗sep. The same idea was also adopted by later analytical
calculations, such as Malhotra (1998) and Deck et al. (2013), although this last paper
improved the model taking into account that the half-widths between neighboring
MMRs are not equal.

All these estimates also employed the SFMR as the resonance model, although with
different degrees of approximation of the Hamiltonian, or in the deduction of the reso-
nance width. In many cases these approximations were made in order to obtain results
in simple explicit expressions, even though the errors introduced were not adequately
checked.

Finally, resonance overlap was calculated in the representative plane defined by
σ∗ = $ = 0 and evaluated at e∗ = 0. These choices of initial conditions also allowed
to consider only the role of first-order commensurabilities. Second-order MMRs have a
minimum libration size for σ∗ = 0, while the separatrix width of third-order resonances
tends to zero for circular orbits. So, focusing on first-order resonances appears a good
approximation, especially when studying overlap for circular orbits.

In this section we once again deduce the resonance overlap limit for circular orbits
(i.e. e∗ = 0), following the same assumptions as described above. We will, however,
reduce the approximations to a minimum, even if this implies results which are not in
explicit analytical expressions.



The resonance overlap and Hill stability criteria revisited 11

3.1 Libration Width for First-Order Resonances

For any given first-order mean-motion commensurability (i.e. q = 1), we wish the
estimate the width of the libration domain for circular orbits. In other words, we are
interested in the distance ∆a∗sep(p) between the nominal position of the (p + 1)/p
resonance and the edge of the inner branch of the separatrix at e∗ = 0.

We begin with the expression (18) for the Hamiltonian of the SFMR. Since the
value of N∗ is constant, we can add a quantity equal to C1N

∗ with no change in the
dynamics. Thus, we obtain a new expression given by:

F ∗ = −A0(N
∗ − S∗)2 + (A1 + C1)(N

∗ − S∗)− C2

√
2S∗ cosσ∗ (25)

or, writing (N∗ − S∗) = L∗/p,

F ∗ = −A0

p2
L∗

2
+

(A1 + C1)

p
L∗ − C2

√
2S∗ cosσ∗. (26)

We have kept the denomination of this function, although Hamiltonians (25) and (26)
differ by a constant amount. We can simplify this expression even further. Using the
definition of L∗c given by (23) we can write (A1 + C1) = 2A0L

∗
c/p. Introducing this

equality in the Hamiltonian, and after dividing both sides by a factor A0/p
2, we obtain

F̂ ∗ ≡ p2

A0
F ∗ = −L∗2 + 2L∗c L

∗ − C2p
2

A0

√
2S∗ cosσ∗. (27)

To calculate the libration width for a given value of N∗ we must first determine the
value of the Hamiltonian at the hyperbolic fixed point. From (24) we can write the
value of S∗N and L∗N at a given fixed point as:

√
2S∗N = −C2p

2A0

(
L∗N − L∗c

)−1

, (28)

where both S∗N and L∗N are function of N∗. Substituting into (27), the Hamiltonian
of the hyperbolic fixed point will be given by:

F̂ ∗hyper(N
∗) = −L∗N

2
+ 2L∗c L

∗
N +

C2p
2

A0

√
2S∗N . (29)

We now search for those values of L∗ = L∗sep and S∗ = S∗sep such that the
Hamiltonian at σ∗ = 0 attains the same value. This is simply:

F̂ ∗σ∗=0(N
∗) = L∗sep

2
+ 2L∗C L∗sep −

C2p
2

A0

√
2S∗sep. (30)

Note, however, that L∗sep and S∗sep are not independent, but related through the chosen
value of N∗. Without any loss of generality, we can then write:

L∗sep = L∗N +∆L∗ ; S∗sep = S∗N +∆S = S∗N −
1

p
∆L∗, (31)

where the last equality stems from the constraint that N∗ = const. Since we are
interested in calculating the libration half-width for circular orbits (i.e. S∗sep = 0), the
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second equation reduces to S∗N = ∆L∗/p. Introducing these relations into expressions
(29) and (30) and equating the values of both Hamiltonians, we obtain

(∆L∗)2 + 2(L∗N − L∗c) ∆L∗ +
C2p

3/2

A0

√
2∆L∗ = 0, (32)

which admits the non-trivial solution:

∆L∗ ≡ L∗sep − L∗N = p

(
−3C2

4A0

)2/3

. (33)

We can now calculate the distance ∆L∗sep between the inner separatrix and the
exact resonance as

∆L∗sep = L∗sep−L∗res ' (L∗sep−L∗N )+(L∗N −L∗c) =
(
1+

√
2

3

)
p

(
−3C2

4A0

)2/3

. (34)

From (12) and (19) we can write

−3C2

4A0
=
m1

m0

L∗c
3/2

2p2
αres ĝ1,0(α

∗
res) '

0.4

p

m1

m0
L∗c

3/2
, (35)

where we have used the approximation α∗res ĝ1,0(α
∗
res) ' −0.8p (Malhotra 1998). Last

of all, converting the results to semimajor axis, we obtain

∆a∗sep(p) ' 1.6 a1

(
m1

m0

)2/3(
m0

m0 +m1

)1/3
p

(p+ 1)2/3
, (36)

which is very similar to the expression given by Wisdom (1980). However, in order to
preserve accuracy even for low-degree resonances, we will avoid any analytical trans-
formation between p its value of a∗res.

3.2 Separation Between First-Order Resonances

For this step we will follow the deduction presented in Morbidelli (1999) although, once
again, trying to circumvent any non-essential simplifications that may affect accuracy
of our model.

The nominal location of the (p+ 1)/p and (p+ 2)/(p+ 1) MMRs can be written
as:

a∗res = a1

(
m0

m0 +m1

)1/3(
p

p+ 1

)2/3

; a∗
′
res = a1

(
m0

m0 +m1

)1/3(
p+ 1

p+ 2

)2/3

(37)
from which their separation is given by:

∆a∗res(p) = a1

(
m0

m0 +m1

)1/3[(
p+ 1

p+ 2

)2/3

−
(

p

p+ 1

)2/3]
. (38)
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We now assume that p� 1, and expand each of the terms inside the square brackets
as a Taylor series. Retaining only first-order terms, we can approximately write:

(
p

p+ 1

)2/3

=

(
1− 1

p+ 1

)2/3

' 1− 2

3

1

(p+ 1)(
p+ 1

p+ 2

)2/3

=

(
1− 1

p+ 2

)2/3

' 1− 2

3

1

(p+ 2)
.

(39)

Finally, introducing both expressions into (38), and after some simple algebra, we
obtain:

∆a∗res(p) '
2

3
a1

(
m0

m0 +m1

)1/3
1

(p+ 1)(p+ 2)
. (40)

This is moderately different from the expression in Wisdom (1980) and Deck et al.
(2013) which adopt ∆a∗res = (2a1)/(3(p+1)2). On one hand, it is important to explic-
itly keep the mass ratio between the perturber and the star, which might be important
for massive planets, or even binary stellar systems. On the other hand, the difference in
the dependence on p is also significant, especially for low-degree resonances. It is simple
to see that while the approximate relation adopted by Wisdom (1980) systematically
overestimates the true separation, the opposite occurs for (40). We found that a much
more accurate estimate, even for low values of p may be written as:

∆a∗res(p) '
2

3
a1

(
m0

m0 +m1

)1/3
1

(p+ 1)(p+ 3/2)
, (41)

in other words, half way between both of the original approximations.

3.3 The Classical Overlap Condition

Having expressions for the libration half-width (eq. (36)) and the separation between
consecutive first-order resonances (eq. (41)), we can now proceed to calculate the con-
dition for resonance overlap. Following Wisdom (1980), this is said to occur whenever
the order of the resonance acquires a value p = pc such that:

∆a∗res(pc) = 2∆a∗sep(pc). (42)

Deck et al. (2013) improved this estimation replacing the right-hand side with∆a∗sep(pc)+
∆a∗sep(pc + 1), leading to a significant change in the results. Nevertheless, as will be
discussed further on, this modification of the classical condition will not prove necessary
and we will adopt expression (42).

Whatever our choice, the idea remains the same: overlap is defined when the inner
separatrix of the (pc + 1)/pc MMR intersects the outer branch of the (pc + 2)/(pc +
1) resonance. As in the original Chirikov criteria, the crossing of separatrices of two
commensurabilities generates a dynamical route leading to orbital instability. However,
it is important the stress that mere proximity between resonances is not sufficient;
overlap requires the existence and intersection of two separatrix. If both are not present,
then overlap cannot be said to occur.
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Solving equation (42), we obtain the value of pc that signals resonance overlap (for
circular orbits) according to this model as:

4.8 pc(pc + 3/2)(pc + 1)1/3 '
(
m1

m0

)−2/3

. (43)

Since giving results in values of pc is awkward, we can transform them to values of a∗

using expression (37). As before, we avoid analytical simplifications and any a-priori
assumption that pc � 1, but choose to perform a one-dimensional numerical fit of the
critical semimajor axis as function of m1/m0. The result yields:

a∗overlap ' a1
[
1− 1.225

(
m1

m0

)0.28]
. (44)

This, then, is the minimum initial mean semimajor axis, for circular orbits, such that
the massless particle lies in an unstable region generated by the overlap of first-order
interior MMRs with a perturbing planet (also in circular orbit) of mass m1.

It is important to stress that this calculation, as well as the resulting expression,
is given in averaged orbital elements. This is vital when attempting to compare its
predictions with numerical simulations of the exact Newtonian differential equations.
To obtain the overlap limit in osculating semimajor axis we must perform the back
transformation, which yields the following approximate relation

aoverlap ' a1
[
1− 1.06

(
m1

m0

)0.275]
. (45)

This expression can now be compared directly with numerical integrations, as long as
the initial angles are chosen equal to zero. Note that the exponents of both descriptions
of the overlap criterion are similar to 2/7 ' 0.286, but slightly smaller.

4 Numerical Tests of the Overlap Criteria

4.1 The ∆e Indicator

An interesting tool to analyze the behavior of planetary systems is the so-called Max-
imum Eccentricity Method (MEM) (e.g. Dvorak et al. 2004), which follows the maxi-
mum value of e attained by a given body during a numerical simulation. For initially
eccentric orbits, a better indicator is the difference between the maximum and mini-
mum values, or the value of ∆e.

Although it is not a measure of chaotic motion, this ∆e indicator is an extremely
useful tool to map the resonant structure in N-body problems. Its application is very
simple. A grid of initial conditions in a representative plane is integrated numerically
for a timespan T larger than the period of the slowest angle of the system. During the
integration we keep track of the minimum and maximum values attained by one of the
actions (call it J), and calculate the difference ∆J = Jmax − Jmin. Finally, we plot
the value of ∆J as a color graph in the plane of initial conditions.

Figure 3 shows an example for the simple pendulum. The left-hand frame shows
the level curves of the Hamiltonian in the (J, θ) plane. Since the system has only a
single degree of freedom, the plane is the complete phase space. The stable fixed point
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Fig. 3: Left: Phase plane of the simple pendulum. Right: Maximum increment of the
momentum J for a grid of initial conditions in the plane.

appears at the center of the graph (J = 0, θ = 0), while the separatrix is highlighted
in dashed lines.

We now divide the plane in a 100× 100 grid of initial values of the action and the
angle. Each initial condition is then integrated for a total time T . The resulting values
of J are shown in a color plot on the right-hand side of the figure. Initial conditions
close to the stable fixed point appear with a dark color, indicating very small values of
∆J . Conversely, initial conditions close to the separatrix appear as very light colored
regions, corresponding to large changes in the momentum. Thus, even if we were not
able to obtain explicitly the phase curves of the Hamiltonian (i.e. plot on the left), the
color plot on the right would allow us to estimate both the location of possible fixed
points as well as the separatrix of the resonance region.

Having defined the method, we can apply it to a mean-motion resonance in the
circular restricted three-body problem. Figure 4 shows the resulting map for the 2/1
MMR in the representative plane (a/a1, e) of (osculating) initial conditions, where all
angles were chosen initially equal to zero. All initial conditions were integrated with a
Bulirsch-Stoer based N-body code for T = 105 orbits of the perturber, and the color
code is the difference in eccentricity attained by each particle (i.e. ∆e). Thin gray lines
mark different values of N∗, with Nc highlighted with a dashed curve.

We can now compare these results to the predictions of the semi-analytical reso-
nance model. The predicted pericentric branch is shown as a dashed black curve, while
both separatrix branches are indicated with broad black lines. The agreement is very
good, indicating that the semi-analytical model is a very precise tool for estimating the
features of a given mean-motion resonance. More importantly, it shows that, for circu-
lar orbits, there is no outer separatrix for the 2/1 MMRs, and the same holds for any
other first-order commensurability. For e = 0, all initial conditions with a < ares show
practically no change in the eccentricity and remain close to circular orbits throughout
the integration. Only those initial conditions with a > ares show an increase in the
eccentricity, reaching a maximum at the location of the inner branch of the separatrix,
roughly located at a ' 0.64a1.
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Fig. 4: Values of ∆e in the representative plane (a/a1, e) of osculating initial condi-
tions in the vicinity of the 2/1 MMR with Jupiter (current mass). All angular variables
were initially chosen equal to zero. The pericentric branch of zero-amplitude solutions
is shown as a dashed black curve and both branches of the separatrix in broad black
continuous lines. Curves of constant N∗ are indicated with gray lines, with Nc high-
lighted as a dashed curve. The regions of maximum variation of the eccentricity appear
red, while those associated with small changes are indicated in blue.

Again, the nonexistence of the outer separatrix for low eccentricities is the result of
plotting the representative plane in non-canonical variables. For all values of N∗ ≥ Nc
both branches of the separatrix exist, although with different values of the semimajor
axis and eccentricity.

4.2 Large-scale Dynamical Map of the Representative Plane

In order to compare the different versions of the resonance overlap criterion, we con-
structed a dynamical map in the plane (a/a1,m1/m0), with 800 values of the osculat-
ing semimajor axis and 200 values of the mass ratio between m1/m0 ∈ [10−6, 10−2].
Initial osculating eccentricities and angles where chosen equal to zero, and all orbits
were integrated for T = 105 orbital periods of the perturber. Results are shown in Fig-
ure 5, where blue regions mark small changes in the eccentricity, and dark red indicate
hyperbolic motion and/or escapes.
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Fig. 5: ∆e map of the (a/a1,m1/m0) plane of initial conditions (in osculating ele-
ments) with circular orbits. Final hyperbolic orbits are shown in dark red. The colored
curves are different predictions of resonance overlap: Wisdom’s criterion withD = 1.30
(black), the analytical expression by Deck et al. (2013) with D = 1.46 (blue), numeri-
cal fit by Duncan et al. (1989) with D = 1.49 (red), and the criterion developed here
(cyan). The location of the main first-order MMRs are indicated with white text.

The map shows the different resonances present in this interval of semimajor axis,
starting with the 2/1 MMR at a/a1 ' 0.63, up to first-order resonances with p→ 20
for semimajor axis ratios above 0.95. These resonances generate a “saw-tooth” shape
limit for the unstable region. As we will see further on, not all correspond to first-order
commensurabilities. The same figure shows, in continuous curves, the predictions of the
different overlap criteria discussed in the previous section. To allow for an adequate
comparison, all the values of a∗overlap were transformed to osculating semimajor axes.

While all the criteria appear similar, the expressions deduced by Duncan et al.
(1989) and Deck et al. (2013) seem a good fit to the lower extrema of the saw-tooth
structure. In the case of the value given by Duncan et al. (1989), this is not unexpected
since it was obtained by a least-square fit of a series of numerical simulations using a
symplectic map. The black curve, corresponding to the original prediction by Wisdom
(1980), passes through the middle of the saw-tooth region, as though these structures
were evened out. The valueD = 1.30 then appears to yield a better “average” boundary
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between the stable and unstable domains. Last of all, the broad cyan curve presents
the predictions of our model, as given by eq. (45). Although it has a different functional
form, it yields practically the same results as Wisdom (1980) for, say, m1/m0 < 10−4.
For larger masses, however, there is an increasing and noticeable discrepancy, and our
values are systematically closer to the perturber.

Before pursuing a more detailed comparison between these models, it is important
to review whether the assumptions behind the resonance overlap criterion are in fact
consistent with the structures shown in the dynamical maps. First, there is evidence
of second-order resonances (5/3, 7/5, 9/7, etc.), particularly close to the instability
limit, that interact with the first-order MMRs and contribute to generate the chaotic
domain. These are not considered in the overlap criterion developed so far.

A second feature that can be perceived from the dynamical map is that the outer
separatrix of the first-order MMRs appears to have little effect in the dynamics of the
system. The reason behind this was mentioned before: the outer separatrix (located
at a < ares) only exists for eccentricities above a certain threshold, and is not present
for circular orbits. Then, the only truly resonant region for circular orbits occurs for
a > ares and is characterized by the inner separatrix. Thus, the idea of using the
libration width for the inner separatrix as a proxy for the outer branch is questionable,
at least for circular orbits.

4.3 New Criterion with 1st and 2nd-order MMRs

To analyze this point in more detail, Figure 6 shows the same dynamical map as before,
only this time we have superimposed the nominal position of the first and second-
order MMRs (dashed black and green lines, respectively) in terms of the osculating
semimajor axis. While a∗res is a weak function of the perturbing mass (and actually
decreases for larger values of m1), the difference between a∗ and a shows a much
stronger dependence. Moreover, our choice of angles for the representative plane (i.e.
λ = λ1 = $ = 0) corresponds to the maximum value attained by the semimajor axis
due to short-period oscillations, which leads to exact resonance occurring closer to the
planet for increasing m1.

The same figure also shows, in continuous black curves, the inner separatrix for the
first-order commensurabilities. We can now see a much clearer agreement between the
resonant structure and the results of the numerical simulations. As we consider larger
values of m1, the region close to the inner separatrix of each first-order resonance
becomes increasingly chaotic, generating a region of orbital instability, characterized
by ∆e → 1. Concurrently, a different chaotic domain appears, linked to second-order
commensurabilities, whose effects have been almost negligible until that point. The
size of both chaotic regions increase with the perturbing mass until, at some point,
both intersect. Global chaos then sets in and most initial conditions between both
commensurabilities become unstable.

A complementary view is presented in Figure 7, in the form of new maps in the
(a/a1, e) plane for five values of m1/m0. As before, dark regions are associated to
small changes in the eccentricity during the total integration time, while the opposite
occurs for initial conditions identified with lighter tones. The location of second-order
resonances are indicated in gray lines, while the separatrix of first-order commensura-
bilities are shown in color curves. These were calculated using a semi-analytical model
(e.g. Beaugé 1994) and not with the SFMR to allow for a better correlation with
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Fig. 6: Same dynamical map shown in the previous figures, this time superposed with
the resonant structure of first (black) and second-order (green) MMRs. The location
of each pericentric branch in shown in dashed lines, while the extension of the inner
separatrix for circular orbits (first-order resonances only) is shown in continuous lines.
The Cyan curve shows the result of the new resonance overlap criterion developed using
these resonances. The broad white curve, corresponding to eq. (49), is the approximate
location of the beginning of the global unstable region.

the numerical results. It is important to keep in mind, however, that the separatrix
have been drawn assuming isolated resonances and, as such, do not take into account
perturbations form nearby commensurabilities.

While the dynamical features are complex and show evidence of the interaction
between many different resonances, some characteristics may be deciphered analyzing
their evolution as function of the planetary mass. For m1/m0 = 10−3.4, all initially
circular orbits with a/a1 > 0.88 are unstable, a value close to the intersection point
between the 11/9 resonance and the inner separatrix of the 5/4 commensurability.
Initial conditions with smaller semimajor axis appear primarily regular, although some
chaotic motion is visible in the vicinity of a/a1 ' 0.85, associated to a near-intersection
between the 9/7 resonance and the inner separatrix of the 4/3.

Betweenm1/m0 = 10−3.2 andm1/m0 = 10−3.1, the 9/7 and 4/3 MMRs intersect
and all circular initial conditions closer to the planet are unstable. A new isolated region
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Fig. 7: Top left-hand frame shows a zoom of the dynamical map in the (a/a1,m1/m0)
plane presented in the previous figure. Five values of the perturbing mass are high-
lighted with horizontal black lines. The intersection between adjacent first and second-
order resonances are indicated with black circles. The remaining graphs present new
dynamical maps in the (a/a1, e) plane for each value of m1/m0. The location of the
second-order resonances are indicated with gray lines, while the separatrix of first-order
MMRs are shown in different colors. Each commensurability is indicated on the top of
the frames.

of chaotic motion appears at a/a1 ' 0.80, generated by the interaction between the 7/5
commensurability and the inner separatrix of the 3/2 resonance. For m1/m0 = 10−2.9
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this chaotic layer becomes more extensive and finally merges with the global instability
region for m1/m0 ' 10−2.7.

The same behavior can be observed for other values of the planetary mass and
semimajor axis. Thus, it appear that global instability may be estimated by the inter-
section of the inner separatrix (i.e. located at a > ares) of a given first-order MMR with
the nominal location of its adjacent second-order commensurability (i.e. black circles
in the top left-hand frame of Figure 7). In fact, the libration width of the second-order
resonance does not appear important at all. This result enormously simplifies the cal-
culations, since we do not require to model the resonance structure of the second-order
resonances; all we require is to estimate its location in the semimajor axis domain for
any given planetary mass.

These numerical results led us to postulate a new overlap criterion based in the
interaction between adjacent first and second-order MMRs. To calculate this new crite-
rion, we first write average mean motion of a generic first-order MMR and its adjacent
second-order commensurability as:

n∗res =
p+ 1

p
n1 ; n∗

′
res =

2p+ 3

2p+ 1
n1. (46)

This expression excludes “false” second-order resonances such as the 4/2 or 6/4, since
both the numerator and denominator present in n∗′res are odd numbers. The distance
between them can be calculated using the same procedure as in the Section 3.2, which
now gives:

∆a∗res(pc) = a1

(
m0

m0 +m1

)1/3[(
2pc + 1

2pc + 3

)2/3

−
(

pc
pc + 1

)2/3]
. (47)

For the libration half-width of the first-order commensurabilities we use expression
(36), analogous to our derivation of the classical overlap criterion. Equating (47) with
(36) we can solve for pc such that ∆a∗(pc) = ∆a∗res(pc). After transforming the result
in terms of the osculating semimajor axis a, we finally obtain our new overlap condition
as:

aoverlap ' a1
[
1− 0.91

(
m1

m0

)0.26]
, (48)

where both numerical coefficient were determined from a non-linear regression with val-
ues ofm1/m0 ∈ [10−7, 10−1]. Figure 6 shows, with a broad Cyan curve, the prediction
of this new criterion. Since the calculations are not exact, there is a slight difference
with respect to the actual resonance intersections. It is interesting to note that this
result is very similar to the one determined using the classical overlap condition (i.e.
Figure 5), although both were obtained with completely different assumptions.

Since the SFMR underestimates the separatrix width (see Figure 2), the predictions
of expression (48) fall short of the instability limit as shown in Figure 7. However, we
found that it is possible to improve the estimation simply changing the numerical
factor. The white curve in Figure 6 corresponds to the equation

aunstable ' a1
[
1− 0.75

(
m1

m0

)0.26]
, (49)

which has the same functional dependence with the perturbing mass as the new overlap
criterion, but with a smaller coefficient. Although this is an empirical correction of our
analytical result, it results in a fairly accurate estimate for the value for the osculating
semimajor axis that marks the beginning of the region of global instability.
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5 The Hill Stability Criterion

A different stability criterion may be defined in terms of the value of the Jacobi constant
CJ of the particle, as compared with its value CL1

at the L1 Lagrange point. If
CJ > CL1

, then the massless body is forever trapped in a zero-velocity curve that
encompasses the central mass m0, but which does not contain the perturbing mass
m1. In such a case the initial condition is said to be Hill Stable. Conversely, if the
initial conditions are such that CJ < CL1

, then the stability is not guaranteed, and
may suffer close approaches with m1 and become temporarily trapped by the smaller
primary. Its m0-centric motion will then be characterized by hyperbolic orbits and
thereby cataloged as unstable.

The Jacobi constant then constitutes a valuable asset with which to determine the
(Hill) stability of a given massless particle in the realm of the CR3BP. We will make
use of this feature to develop a complementary stability criterion that will later be
compared with the predictions of the resonance overlap criterion.

5.1 Hill Stability in Orbital Elements

The main problem with the practical application of this criterion is to calculate both the
Jacobi constant for L1 and its value for any given initial condition in orbital elements.
Equations usually found in the literature either make use of series expansions (which
may or not yield accurate results for large planetary masses) or require Cartesian
coordinates and velocities in the rotating reference frame. In the next paragraphs we
will introduce a way to overcome both limitations.

Seidov (2004) introduced closed formulas to calculate the position and Jacobi con-
stant for L1. Let us call rL1

the distance from m0 to L1. We can then write

rL1
= a1(1− δL1

) (50)

where the new auxiliary quantity will satisfy δL1
→ 0 as m1 → 0. Seidov (2004) found

that δL1
and the planetary mass are related through:

m1

m0
=

(1− δL1
)3(1 + δL1

+ δ2L1
)

δ3L1
(3− 3δL1

+ δ2L1
)

. (51)

Although this equation is exact for any value of m1, it is implicit in δL1
. Therefore,

in order to determine the position of L1 as function of the planetary mass, we must
solve it using successive approximations. Since δL1

is usually a small quantity, we can
rewrite (51) is a form more adequate for the iterative process. This is:

δ3L1
=

1

3
(1− δL1

)3(1 + δL1
+ δ2L1

)

(
m1

m0

)
+ δ4L1

− 1

3
δ5L1

. (52)

Choosing zero as the initial guess in the right-hand side, this expression can be solved
in just a few iterations, and yields very precise results even for large values of the
perturbing mass.

Having determined the location of the Lagrange point, the value of the Jacobi
constant CL1

can also be calculated using a closed formula. Again following Seidov
(2004), we can write:

CL1
=
G(m0 +m1)

a1

(
3− 12ε+ 15ε2 − 10ε3 − 4ε4

(1− 2ε− ε2)2

)
, (53)



The resonance overlap and Hill stability criteria revisited 23

where ε = δL1
(1− δL1

).
Our next task is the obtain an explicit equation for CJ for any massless particle

in terms of its orbital elements. Although the Jacobi constant is usually expressed
in Cartesian coordinates in the rotating reference frame, it is also possible to write
it in an inertial frame (e.g. Murray and Dermott 1999). Assuming initial conditions
λ = λ1 = $ = 0 (i.e. the particle is located in its pericenter and all bodies are aligned),
then we find:

CJ = 2n1

(
Gm0a(1− e2)

)1/2

+ 2G
(
m0

∆0
+
m1

∆1

)
− Gm0

a

(
1 + e

1− e

)
, (54)

where n1 is the mean motion of the perturbing planet, and ∆i are the distances from
the massless body to mi, given by:

∆0 = a(1− e)
∆1 = a1 − a(1− e).

(55)

With these simple expressions we may now calculate the boundary of the Hill
stability limit. Given values of m0, m1 and e, we search for the value of the semimajor
axis aHill such that CJ = CL1

. This procedure can be performed for a range of
planetary masses m1, from which we can construct our stability limit curve in the
(a/a1,m1/m0) plane.

An important point is that, contrary to the resonance overlap criterion, all the
expressions developed here are given in terms of osculating orbital elements. The only
drawback is that this criterion cannot be expressed in a simple closed form for arbitrary
values of m1. Although some approximations may be found in the literature (e.g.
Gladman 1993, Deck et al. 2013), usually based on the Hill description of the restricted
three-body problem, they are usually only accurate for small perturbing masses (of
the order of m1/m0 ∼ 10−4 and lower), and even then just in the circular case. In
comparison, the model developed above is still purely analytical and extremely fast to
use once implemented in a computer code.

5.2 Application to Circular Orbits

In order to compare the predictions of this criterion with those obtained from resonance
overlap, we will first analyze the case e = 0. Results are shown in Figure 8, again in
the foreground of the same dynamical map discussed in the previous section. However,
we have also highlighted in gray all initial conditions that are unstable within the
integration timespan. These include cases where the final orbit is hyperbolic as well as
those that cross the orbit of the perturber while retaining e < 1. The broad white curve
is the empirical proxy for aunstable, while the broad black curve is the prediction of
the present Hill Stability Criterion aHill. All versions of the resonance overlap criterion
are shown in thin continuous lines.

Figure 9 shows a zoom of the region around the spike near the 3/2 MMR. This plot
was constructed from a fresh set of numerical simulations covering a 300×300 grid in
semimajor axis and mass ratios. As before, all angles were initially set equal to zero
and the integration time for each initial condition was T = 105 orbits of the perturber.
Each spike shows a complex shape on the left side, but a significantly more smooth
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Fig. 8: Dynamical map for initially circular orbits (i.e. e = 0) and all angular variables
equal to zero, for a grid of initial conditions in the (a/a1,m1/m0) plane. This map
is equivalent to the one discussed extensively in the previous section, except that all
unstable initial conditions are highlighted in gray. The thin curves mark the predictions
of the different resonance overlap criteria; Black: Wisdom (1980), Blue: Deck et al.
(2013) and Red: Duncan et al. (1989), Cyan: new overlap limit defined in section 4.3.
The broad black curve shows the predictions of the Hill Stability Criterion, while the
broad white curve is the empirical global instability limit aunstable(m1/m0) given by
eq. (49).

edge on the right side. The origin of the dichotomy is not clear, although it could be
caused by higher-order resonances that are only visible in this level of detail.

As always, thin continuous lines shows the result of the different resonance overlap
criteria, while the broad white curve is the proxy for the beginning of the global insta-
bility region. Except for a big wedge around m1/m0 ' 10−2.4, this prediction of the
beginning of the chaotic sea appears very accurate. Again, with the exception of the
wedge, all initial conditions with a > aunstable (i.e. beyond the broad white curve) are
unstable.

The broad black curve shows the results of the Hill Stability limit. Although the
saw-tooth structure seems to be indifferent to the presence of the limit curve, the values
of ∆e are different on both sides. All orbits satisfying the condition a > aHill are in
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Fig. 9: Same as previous Figure, but now zooming in on a spike centered roughly around
the 3/2 mean-motion resonance. Notice the change in stability on both sides of the Hill
limit.

fact unstable, lending credibility to our expressions in terms of the orbital elements.
For smaller semimajor axes, however, the increase in eccentricity is significantly lower,
indicating that, although there is a certain excitation of the orbit, it is bounded and
not sufficient to render the motion unstable.

It is interesting to note that the region located between both stability criteria
(i.e. aHill < a < aunstable) is also characterized by sharp borders between stable
and unstable orbits. More importantly, the condition CJ > CL1

is sufficient but not
necessary for stability; initial conditions exist for which motion is always bounded to
the central mass even though the zero-velocity surface includes both primaries.

5.3 Application to Eccentric Orbits

Figure 10 shows the results of the calculation of the Hill Stability limit, in the (a/a1,m1/m0)
plane, for different values of e. The boundary for low masses is very sensitive to the
initial eccentricity, while the change seems less drastic for larger masses. Even so, even
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Fig. 10: The Hill Stability limit for different values of the particle’s eccentricity (iden-
tified by the number accompanying each curve).

a low eccentricity introduces a significant change in the stability limit, which should
be noticeable in a dynamical map.

Figure 11 now shows four dynamical maps of ∆e where, contrary to Figure 8,
we have not highlighted orbits that are unstable while maintaining low eccentricities.
Each frame corresponds to a different initial eccentricity of the particle, as indicated
in white text. As the eccentricity increases, so does the instability region close to
the planet, even for small perturbing masses. The libration width of each resonance
also increases, generating islands of very regular motion immersed in regions of highly
chaotic behavior. Many high-degree MMRs are noticeable for a → a1, as well as for
semimajor axis below that corresponding to the 2/1 commensurability. The resonance
structure thus becomes increasingly complex, much more so than observed for circular
orbits.

The broad black curve indicates the Hill Stability limit, as calculated for each
value of the eccentricity. We can see that it follows very closely the inner edge of the
chaotic domain, and it appears fairly clear that all initial conditions with a < aHill

are stable, at least for the total integration time (again set at T = 105 orbits of m1).
The broad Cyan curves correspond to the empirical value of aunstable developed in this
work, as calculated for circular orbits. Surprisingly, the same functional form shows a
very good agreement with the beginning of the global chaotic region, independently of
the eccentricity of the particle. Thus, it appears that this upper stability limit is an
extremely weak function of e, even up to e = 0.4.
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Fig. 11: Dynamical maps of ∆e in the (a/a1,m1/m0) plane of initial conditions for
four different values of the particles’ eccentricities (indicated within each frame). Small
changes in the eccentricity after 105 years integration time are shown in blue, while
unstable orbits leading to ejection are shown in red. In each plot, aunstable in shown
with a broad Cyan curve, while the Hill Stability limit (calculated for the specific value
of e) is shown in black. The dashed blue line shows the analytical derivation of the
overlap criterion for eccentric orbits developed by Deck et al. (2013).

Finally, the dashed blue line shows the predictions of the overlap criterion developed
for eccentric orbits by Mustill and Wyatt (2012) and later refined by Deck et al. (2013).
Using a simple analytical model for the growth of the libration domain as function
of the eccentricity, both papers deduce that the overlap limit has a functional form
proportional to (e(m1/m0))

1/5, although they differ in the value of the numerical
constant. Here we have adopted the version of Deck et al. (2013).
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Fig. 12: Dynamical map of ∆e for a grid of initial conditions in the (a/a1, e) plane of
osculating elements (all angles equal to zero), with Jupiter as the perturber. Integration
time was set to T = 103 orbits of the perturber. The broad continuous curves show
the Hill stability limit (black), the overlap limit deduced in this paper (cyan) and the
value of aunstable (white). The dashed green curve is the prediction of the eccentric
overlap criterion by Deck et al. (2013).

Trying to extend the overlap criterion to non-circular orbits is complex. As we
showed previously, the outer separatrix of first-order resonance does not exist for e ∼ 0
but does appear for some minimum value, and thus should be taken into consideration
at some point. Third-order resonances also become noticeable for eccentric orbits and
begin to overlap with lower-order commensurabilities for sufficiently high eccentricities.

Since it is difficult to take into consideration all these factors, it is not surprising
that the analytical model does not show a good agreement with the dynamical maps.
In fact, they do appear to be an “average” between both the circular resonance overlap
and Hill stability limits. Curiously, however, for eccentricities e ≤ 0.1 there is a very
good coincidence with the Hill Stability curve.

Figure 12 shows a different example. This time we constructed a∆e dynamical map
in the (a/a1, e) representative plane, considering Jupiter (current mass and circular
orbit) as the perturber. We defined a grid of initial conditions with 2048 values of
semimajor axis and 576 values of the initial eccentricity. All angles were taken equal to
zero. The total integration time was only T = 103 orbits of the perturber, not sufficient
to eject many unstable orbits, but sufficient to show large increases in the eccentricity.
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Fig. 13: Numerical integration of a particle with a = 0.8, e = 0.4 and all angles initially
set to zero. The perturbing mass was chosen equal to m1/m0 = 10−6. The particle
exhibits a random walk between adjacent first and second-order MMRs before finally
exceeding the perturber’s orbit at t ' 2.5×104 years. During the complete integration
the eccentricity remains close to its initial value with ∆e of the order of 0.1.

Apart from the main first-order commensurabilities (2/1, 3/2 and 4/3), there is dis-
tinct evidence of second and third-order resonances, particularly the 7/4 at a/a1 ' 0.69
and the 8/5 at a/a1 ' 0.73. These are negligible for near-circular orbits, but become
increasingly important for higher eccentricities (e.g. Bodman and Quillen 2014). At
e ∼ 0.2 these begin to overlap and generate a large chaotic region close to the Hill
Stability curve, shown here again as a broad black curve.
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Fig. 14: Similar to Figure 11, but now the abscissa is a function of the semimajor
axis ratio defined by: u(a/a1) = −[(a/a1)3/2 − 1)]−1. In this new variable all the
first-order resonances appear equidistant, thus allowing a better visualization of the
resonant structure closer to the perturber. As before, the black curve shows the Hill
stability limit, while cyan corresponds to aunstable. The eccentric overlap criterion of
Deck et al. (2013) is shown as a dashed blue curve.

Gladman (1993) also reported, from the result of a few numerical simulations, that
some orbits above the Hill stability curve may survive for long time-spans as long as
they satisfy the Hill condition for circular orbits. As we show here, the relationship
between instability and the Hill limit is more complex.

The broad cyan curve shows our version of the resonance overlap criterion, as
deduced for circular orbits, while the white vertical line shows the value of aunstable.
In particular, the value of aoverlap shows a very good agreement with the beginning of
the global chaotic sea, and appears fairly independent of the eccentricity. Finally, the



The resonance overlap and Hill stability criteria revisited 31

dashed green curve corresponds to the eccentric overlap criterion as proposed by Deck
et al. (2013).

Figures 11 and 12 show that the region between aHill and aunstable grows with
increasing value of e and lower values of m1. This transition region is characterized
by a complex resonant structure and shows the existence of both stable and unstable
orbits. Stable motion is usually found deep inside the libration domain of mean-motion
resonances, while unstable orbits abound elsewhere.

For perturbing masses below m1/m0 ∼ 104 − 103, the results of Figure 11 seem
to indicate that particles with a > aHill are not very excited and remain with low-
to-moderate eccentricities. To investigate this in more detail, Figure 13 shows the
dynamical evolution of a single initial condition for a total integration time of 3× 104

years. The perturbing mass was chosen equal to m1/m0 = 10−6. As mentioned in
the caption, the body suffers several jumps in semimajor axis, becoming temporarily
trapped between adjacent first and second-order mean-motion resonances. After ap-
proximately 25000 years the orbit finally surpasses the semimajor axis of the perturber
and eventually diffuses to the outer regions of the system. The eccentricity, however,
remains bounded throughout the integration, with a maximum increase (with respect
to its initial value) of the order of ∆e ' 0.1.

Since orbital instability is not necessarily associated to hyperbolic orbits, Figure
14 repeats the results of Figure 11, where the gray region now shows all orbits that
became unstable within T = 105 orbits, either reaching e > 1 or becoming planet
crossers. We also plotted the data in terms of an auxiliary function u(a/a1) instead of
the semimajor axis. This function is defined by:

u(a/a1) = −
[(

a

a1

)3/2

− 1

]−1

. (56)

In this new variable all first-order resonances appear equidistant, thus allowing us to
have a better visualization of the structure of the representative plane closer to the
perturbing mass.

As before, the lower bound of the chaotic sea is very well represented by the circular
estimate of aunstable, while the Hill Stability correctly delimits the appearance of the
resonance forest. The eccentric overlap formula of Deck et al. (2013) is seen in dashed
blue lines. As before, this later criterion shows a good agreement with the Hill limit for
low eccentricities and planetary masses above m1/m0 ∼ 10−4, but rapidly diverges
for both lower masses and higher eccentricities.

6 Conclusions

In this paper we presented the results of a series of high-resolution ∆e dynamical maps
in a representative plane of the planar circular restricted three-body problem, whose
aims where two-fold: (i) obtain a detailed visualization of the limit between stable and
unstable orbits (in the Hill sense) and (ii) estimate the resonant structure of mean-
motion commensurabilities and their relation with the stability limit. These results
were used to test the predictions of the Hill stability limit and different versions of the
resonance overlap criterion (circular and elliptic case).

In particular, using the Second Fundamental Model for Resonance (Henrard and
Lemaître 1983), we obtained an alternative derivation of the overlap criterion based
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on the interaction between first and second-order commensurabilities which appears
to be responsible for the transition between local and global chaotic motion. The re-
sulting expression is reminiscent of the one presented by Wisdom (1980), although
with a smaller numerical coefficient and slightly different functional dependence on the
perturbing mass.

Chirikov’s postulation of the overlap criterion was constructed for systems in which
the interacting resonances occurred in the same set of canonical variables and, implic-
itly, with the same expressions for the integrals of motion. These conditions do not
apply for the problem at hand where each mean-motion resonance is characterized by
distinct expressions of the integral N∗ and, consequently, different set of canonical
variables. Classical studies have circumvented this problem by avoiding canonical vari-
ables and analyzing their interaction in the (a, e) plane, variables which are common
to all MMRs. However, as we was seen throughout this paper, these orbital elements
are not adequate and the outer separatrix does not appear for quasi-circular motion,
leading to a series of assumptions that have not always been justified. Thus, although
Chirikov’s overlap criterion has been widely used in the circular restricted three-body
problem, its applicability has not always been adequately verified.

It is important to stress that the aim of this paper has not been to introduce a
new rigorous theory for resonance overlap, but to present a qualitative criteria that
preserves the principles of the classical formulation but (more importantly) reproduces
the dynamical features observed in the numerical simulations.

Finally, we showed that it is not possible to characterize the stability limit using a
single criterion. The Hill Stability criterion defines the maximum value of the semimajor
axis (for a given eccentricity) for which all initial conditions are (Hill) stable. On the
other hand, an empirical variation of our resonance overlap limit (49) is a useful proxy
to estimate the minimum semimajor axis for which all initial conditions are unstable.
In between lies a transition domain characterized by many resonant islands and rich
in both stable and unstable motion. The size of this region grows with increasing
eccentricity or lower values of the perturbing mass, and may occupy a significant portion
of the phase space.
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