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The selection of an optimal set ofmolecular descriptors from amuch larger collection of such regression variables
is a vital step in the elaboration ofmostQSAR andQSPRmodels. The aimof thiswork is to continue advancing this
important selection process by combining the enhanced replacement method (ERM) and the well-known
genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much
smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four
different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from
different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons
showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it
has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular de-
scriptors from a much greater pool.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

One generally accepted solution to overcome the lack of experimen-
tal data in complex chemical phenomena is the analysis based on quan-
titative structure-property/activity relationships (QSPR/QSAR) [1].
Therefore, there exists a permanently renewed interest on the develop-
ment of these techniques [2–6]. The fundamental role of QSPR/QSAR is
to suggest mathematical models capable of predicting important
properties or activities of interest, particularly when those cannot be
experimentally determined for some reason. These techniques rely on
the basic assumption that the structure of a compound determines its
properties, and that the structures can be represented by molecular
descriptors [7], which are calculated through mathematical formulae
parameters obtained from several theories, such as chemical graph
theory, information theory, and quantummechanics [8,9].

Currently, there are thousands of molecular descriptors available in
the literature [7], and in any QSAR/QSPR study, those that characterize
the property/activity under consideration in the most efficient way
must be selected. Consequently, a mathematical problem of selecting a
subset of d descriptors (d) from a much larger set of D descriptors,
arises.

The search for this optimal set of molecular descriptors is generally
oriented to find the model that minimizes the standard deviation (S).
In other words, the global minimum of S(d) is seek, where d is a
point in a space of D!/[d!(D − d)!] ones. Since D is very large, a full
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search (FS) of the optimal variables is impractical because it requires
D!/[d!(D − d)!] linear regressions.

Some time ago, our research group proposed the replacementmeth-
od (RM) [10,11]; afterward, the enhanced replacement method (ERM)
[12] and later on a modification of the first step that further improved
both algorithms (RMfs and ERMfs) [13]. All these methods produce lin-
ear regression QSPR/QSAR models that present no relevant difference
with FS using much less computational work [12]. These alternative
techniques approach the minimum of S by taking into account the
relative errors of the coefficients of the least-squares model given by a
set of d descriptors d= {X1,X2,…, Xd}. All the methods give models with
greatly better estimative and predictive ability than the forward stepwise
regression procedure [14]; in addition, the ERM has proven to give better
results than the more elaborate genetic algorithms [15,16] (GA).

The first step in ERM does not use the same scheme as the rest of the
algorithm; nevertheless, in a recent article, it was proven that by using d
different initial sets of descriptors and taking as a first step the
replacement of the descriptor with higher relative standard deviation,
ERM results were improved [13].

The main target of this work is to combine the latest version of ERM
(ERMfs) with GA, to find an algorithm that further improves the
previous ones.

2. Methods

2.1. Algorithms

The following subsections briefly describe the theory of the previous
state of ERM, GA and the new alternative algorithm (ERMp).
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All the algorithms were programmed in the computer system
Matlab 5.0 [17]. Tests were done using d from 5 to 9 in order to have a
high computational demanding search with a reasonable number of
descriptors that might be used in a QSPR/QSAR study model.

The comparisons of ERMand ERMpwere done through runswith an
increasing number of randomly chosen initial sets of descriptors, from 1
to 250. Aiming to determine if increasing the initial number of sets
(which in the case of ERM is equal to d) could further minimize the
obtained standard deviation.

3. Enhanced replacement method

An optimal subset dm = {Xm1, Xm2, …, Xmd} of d b b D was
chosen from a large set D = {X1, X2, …, XD} of D descriptors provided
by some available commercial program, with minimum standard
deviation S:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N−d−1ð Þ

XN
i¼1

resi2

vuut ð1Þ

where N is the number of molecules in the training set, and resi the re-
sidual for molecule i (difference between the experimental and predict-
ed property). The fact that S(dn) is a distribution on a discrete space of
D !/d ! (D− d) ! disordered points dn should be noticed. The full search
(FS) that consists of calculating S(dn) on all those points always allows
to arrive at the globalminimum, but asmentioned, it is computationally
prohibitive if D is sufficiently large; as an example, using d=7 and D=
1280, the number of necessary regressions would be 1.0 × 1018 regres-
sions, which translates to as much as 1.5 × 105 years to complete only
one calculation (using an i7 4770K processor). The ERM briefly consists
of the following steps:

• An initial set of descriptors dk is selected from D at random, one of the
descriptors is replaced, denoted as Xki, with all the remaining D − d
descriptors, one by one, and the set with the smallest value of S is
kept. What was done unto this point is defined as a ‘step’.

• From this resulting set, the descriptorwith the greatest standard devi-
ation in its coefficient is chosen (the one changed previously is not
considered) and substitutedwith all the remaining D− d descriptors,
one by one. This procedure is repeated until the set remains unmodi-
fied. In each of these cycles, the descriptors replaced in previous steps
are not taken into account. Thus, the candidate dm

(i) that comes from
the so-constructed path i is obtained. The ‘paths’ are consequently
defined as all possible steps to start the algorithm from the initial set
of descriptors.

• It should be noticed that if the replacement of the descriptor with the
largest error by those in the pool does not decrease the value of S, then
that descriptor is not changed.

• The above process is carried out for all the possible paths i=1, 2,…, d
and the point dm with the smallest standard deviation: min

i
S
�
dðiÞ
m

�
is

kept.

So far, the replacementmethod (RM)has been described; the ERM is
a three-step combination of two algorithms: first, the RM, then a
modified RM (MRM) and finally a RM is used again. The MRM follows
the same strategy as RM except that, in each step, the descriptor with
the largest error is substituted even if that substitution is not accompa-
nied by a smaller value of S (the next smallest value of S is chosen). The
main difference in MRM is that it adds some sort of noise that prevents
the selected model from staying in a local minimum of S [12].

In the original ERM algorithm, the first step was chosen without
taking into account the relative standard deviation (rsd) of the coeffi-
cient of the descriptor in the model; instead, all possible d paths were
followed one at a time. Mainly because in the practical use of the
algorithms, it was noticed that the best results did not always depend
on the initial rsd of the path [10–12,18–26]. However, after further stud-
ies, it was determined that if only the initial descriptor substitutionwith
higher rsd was used and additional d − 1 starting sets of descriptors
were used, better results for the same computational cost were found
[13]; hence, finding a way to advance the algorithm.

3.1. Genetic algorithms

The GA is a search technique based on natural evolution principles,
where variables play the role of genes (in this case, a set of descriptors)
in an individual of the species. An initial group of random individuals
(population) evolves according to a fitness function (in this case, the
standard deviation) that determines the survival of the individuals.
The algorithm searches for those individuals that lead to better values
of the fitness function through selection, mutation and crossover
genetic operations. The selection operators guarantee the propagation
of individuals with better fitness in future populations. The GAs explore
the solution space combining genes from two individuals (parents)
using the crossover operator to form two new individuals (children)
and also by randomlymutating individuals using themutation operator.
The GAs offer a combination of hill-climbing ability (natural selection)
and a stochastic method (crossover and mutation) and explore many
solutions in parallel, processing information in a very efficient manner.
The practical application of GAs requires the tuning of some parameters
such as population size, generation gap, crossover rate and mutation
rate. These parameters typically interact among themselves nonlinearly
and cannot be optimized one at a time. There has been considerable
discussion about parameter settings and approaches to parameter
adaptation in the evolutionary computation literature; however, there
do not seem to be conclusive results on which might be the best
ones [27].

In this study, it was necessary tomodify an existingGA adapting it to
QSAR studies; for this purpose the “GA Toolbox for MATLAB” developed
at theDepartment of Automatic Control and Systems Engineering of The
University of Sheffield, UK [28] was used.

3.2. ERM with initial population from GA (ERMp)

Several preliminary trials with the following combinations of ERM
and GA were tested:

● GA with mutation operator position determined by rsd instead of a
random selection

Two options were tested: one where the mutation was oriented by
rsd but the descriptors were randomly selected, and a second one
where the mutation was done by replacing all the rest of the D descrip-
tors and choosing the one that minimizes the S of the model.

● GAwith the crossover operator position determined by rsd instead a
random selection

● GA with both modified mutation and modified crossover operator
● ERM with an initial population (ERMp) similar to GA (this option

was made available after the latest algorithm (ERMfs) described in
the previous section.)

The results revealed that the first three alternatives did not deserve
further studies since they gave muchworst results than the original GA
in all cases.

Only the final option (ERMp) was further studied since it showed
better results than ERM, at the expense of a higher computational cost.

This new algorithm starts with a population of random initial sets of
descriptors, and then applies the ERMfs. Increasing the number of indi-
viduals in the starting population makes the number of required opera-
tions grow accordingly; the computational cost is proportional to the
number of initial descriptor sets in the population.
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Fig. 2. Standard deviation of the best model vs. number of initial sets for: (a) the GI dataset; (b) the FLUOR dataset; (c) the MES dataset; and (d) the GABA dataset.
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Fig. 1. Standard deviation vs. number of steps for the ERM. The first part of the graph corresponds to a RM procedure, the second to a MRM (marked in gray) and the final to another RM.
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4. Materials

4.1. Datasets

Four different experimental datasets previously analyzedwereused to
test and contrast the performance of RM, ERM and the new alternatives.

A fluorophilicity dataset (FLUOR), consisting of 116 organic com-
pounds characterized by 1268 theoretical descriptors. The fluorophilicity
of each compoundwas quantified through the associated partition coeffi-
cient (P) between f1uorous (CF3C6F11) and organic (CH3C6H5) layers.

ln P ¼ ln
c CF3C6 F11ð Þ
c CH3C6H5ð Þ

� �
T ¼ 298 K ð1:2Þ

The tendency of an organic substance to dissolve in fluorous media
has continuously gained importance after the disclosure of the fluorous
biphase catalysis, as biphasic reactions take advantage of the fact that
organic and fluorous phases are typically immiscible at room tempera-
ture, but may homogenize at elevated temperatures [26].

A growth inhibition dataset (GI), with growth inhibition values to
the ciliated protozoan Tetrahymena pyriformis by 200 mechanistically
diverse phenolic compounds and 1338 structural descriptors. The aque-
ous toxicities are expressed as pIGC50= log(IGC50‐ 1), with IGC50 express-
ing the concentration [mmol l−1] producing a 50% growth inhibition on
Tetrahymena pyriformis under a static regime [20].

A GABA receptor dataset (GABA), containing 78 inhibition data for fla-
vone derivatives and 1187 molecular descriptors The dataset consists of
the logarithm of the experimental binding affinity constants (log10 Ki
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Fig. 3. Test set standard deviation of the best model vs. number of initial sets for: (a) the
[μM]) of flavonoid ligands for the benzodiazepine site of the
GABA(A) receptor complex in washed crude synaptosomal membranes
from rat cerebral cortex [21].

Additionally, a dataset that consists of 100 log10 ED50 mice antiepi-
leptic experimental activity values for enaminones with 1306 descrip-
tors. The activity ED50 represents the dose of the chemical compound
for which 50% of the individuals reached the desired effect obtained
by the ‘maximal electroshock seizure’ (MES) experimentalmethod [29].

The datasets were divided into training sets and test sets, containing
67% and 33% of the molecules, respectively. For this purpose, a k-means
cluster analysis was used to obtain representative molecules from the
complete dataset in both the training and test sets [30]. Leading to the
following subsets: FLUOR, 78 training and 38 test set molecules; GI,
134 training and 66 test set molecules; GABA, 52 training and 26 test
set molecules; and MES, 67 training and 33 test set molecules.

In all cases, the structures of the compoundswere pre-optimizedwith
the molecular mechanics force field (MM+)[31] procedure included in
Hyperchem version 6.03,[32], and the resulting geometries were further
refined by means of the semi-empirical method PM3 (Parametric
Method-3)[33] using the Polak–Ribiere algorithm and a gradient norm
limit of 0.01 kcal/Å. The molecular descriptors were calculated using the
software Dragon 3.0,[34] including parameters of all types such as consti-
tutional, topological, geometrical, quantummechanical, etc.

5. Results and discussion

To provide a graphical visualization of the behavior of the ERM
algorithms, Fig. 1 shows S as a function of the number of steps for
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GI dataset; (b) the FLUOR dataset; (c) the MES dataset; and (d) the GABA dataset.



Table 1
Standard deviation of the previous version of ERM (SERMfs), the best foundmodel with the
proposed alternative (SERMp) and the relative improvement for the four datasets using d
from 5 to 9.

d 5 6 7 8 9

GI SERMfs 0.4831 0.4550 0.4391 0.4276 0.4066
SERMp 0.4781 0.4523 0.4367 0.4177 0.4060
Improvement (%) 1.0% 0.6% 0.5% 2.4% 0.1%

FLUOR SERMfs 0.5519 0.5052 0.4342 0.4167 0.3829
SERMp 0.5376 0.4939 0.4328 0.4012 0.3725
Improvement (%) 2.7% 2.3% 0.3% 3.8% 2.8%

MES SERMfs 0.3230 0.3142 0.2930 0.2785 0.2648
SERMp 0.3189 0.3030 0.2845 0.2718 0.2592
Improvement (%) 1.3% 3.7% 3.0% 2.5% 2.2%

GABA SERMfs 0.5129 0.4388 0.4046 0.3617 0.3405
SERMp 0.4896 0.4388 0.3929 0.3581 0.3346
Improvement (%) 4.8% 0.0% 3.0% 1.0% 1.8%

Boldface numbers indicate better results.
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ERM for the optimization of a seven-parameter model using the MES
dataset [29]. Fig. 1 reveal that ERM has three sections, a first section
where RM is performed, a second section (MRM) that simulates a
higher temperature or ‘a higher noise’ than the RM, althoughmaintain-
ing the overall decreasing tendency of the S function and finally a third
section where a second RM is used to further decrease S. This apparent
thermal agitation makes the ERM less likely to get trapped in a local
minimum [12]. The behavior of the new alternative is similar to the
one shown in Fig. 1.

The improvement in the S of the best foundmodel as the number of
initial sets is increased can be seen in Fig. 2a, b, c and d, for the four
different datasets, using models containing 5 to 9 descriptors.

In order to determine possible overfitting of the models by the new
algorithmdue to the additional decrease of the training set standard de-
viation, the behavior of the test set standard deviation was studied. In
Fig. 3a, b, c and d, it can be seen that from the test set S perspective,
the best models improve with increasing number of initial individuals;
indicating that the new methodology does not appear to be overfitting
the models to the training set data. External test set validations have
also previously shown the prediction ability of models obtained by
former versions of the methodology [19,23–26,35].

The potential overfitting of themodels developed by the newmeth-
odologywill dependmainly on the number of descriptors employed. An
excessive number of descriptorswith respect to the number of available
experimental data will provoke an overfitting of themodel to the train-
ing set molecules [36]. This was exemplified in Fig. 4, where the output
of the ERMp algorithm with increasing number of descriptors from 1 to
9 using the GI dataset is shown. It can be seen that at the beginning, the
number of descriptors lowers the test set standard deviation until an
optimal number (seven in this case) and then starts to increase as the
models begin to overfit the training set data.

The results were summarized in Table 1, where it can be seen that
increasing the number of initial sets significantly further improves the
results of ERMfs. The percentage of improvement measured as
(SERM − SERMp)/SERMp*100 was, on average, 2.0% and the highest value
was 4.8%, which is a considerable number since, in some cases, it is com-
parable to the improvement obtained by a unit increase in the number
of descriptors in a model (d). These results reflect the fact that although
ERM has been shown to give better results than GA and RMmainly due
to the fact that it has a lower tendency to remain stock in a local Smin-
imum, hence being more independent on the initial sets of randomly
chosen descriptors, there is still some dependence on the initial set
used to start the ERM procedure.

To further compare the newmethodology (ERMp) with the preced-
ing one (ERMfs), and to corroborate the predictive ability of the models
obtained by ERMp, the well-known leave-one-out cross-validation
procedure (loo) [37] was used. According to the specialized literature,
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Fig. 4. Test set standard deviation of the bestmodel vs. number of descriptors (d) included
in the model for the GI dataset.
Rloo should be greater than 0.707 for a properly validated model [38].
The leave-one-out results were summarized in Table 2, where it can
be appreciated that ERMp outperforms or equals ERMfs in terms of Rloo
for all the cases except d = 6, 7 and 9 from the GI dataset.

The computational cost was also considerably increased, as can be
seen in Table 3, the number of necessary cases to obtain the model
with best S was on average 92, a much larger number than d (value
used in ERMfs). However, since the selection of initial sets is fortuitous,
in some cases, the number to find the optimal model was much lower.
Since this number cannot be determine beforehand, the best way to
use the new algorithm might be as the follows:

- When sufficient time and computational power is present, the num-
ber of initial sets should be as high as possible

- If a reduction in the computational cost or calculation time is re-
quired, then all tests and calibrations should be done by using a
low number of initial sets (N sets = d × 2, is a good starting point).

- In all cases, once the optimal number of descriptors (d) for the
dataset under investigation is chosen from the preliminary test,
then an additional run only for the given d with a high number of
initial sets (using N sets = 250 as reference) is recommended in
order to further refine the results obtained in the preliminary runs.

6. Conclusions

In this paper, we studied the possible combinations between ERM
and GA algorithms for the search of an optimal set of descriptors from
a much bigger group. A single possible improvement was found by
increasing the number of randomly initial sets of descriptors that start
Table 2
Correlation coefficient of leave-one-out cross validation of the previous version of ERM
(SERMfs), the best found model with the proposed alternative (SERMp) and the relative
improvement for the four dataset using d from 5 to 9.

d 5 6 7 8 9

GI SERM 0.8025 0.8252 0.8385 0.8452 0.8602
SNew 0.8054 0.8231 0.8370 0.8500 0.8597
Improvement (%) 0.4% −0.3% −0.2% 0.6% −0.1%

FLUOR SERM 0.9714 0.9771 0.9825 0.9840 0.9860
SNew 0.9745 0.9779 0.9829 0.9849 0.9872
Improvement (%) 0.3% 0.1% 0.04% 0.1% 0.1%

MES SERM 0.6521 0.6606 0.7219 0.7470 0.7699
SNew 0.6582 0.6976 0.7378 0.7639 0.7907
Improvement (%) 0.9% 5.3% 2.2% 2.2% 2.6%

GABA SERM 0.8499 0.8946 0.9081 0.9248 0.9346
SNew 0.8665 0.8946 0.9145 0.9281 0.9362
Improvement (%) 1.9% 0.0% 0.7% 0.3% 0.2%

Boldface numbers indicate better results.



Table 3
Number of initial sets for ERMfs and ERMp and the additional computational cost
expressed as the number of times ERMp is greater than ERMfs.

N Sets ERMfs 5 6 7 8 9

GI N Sets ERMp 7 65 211 91 26
Additional cost (num. times) 1.4 10.8 30.1 11.4 2.9

FLUOR N Sets ERMp 106 70 53 15 197
Additional cost (num. times) 75.7 6.5 1.8 1.3 68.2

MES N Sets ERMp 130 21 134 127 91
Additional cost (num. times) 1.7 3.3 76.2 96.3 1.3

GABA N Sets ERMp 247 6 94 92 54
Additional cost (num. times) 143.9 1.8 1.2 1.0 40.5
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ERM, which resembles the initial population in GA. The new algorithm,
named ERMp, showed improved results over the previously existing
ones in exchange of adding computational cost to the calculations. For
that reason, it is recommended that during preliminary tests on QSAR
application studies, the number of sets is kept to a minimum to later
refine the models by increasing this number. The new alternative
further develops ERM, which has been shown to give better results
than GA, for the selection of an optimal set of descriptors in QSAR.
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Appendix A. Supplementary data

The compound names and their corresponding experimental values
for the four data sets are available as supporting information; including
marks showing the distribution between test set and training set. Sup-
plementary data to this article can be found online at doi.org/10.1016/
j.chemolab.2015.10.007
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