

PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF ANDEAN TUBER STARCHES: POTATO (Solanum tuberosum ssp. Andigenum), OCA (Oxalis tuberosa Molina) AND PAPALISA (Ullucus tuberosus Caldas).

Journal:	Starch
Manuscript ID	star.201600103.R3
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Cruz, Gonzalo; Centro de Investigación y Transferencia de Santiago del Estero Ribotta, Pablo; Instituto de Ciencia y Tecnologia de Alimentos - Universidad Nacional de Córdoba Ferrero, Cristina; Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos Iturriaga, Laura; Universidad Nacional de Santiago del Estero, CITSE
Keywords:	Andean tuber starch, pasting properties, rheological properties, thermal properties

	1	PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF
	2	ANDEAN TUBER STARCHES: POTATO (Solanum tuberosum ssp.Andigenum),
	3	OCA (Oxalis tuberosa Molina) AND PAPALISA (Ullucus tuberosus Caldas).
	4	
	5	Gonzalo Cruz ¹ , Pablo Ribotta ³ , Cristina Ferrero ² , Laura Iturriaga ¹
	6	¹ Centro de Investigación y Transferencia Santiago del Estero (CITSE) – CONICET-
	7	UNSE. Villa El Zanjón (4206), Argentina.
	8	² Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) –
	9	CCT-CONICET-LA PLATA – La Plata (1900), Argentina.
-	10	³ Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) (CONICET-
:	11	UNC). Córdoba (5000), Argentina.
2	12	
<u>:</u>	13	Corresponding author
-	14	Laura Iturriaga
-	15	Av. Belgrano (S) 1912
2	16	Santiago del Estero (4200), Argentina.
-	17	e-mail: laura.iturriaga@gmail.com
-	18	fax: +54 0385 450 9500
2	19	
2	20	Abbreviations:
2	21	AM: amylose
2	22	AP: amylopectin
2	23	C.A.U.Que.Va.:Cooperativa Agropecuaria y ArtesanalUnión Quebrada y Valles
2	24	D[4,3]: De Brouckere mean diameter (µm)
2	25	CD: crystallinity degree

1
2 3 4
5 6
7 8 9
10 11
12 13
15 16
17 18
20 21
22 23
24 25 26
27 28
29 30 31
32 33
34 35 36
-345678910112314151671892012232425267890313233455678910112134451677892012232425267789303333333333333333333333333333333333
39 40 41
42 43
44 45 46
47 48
49 50 51
52 53
54 55 56
57 58
59 60

26	SF: swelling factor
27	Tp: gelatinization temperature (°C)
28	K:consistency coefficient (Pa.s ⁻ⁿ)
29	n: flow behavior index
30	G': storage modulus (Pa)
31	G": loss modulus (Pa)
32	tan δ : loss factor tan $\left(\frac{G''}{G'}\right)$
33	RVA: rapid visco analyzer
34	PT: peak temperature (°C)
35	PV: peak viscosity (cP)
36	FV: final viscosity (cP)
37	BD: breakdown (cP)
38	SB: setback (cP)
39	PCA: principal component analysis
40	I _C : integrated intensity of the crystalline phase
41	I _A : integrated intensity of the amorphous phase
42	τ: shear stress (Pa)
43	$\dot{\gamma}$: shear rate (s ⁻¹)
44	LVR: linear viscoelasticity region
45	ANOVA: analysis of variance
46	LSD: least significant difference
47	
48	
49	Keywords: Andean tuber starch, pasting properties, rheological properties, thermal
50	properties

1 2 3 4 5	
6 7 8 9 10 11	
10 11 12 13 14 15 16 17 18	
19	
20 21 22 23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37	
37 38 39 40 41 42 43	
43 44 45 46 47 48 49	
50 51 52 53 54 55	
56 57 58 59 60	

51	Abstract
52	The physicochemical and rheological properties of starches from four landraces of
53	Andean potato (Cuarentona, Rosadita, Imilla and Waycha), and Oca and Papalisa tubers
54	were investigated and compared against conventional potato starch. Proximate
55	composition studies showed that the protein content in the studied starches varied
56	between 0.29 % and 1.18 % (w/w), the ash content between 0.24 % and 1.14 % (w/w),
57	and the lipid content between 0.14 % and 0.34 % (w/w). Scanning electron microscopy
58	investigations showed differences in shape of the granules of Andean potatoes and Oca
59	and Papalisa. The mean size D[4,3] of the granules ranged between 23.3 and 48.11 μ m.
60	Papalisa was the starch with the lowest AM content (20.4 %, w/w) and Rosadita had the
61	greatest (28.03 %, w/w). The gelatinization enthalpy ranged from 18.7 to 14.8 J/g and
62	the gelatinization temperature between 65.5 and 60.8 °C. Viscograms of starch pastes
63	showed that Cuarentona was the sample with the greatest peak viscosity (3152 cP) and
64	presented the greatest final viscosity (3222 cP). The Andean potato and tuber starches
65	exhibited low breakdown values. The relationship between physicochemical and
66	rheological properties was analyzed by PCA. Results indicated that Oca and Papalisa
67	starches were different from the Andean potato starches. Cuarentona starch showed the
68	greatest K, G', peak viscosity, final viscosity, and Oca starch the lowest ones. The
69	protein content affected the peak viscosity and setback of the samples. Results suggest
70	that these starches have similar properties to those of conventional potato starch.
71	
72	
73	
74	
75	

76	1. INTRODUCTION
77	Andean tubers cover a group of starchy roots that grow up in highlands (above 3000 m of
78	altitude) in the Andean region, which in Argentina is confined to the Quebrada de Humahuaca,
79	Puna, and high valleys of the provinces of Jujuy and Salta. They have been consumed for more
80	than 3000 years by Andean people such as Incas, Quechuas and Aymaras[1]. Among them, the
81	most widespread are Andean potato (Solanum tuberosum ssp. Andigenum), Oca (Oxalis
82	tuberosa Molina) and Papalisa (Ullucus tuberosus Caldas).
83	Nowadays, C.A.U.Que.Va.gathers a group of farmers from 25 locations including the regions of
84	Tumbaya, Tilcara, Humahuaca, and Iruya who cultivate a very small fraction of ground, about
85	1.25 ha each. The production of native potatoes and Oca is 5321.25 tons and 387 tons,
86	respectively, during the harvest season from January to May. These products are
87	commercialized under different forms with a variable degree of processing. Some of the
88	industrial applications are: packed fresh potatoes, purée from Andean potatoes dehydrated with
89	solar energy, vacuum-packed precooked potatoes, and potato candies from glazed Oca variety,
90	among others (http://www.cauqueva.org.ar/). Andean potatoes have been planted for thousands
91	of years, and stocks include many varieties with different physiognomic and organoleptic
92	characteristics. Some studies on the nutritional value and rusticity of Andean tubers confirm
93	that they can be used as alternatives to meet the increasing demand for human and animal food,
94	and industrial applications [2]. In spite of this increasing insertion in the market, other ways of
95	processing and potential uses have not been explored enough. Isolated potato starches from
96	these Andean varieties could be of potential interest if they can provide a different functionality
97	with respect to conventional starches.
98	Starch is a low-price and abundant polysaccharide used in foods and is the main component of
99	these tubers. It improves the organoleptic characteristics and textural properties of the meals
100	since it acts as thickening and gelling agent. These functional properties depend mainly on the
101	AM:AP ratio, granule size and distribution, and concentration of starch, among others.
102	Potato starch differs significantly from those of other plant sources. Economic and performance
103	factors make potato starch the best choice for food applications [3] because its pastes have good

104	clarity and a neutral flavor [4]. Being the main component, it is possible to assume that the
105	gelatinization properties of starch will strongly influence the cooked tuber properties. On the
106	other hand, physicochemical characterization studies would help to identify the industrial
107	applications of these starches.
108	Opportunities for improving the potential value and, in turn, the production of these crops are
109	possible if their utilization can be expanded, e.g., as a source of industrial raw material for
110	starch production. Studies supporting their utilization should consider improving production,
111	and for downstream processes, characterizing this raw material in terms of starch properties.
112	While in the literature the information about the physicochemical and functional properties of
113	potato starch is abundant, there is still little knowledge about the physicochemical and
114	functional properties of Andean tuber starches.
115	The objective of this work was to study the physicochemical and rheological properties of
116	starches extracted from two Andean tubers: Oca and Papalisa, and from four Andean potatoes:
117	Waycha, Imilla, Cuarentona and Rosadita.
118	
119	2. MATHERIAL AND METHODS
120	2.1. Materials
121	Samples of four Andean potato varieties (Solanum tuberosum ssp. Andigenum) Cuarentona,
122	Imilla, Rosadita and Waycha, and two of Andean tubers, Oca (Oxalis tuberosa M.) and Papalisa
123	(Ullucus tuberosus C.) were purchased from a cooperative from Jujuy, Argentina,
124	C.A.U.Que.Va. (2013 harvest). The Andean potatoes were cultivated in the region called
125	Quebrada de Humahuaca, province of Jujuy (North 22° 35' 32" S, 65° 21' 22" W; South 24° 01'
125	Quebrada de Humahuaca, province of Jujuy (North 22° 35' 32" S, 65° 21' 22" W; South 24° 01'
125 126	Quebrada de Humahuaca, province of Jujuy (North 22° 35' 32" S, 65° 21' 22" W; South 24° 01' 41" S, 65° 26' 20" W; East 23° 09' 24" S, 65° 02' 45" W, and West 23° 08' 39" S, 65° 43' 39" W;
125 126 127	Quebrada de Humahuaca, province of Jujuy (North 22° 35' 32" S, 65° 21' 22" W; South 24° 01' 41" S, 65° 26' 20" W; East 23° 09' 24" S, 65° 02' 45" W, and West 23° 08' 39" S, 65° 43' 39" W; from 1350 m to 3340 m above sea level). Oca and Papalisa were cultivated in Iruya, province of
125 126 127 128	Quebrada de Humahuaca, province of Jujuy (North 22° 35' 32" S, 65° 21' 22" W; South 24° 01' 41" S, 65° 26' 20" W; East 23° 09' 24" S, 65° 02' 45" W, and West 23° 08' 39" S, 65° 43' 39" W; from 1350 m to 3340 m above sea level). Oca and Papalisa were cultivated in Iruya, province of Salta (22° 47' 30" S, 65° 12' 59" W; 2780 m above sea level), Argentina. Potato starch S-4251

The starches from tubers were isolated according to the method described by Lu et al. [5] and a centrifugation step suggested by Djabali et al. [6]. Tubers were washed, peeled, cut into 2–3 cm pieces, and soaked for 2 h in distilled water containing 20 mM sodium bisulfite and 10 mM citric acid. The pieces were processed using a centrifugal juice extractor. The starchy milk collected was filtered through a 150 µm sieve. The starch suspension filtered was allowed to sediment for a minimum of 30 min, after which the sediment was removed and suspended in distilled water. Finally, they were centrifuged at 2800 g for 10 min in a refrigerated centrifuge Z326K (HermleLabortechnik GmbH, Wehingen, Germany). After centrifugation, the upper layer was separated. The starch was dried at 40 °C for 48 h in an oven. The moisture, ash, protein, and lipid content of isolated starch samples was determined according to Association of Official Analytical Chemists (AOAC) standard methods (925.10, 923.03, 920.87, and 922.06, respectively) [7]. 2.3. Morphological characterization The starch granules were observed using SEM SUPRA 55VP (ZEISS, Germany). The starch samples were sprinkled on a double-sided tape mounted on a stub, coated with gold (20 nm thick) in an ion sputter chamber JFC-1100 (Jeol, Japan). The starch samples were placed in the SEM chamber and were examined at 22 kV [8, 9]. Starch birefringence was examined with an optical microscope CME (Leica, Buffalo, USA) with a polarized filter. Images were captured with a digital camera DSC-W200 (Sony, Japan) attached to the microscope. 2.4. Particle size analysis The granule size distribution of starch samples was determined by laser light scattering

- 155 Mastersizer 2000E with a dispersing unit Hydro 2000MU measured with a He-Ne laser (633
- nm) (Malvern Instruments, Worcestershire, UK). Among the parameters measured by the
- instrument, the D[4,3] and span were selected for the analysis. Diagrams of the volume mean
- 158 diameter distribution of the particles were obtained as well. All these parameters were
- 159 calculated assuming that the granules are spherical particles [10].

160	
161	2.5. Amylose content
162	The AM content was determined by an enzymatic AM/ AP assay procedure utilizing
163	commercial K-Amyl kit (Megazyme International, Ltd) according to the procedure described by
164	Gibson et al. [11]. The amylose content was measured as the ratio of the glucose derived from
165	the supernatant after treatement with concanavalin A and the glucose derived from the total
166	starch solution, expressed as a percentage [11].
167	
168	2.6. Swelling factor
169	The pasting procedure for this experiment was designed in order to avoid or reduce the bursting
170	of the granules [12]. Therefore, 0.1 g of starch was weighed in 10 mL conical screw cap PP
171	tubes, and the necessary quantity of water was added to reach a final weight of 2 g. Suspensions
172	at a concentration of 5 % (w:w) were immersed in a boiling water bath for 5 min, under gentle
173	agitation. Once the pasting times were reached, the tubes were immediately placed in a 25 °C
174	water bath and left to stand for at least 2 h.
175	The SF, defined as the equilibrium volume of 1 g of dry starch after swelling under specified
176	conditions, was determined by pasting the samples prepared as was previously described,
177	centrifuging them at 1500 g for 10 min and removing the supernatant. The SF was calculated
178	with Eq. 1:
179	$SF = \frac{Mass \ of \ swollen \ sample(g)}{Initial \ mass(0.1g)} \tag{1}$
180	
181	2.7. X-ray diffraction (XRD)
182	The assay was performed in a powder diffractometer X-PertPro (PANanalytical, Almelo,
183	Netherlands), equipped with exit beam crystalline graphite monochromator, $K\alpha$ radiation of Cu,
184	λ = 1.5418 Å, 40 kV voltage and 20 mA current, 0.25° divergence slit. Data were collected in
185	the range $2^{\circ} \le 2\Theta \le 45^{\circ}$ at 2 Θ /min run velocity. The XRD pattern was used to determine the
186	area of the amorphous and crystalline phases of each sample, since levels of crystallinity in

187	granular starch can be determined by the separation and integration of the areas under the
188	crystalline X-ray diffraction peaks and amorphous area [13]. The crystallinity degree (CD) was
189	determined as in Eq. 2, in which the area of the crystalline fraction is divided by the crystalline
190	fraction plus the amorphous fraction [14].
191	$CD = \frac{I_C}{I_C + I_A} \tag{2}$
192	Crystalline and amorphous areas were quantified using PeakFit v4.12 software (SeaSolve
193	Software Inc., San Jose, CA, USA).
194	
195	2.8. Thermal properties
196	The gelatinization temperature and enthalpy were analyzed by DSC using a DSC Q100 device
197	(TA Instruments- Waters LLC, New Castle, DE, USA). Hermetic aluminum pans were used to
198	prepare 10 mg samples with 10:90 starch:water (w:w). Sealed pans placed in tubes were
199	homogenized in a vortex and left torest for at least 2 h before beginning the assay. Temperature
200	scanning from 10 to 130°C at a rate of 10 °C/min was used. An empty pan (air) and indium
201	were used as a reference and calibration standard, respectively. The gelatinization peak
202	temperature (Tp), To and ΔH of each sample were then determined from the thermograms using
203	the Universal Analysis 2000 v4.3E software (TA Instruments-Waters LLC, New Castle, DE,
204	USA) and normalized to the mass of dry matter.
205	
206	2.9. Determination of pasting properties
207	A Rapid Visco-Analyzer instrument RVA 4500 (Perten Instrument AB, Hägersten, Sweden)
208	was used to prepare the samples and obtain their apparent viscosity profile as a function of
209	temperature and time. And ean potato starch (2.00 \pm 0.01 g, 14 % moisture basis) and 25 mL of
210	distilled water were placed inside the aluminum canister. The RVA Potato Starch Pasting
211	Method (RVA Method 7.04) was applied as follows: the automatic stirring action was set at 960
212	rpm for 10 sec and then, slowed down to 160 rpm. The sample was equilibrated at 50 °C for 1
213	min, heated to 95 °C in 4 min 42 sec, held at 95 °C for 2 min 30 sec, cooled to 50 °C over 3

214	min 48 sec, and then held at 50 °C for 2 min. Viscosity and temperature were recorded over
215	time; data gathering and analysis were performed using Thermocline for Windows software,
216	provided by the instrument manufacturer; PT, PV, FV, BD, and SB were obtained from the
217	viscograms [15].
218	
219	2.10. Rheological properties
220	Rheological measurements were performed with arheometer AR 1000 (TA Instruments-Waters
221	LLC, New Castle, DE, USA) at 25 °C. Data were analyzed by Rheology Advantage Data
222	Analysis software V5.2.18 (TA Instruments Ltd-Waters LLC, New Castle, DE, USA). Samples
223	at 5 % (w:w) were prepared as described in 2.6.
224	
225	2.10.1. Flow behavior
226	Flow assays were evaluated using steel cone geometry of 40 mm diameter, 2° angle and 0.053
227	mm truncation gap. The shear rate was accelerated uniformly from 0 to 300 sec ⁻¹ in 3 min, and
228	the maximum shear rate was kept constant for 2 min. Afterwards, the shear rate was decelerated
229	uniformly to 0 sec ⁻¹ in 3 min. The descending flow curves were modeled using the power-law
230	model, Eq. 3:
231	$\tau = K \cdot (\dot{\gamma})^n \tag{3}$
232	where τ is the shear stress (Pa), K is the consistency coefficient (Pa.sec ⁻ⁿ), $\dot{\gamma}$ is the shear rate
233	(\sec^{-1}) and <i>n</i> is the flow behavior index (dimensionless).
234	
235	2.10.2. Dynamic measurement
236	The dynamic rheological properties, such as storage modulus (G'), loss modulus (G'') and loss
237	factor (tan δ), were determined by employing stainless steel smooth parallel plate geometry
238	(diameter = 40 mm) with 1mm gap. A solvent trap system was used to minimize evaporation
239	losses. Stress sweeps at a frequency of 1 Hz were carried out to find the linear viscoelasticity
240	region (LVR), after which, frequency sweep rheograms at 1.0 Pa of oscillatory stress were
241	obtained.

242	
243	2.11. Statistical
244	The data were statistically treated by analysis of variance (ANOVA), the means were compared
245	by the LSD Fisher test at a significance level of 0.05 using Infostat Statistical Software (UNC,
246	Córdoba, Argentina) [16]. All the measurements were carried out in triplicate.
247	
248	2.11.1. Principal component analysis (PCA)
249	A PCA of 21 measured starch properties was carried out to provide a ready means of visualizing
250	the differences and similarities among these samples [8]. The PCA score plot and loading was
251	built from the first two principal components [17]. Data analysis was performed with Infostat
252	Statistical Software (UNC, Córdoba, Argentina) [16].
253	
254	3. RESULTS AND DISCUSSION
255	3.1. Chemical composition of the starches
256	To verify the purity of the extracted starches, the proximate analysis was done, and the results
257	are listed in Table 1. The moisture content varied between 14.0 % and 16.3 % (w:w) among the
258	Andean starches. It was lower than in the Control potato starch that showed 19.5 % (w:w),
259	which is normal for commercial potato starch. The ash content of all the starches showed
260	significant differences and was greater than that of the Control potato starch. All commercial
261	starches from cereal or tuber sources contain minor or trace quantities of uncombined inorganic
262	materials, which normally originate in the crop from which the starch is isolated and from the
263	water used to process the starch [18].
264	The lipid content was low for all the samples and in the same order of or lower than the Control
265	starch. Papalisa, Rosadita and Control starches presented the greatest lipid content and Oca
266	starch, the lowest. The protein content varied between the samples: Cuarentona, Oca and
267	Papalisa starches showed the lower contents and Imilla,Rosadita and Waycha, the greatest. The
268	Control potato starch protein content was negligible. Based on this composition, the purity of
269	theses samples ranged from 97.46 % to 99.31 % for Rosadita and Control starches, respectively.

STARCH

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 20 21 22 23 24 5 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
36 37
37
38
38 39 40
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
54
55
55
56 57
5/
58
59
60

270	Rosadita, Waycha and Imilla were the samples with lower purity. Cuarentona, Oca and Papalisa
271	presented the greatest purity. This purity can be considered high and indicates a proper
272	extraction process.
273	3.2. Morphological characterization and particle size analysis
274	SEM observations revealed some differences in starch granule shapes (Figure 1). The granules
275	of Andean potato starches such as those from Rosadita, Imilla, Cuarentona and Waycha were
276	large, oval-shaped, irregular, nonporous, and presented an eccentric hilum typical of the potato
277	starch [18, 19]. As was expected since it is a starch from another genotype, Papalisa granules
278	showed a rounded and enlarged shape like a "comma" with a protuberance in one of their
279	extremes. Oca granules were different as well and had an elliptic shape. The SEM micrographs
280	also showed that the surface of all the granules appeared to be smooth with some thin layers
281	similar to scales, which could give some evidence of the presence of a granular membrane [21].
282	Table 2 shows that all the starches presented differences in the D[4,3] values, which ranged
283	from 23.3 to 48.11 μ m. The samples with the largest particle size were Waycha, Rosadita,
284	Cuarentona and Imilla, while Papalisa and Oca had the smallestone. The former four samples
285	had a mean size of the same order as that of the Control starch. Besides, a wide range in size
286	was observed since the span index was from 1.21 to 1.51 for Andean potato starches and from
287	0.91 to 1.16 for Oca and Papalisa starches. As is shown in Figure 2, Oca, Papalisa, Imilla and
288	Control starch exhibited a monomodal distribution with particle sizes between 10 and 100 μ m.
289	Rosadita and Waycha starches presented a bimodal distribution with a main peak that ranged
290	from 10 to 100 μ m in particle size and a smaller peak between 100 and 1000 μ m, which may be
291	due to the presence of aggregates since the starches were filtered with an ASTM 150 μ m sieve.
292	Cuarentona showed a bimodal distribution but with a smaller peak between 1 and $10\mu m$. Mean
293	sizes of the major peak in the range of 10 to 100 µm were reported for potato starches [22].
294	
295	3.4. Amylose content
296	The AM content of the starches is listed in Table 2. Rosadita, Imilla, Cuarentona and Waycha

varieties exhibited greater AM contents (26.2 % to 28.3 %) than Oca and Papalisa (22.4 % and

298	20.4 %, respectively). The AM content of the Andean potato starches was greater than that
299	informed for Indian potato starches [22]. These results are in the range reported for normal
300	potato starch [23] and Oca starch [24].
301	
302	3.5. Swelling factor
303	The results listed in Table 2 indicate that Papalisa starch showed the greatest SF; Waycha,
304	Rosadita, Imilla and Control starch presented intermediate values and Cuarentona, the lowest
305	one. It is widely accepted that waxy starches or those with low amylose content exhibit high
306	swelling degrees because this property is associated with the AP content [25]. The correlation
307	between AM content and SFwas not significant, suggesting that SF would depend on other
308	properties than the AM content, such as the internal organization or the strength of association
309	between AM and AP in the granule [26]. Nevertheless, the presence of small granules in
310	Cuarentona (1-10 μ m) could also have an effect on the lowest swelling factor in this sample.
311	
312	3.6. X-ray diffraction
313	All the starches exhibited X-ray B patterns with peaks at 20 Bragg angles: 5.6°, 15°, 17°, 19°,
314	22° and 24° (diffraction patterns not shown). This kind of pattern is typical of most of the roots
315	and tubers like potato, where the starch chains and water molecules are organized in a
316	hexagonal packing [8]. Similar results were found by Santacruz et al. [9] in Andean starches
317	from Arracacha xanthorriza, Canna edulis and Oxalis tuberosa. Some reports assign the
318	presence of the three overlapped peaks at $2\theta = 19^{\circ}$ to the location of water molecules in the
319	starch crystal [13].
320	XRD also measures the crystallinity degree of the starches as the ratio between the area
321	enclosed by the peaks and the area under the curve (or amorphous area) [12]. The results shown
322	in Table 2 indicate differences in crystallinity among the starches that ranged from 18.1 % to
323	24.6 %. It is accepted that there is an gative correlation between the AM content and the CD
324	since amylopectin is the predominant crystalline component in granules, with the short-
	299 300 301 302 303 304 305 306 307 308 307 308 309 310 311 312 313 314 315 314 315 316 317 318 317 318 319 320 321

60

0		
2 3	326	was not possible to find such correlation among these samples, probably because AM contents
4 5	327	were not different enough among the varieties toproduce differences in crystallinity. The CD
6 7	328	values were the greatest in Cuarentona, Rosadita, Waycha and Control starchand intermediate in
8 9	329	Imilla. Papalisa was the sample with the lowest CD even though it showed the lowest AM
10 11	330	content. Starch potato crystallinity values slightly greater than those found in this work were
12 13	331	reported [27, 28].
14 15	332	
16 17		
18	333	3.7. Thermal properties
19 20	334	When starch granules are heated in the presence of water, some endothermic events occur,
20 21 22	335	which can be followed by DSC. Parameters such us To, Tp, ΔH have technological importance
23 24	336	since they are a measure of the thermal energy that must be applied for gelatinization. The
24 25 26	337	results obtained are given in Table 2. The gelatinization temperature for Andean tuber starches
27	338	ranged from 60.8 °C for Oca starch to 65.5 °C for Rosadita starch, and they were lower than
28 29	339	66.1°C for the Control potato starch. The onset temperatures of the peak showed significant
30 31	340	differences among the samples andvaried in a pattern similar to that of Tp confirmed by the
32 33	341	Pearson correlation coefficient of 0.98 (Table 4). Significant differences between ΔH for all the
34 35		samples were found. They ranged from 14.8 to 19.7 J/g for Waycha and Control starches,
36 37	342	
38 39	343	respectively. The thermal properties of potato and other tuber starches differ widely in the
40	344	bibliography [8, 17, 21, 25, 29] since they depend on the degree of crystallinity, the granule
41 42	345	size, the AM/AP ratio and the microstructure of the granule, which in turn depend on the
43 44	346	climatic and soil conditions where the tubers grow up. No significant correlations between
45 46	347	thermal properties and the AM content, CD and D[4,3] were found in this study.
47 48	348	
49		
50 51	349	3.8. Rheological properties
52	350	The dynamic properties of the systems at 5% w:w are listed in Table 3. Mean values of three
53 54	351	replicates of G' and G", taken from the rheograms at a frequency of 1 Hz, are included. The
55 56	352	results showed significant differences among the samples. Cuarentona sample had the greatest
57 58 59	353	G' (170.2 Pa) and Oca, the lowest (76.2 Pa). The rest of the samples presented G' values that

2
3
4
5
6
7 8
8
9
10 11
11
12
13
14 15
10
16 17 18
18
19
20
21
20 21 22 23 24
23
24
25
26
26 27
28 29
29
30
31
32 33
34
33 34 35 36 37
36
37
38
39
40
41
42
43
44 45
45 46
40 47
48
49
50
51
52 53
53
54
55
56
57
58
59 60
60

1

354	ranged from 110.1 to 139.9 Pa. Considering G", Cuarentona was the sample with the greatest
355	value (55.3 Pa) and Papalisa had the lowest (13.4 Pa). The rest of the samples presented G"
356	values that ranged from 15.2 to 39.8 Pa. The parameter that relates the viscous and the elastic
357	behavior is tan δ , which was greater than 0.1 for all the systems. The greatest tan δ value was for
358	Cuarentona starch (0.32) and the lowest for Papalisa (0.11) . The rest of the samples presented
359	tan δ values that ranged from 0.19 to 0.29. These results describe an elastic behavior since G'
360	was greater than G" in the range of frequency applied. However, the tan δ values indicate that
361	the systems are not able to store the dynamic energy applied, which is partly lost, so they do not
362	form strong gels at the concentration studied. In the experimental conditions, moduli showed a
363	dependence on frequency, as can be seen in Figure 3.
364	Starch gels can be considered as systems where swollen granules, enriched in amylopectin, are
365	embedded in and reinforced by interpenetrating amylose gel matrix [31]. Depending on the
366	starch concentration and the AM content, the gel obtained can be classified as strong or weak.
367	At the concentration of the systems studied, a closed packed system was reached after
368	gelatinization since the volumetric fraction (ϕ) was greater than 0.7 for all samples. The volume
369	fraction was calculated by applying Eq.4 (data not shown) [32]
370	$\Phi = \mathbf{c} \cdot \mathbf{SF} \tag{4}$
371	where "c" is the concentration of starch suspension % (w:w) and SF, the swelling factor,
372	dimensionless.
373	The critical AM concentration necessary to form gels was reported as C*=1.5 % [31], below
374	which the gel is not totally formed. The mechanical dynamic spectra allow identifying these
375	differences. While strong gels present a G' independent of frequency and tan δ values < 0.1,
376	weak gels show some dependence and tan δ values > 0.1 [33].
377	Based on these criteria, the results shown in Figure3 would indicate that the starch
378	suspensionsin general behaved as weak gels. However, Papalisa presented the more elastic gel
379	and Cuarentona, the less elastic one.
380	Regarding the flow properties, the values of K and n corresponding to aqueous suspensions of
381	gelatinized starch at 5 % w:wconcentration are summarized in Table 3. At this point, it is

Wiley-VCH

STARCH

3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 2	
19	
20	
21	
22	
23	
24	
25	
20 27	
28	
29	
20 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40	
31	
32	
33	
34 25	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
48 49 50	
5U 51	
52	
53	
54	
51 52 53 54 55 56 57 58 59 60	
56	
57	
58	
59 60	
00	

382	important to remark that the power law model to obtain K and n was applied to the down curve
383	after having eliminated the time dependence behavior. It is well known that the gelatinized
384	starch systems exhibit a typical thix otropic behavior. The results obtained indicate that n values
385	were lower than 1 for all of the samples exhibiting a pseudoplastic behavior (data not shown).
386	Cuarentona starch presented the greatest value of consistency coefficient K (16.7 Pa.s) and Oca
387	starch showed the lowest (6.0 Pa.s). Papalisa presented a K value in the order of that of Imilla
388	and Waycha, being the starch with the smallest granule size and the lowest AM content. The
389	rest of the samples presented differences in K values that ranged between 8.0 and 13.3 (Pa.s).
390	Despite the lack of correlation of these fundamental rheological parameters with the AM
391	content or the D[4,3], there was a significant positive Pearson correlation of 0.75 between K and
392	G'.
393	
394	3.9. Pasting properties
395	The results of the RVA for the starches are summarized in Table 3 and in the RVA viscograms
396	in Figure 4. Pasting temperature presented significant differences and ranged from 65.3 °C to
397	70.3 °C, the lowest for Oca and the greatest for Rosadita starches. By comparing PT with
398	thermal properties, it was possible to find a good and significant correlation (0.76) with To from
399	the DSC analysis (Table 4), PT being almost 10°C greater than To due to the difference in the
400	concentration of starch.
401	Cuarentona sample had the greatest PV (3152 cP) among the Andean starches and Oca, the
402	lowest one (1602 cP). The Control starch presented the greatest PV (4895 cP) among the tested
403	samples but also showed themost pronounced BD (3132 cP), indicating less stability. In
404	contrast, Andean potato and tuber starches showed significantly lower values of BD (364-577
405	cP) than control starch, which would suggest that these starches are more resistant to disruption
406	by shear during gelatinization. Although the AM is the fraction that confers better granular
407	integrity, no correlation between BD and the AM content was found. However, Papalisa
408	presented the greatest BD (577 cP) after Control starch, in line with the lowest AM content

409 found in this sample.

1
י ר
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
17
-3456789101123456789101123145671890
10
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
22
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
39
40
41
42
43
44
44 45
46
47
48
49
-
50
51
52
53
54
55
56
57
58
59
60

410	The FV differed significantly among all the samples, and the greatest value was for Cuarentona
411	(3222 cP) and the lowest for Oca (1586 cP). All the Andean potato samples showed greater FV
412	than the Control starch (2050 cP), probably because of the more marked granular disruption of
413	the Control potato sample. Final viscosity is affected by the AM content as well, and this may
414	explain why Oca and Papalisa were the samples with the lowest FV (1586 and 1865 cP,
415	respectively). Good positive correlations (0.83, 0.90 and 0.77) between FV and G', G" and tan δ
416	were found (Table 4), showing that in this case, the behavior of the samples presented the same
417	tendency in empirical and fundamental measurements.
418	
419	3.10 Principal component analysis (PCA)
420	The PCA was applied in order to detect differences and similarities between the starches. The
421	results obtained are shown in Figure 5. The first and second principal components (PC1 and
422	PC2) explained the 41.1 % and 22.6 % of the overall variation, respectively. Considering the
423	correlation with the original variables, the variability enclosed in PC1 is mainly due to the mean
424	size D[4,3], the AM content, To, Tp, FV, K, G" and tan δ . Regarding PC2, the properties that
425	contribute to the variability are Δ H, PV, BD, SB, and ash and protein content.
426	The score plot shown in Figure 5 indicates that Oca and Papalisa had the largest negative scores
427	in PC1 and were located on the left of the plot. On the other hand, the rest of the samples
428	presented positive scores in PC1 and were located on the right in the plot. Control starch
429	presented the largest negative score in PC2, followed by Cuarentona, and both were located
430	below, on the right of the plot. Imilla, Waycha and Rosadita were located on the right and
431	upper side of the plot. Besides, Imilla and Rosadita differed slightly in the positive scores in
432	PC1.
433	These results indicate that Oca and Papalisa were different from the rest of the samples,
434	especially in the variables that are related to the PC1 axis. In fact, D[4,3], the AM content, To,
435	Tp, FV and G" values of Imilla, Waycha, Rosadita, Cuarentona and the Control starch were
436	greater and significantly different from those of Oca and Papalisa, as shown in Tables 2 and 3.

Page 17 of 33

1 2 3 4 5 6 7	
5 6 7 8 9	
10 11 12 13 14	
15 16 17 18 19	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\end{array}$	
25 26 27 28 29	
30 31 32 33 34	
35 36 37 38 39	
40 41 42 43 44	
45 46 47 48 49	
50 51 52 53 54	
55 56 57 58 59	
60	

437	Among the Andean potato starches, the PCA biplot differentiates Cuarentona from Imilla,
438	Rosadita and Waycha in the properties that define the variability in PC2, such as ash and protein
439	content, PV, ΔH and SB. In fact, the former presented lower ash and protein contents and SB,
440	and greater PV, BD and ΔH among the Andean potatoes. In this context, the protein content
441	appears as a variable significantly affecting the PV and consequently the BD, since the greater
442	the PV, the greater the BD. This correlation is evident in the varieties with the lowest protein
443	content such as Cuarentona and the Control starch. On the other hand, in line with this
444	observation, Imilla, Rosadita and Waycha exhibited lower PV than Cuarentona and the Control
445	starch, and lower BD. However, the Pearson coefficients indicated that there is no correlation
446	between the protein content with either K or G' (Table 4), which could be explained by the
447	different experimental conditions and type of rheological measurement.
448	A similar analysis was done with the ash content, where no significant correlation was found
449	with any variable studied (Table 4).
450	
430	
450	4. CONCLUSIONS
451	4. CONCLUSIONS
451 452	4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of
451 452 453	4. CONCLUSIONSThis research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have
451 452 453 454	4. CONCLUSIONSThis research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and
451 452 453 454 455	 4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size.
451 452 453 454 455 456	 4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and
451 452 453 454 455 456 457	 A. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and Papalisa, was different from that of Andean potato starches and the Control starch. These
451 452 453 454 455 456 457 458	 A. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and Papalisa, was different from that of Andean potato starches and the Control starch. These differences could be mainly related to their lower mean size and AM content. Despite these
451 452 453 454 455 456 457 458 459	 4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and Papalisa, was different from that of Andean potato starches and the Control starch. These differences could be mainly related to their lower mean size and AM content. Despite these characteristics, Papalisa formed more elastic gels than the rest of the samples, and Cuarentona
451 452 453 454 455 456 457 458 459 460	 4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and Papalisa, was different from that of Andean potato starches and the Control starch. These differences could be mainly related to their lower mean size and AM content. Despite these characteristics, Papalisa formed more elastic gels than the rest of the samples, and Cuarentona was the starch with the greatest values of G', K and FV. All samples presented high stability at
451 452 453 454 455 456 457 458 459 460 461	 4. CONCLUSIONS This research has led to new and relevant information on the physicochemical properties of these starches. The morphological studies revealed that the starches from Andean potato have similar characteristics and granule mean size to those of conventional potato starch, and Papalisa and Oca have specific shapes and lower granule mean size. PCA showed that the behavior of starches extracted from tubers (not potatoes), Oca and Papalisa, was different from that of Andean potato starches and the Control starch. These differences could be mainly related to their lower mean size and AM content. Despite these characteristics, Papalisa formed more elastic gels than the rest of the samples, and Cuarentona was the starch with the greatest values of G', K and FV. All samples presented high stability at shearing since the BD was much lower than that of the Control potato starch.

465	This study indicates that starch can be satisfactorily extracted from Andean potatoes and tubers.
466	The starches exhibit interesting thermal and rheological properties and could be applied in food
467	formulation. Further studies exploring the behavior of Andean starches in real food matrices
468	could confirm the potentiality of these alternative sources of starch.
469	
470	
471	
472	
472	
473	
474	
475	
477	
478	
479	
480	
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	

```
Page 19 of 33
```

STARCH

2 3	493	REFE	ERENCES
4 5	494	[1]	Goldner, M.C., Pérez, O.E., Pilosof, A.M.R., and Armada, M., Comparative study of
6 7	495		sensory and instrumental characteristics of texture and color of boiled under-exploited
8 9	496		Andean tubers. LWT - Food Sci. Technol.2012,47 (1), 83–90.
10 11	497	[2]	Condori, B., Mamani, P., Botello, R., et al., Agrophysiological characterisation and
12 13	498		parametrisation of Andean tubers: Potato (Solanum sp.), oca (Oxalis tuberosa), isaño
14 15	499		(Tropaeolum tuberosum) and papalisa (Ullucus tuberosus). Eur. J. Agron. 2008, 28 (4),
16 17	500		526–540.
18 19	501	[3]	Grommers, H. E., van der Krogt, A. in BeMiller, J., Whistler, R. (Eds), Starch:
20 21	502		Chemestry and technology, 3rded., Academic Press, New York, 2009, pp. 511-539.
22 23	503	[4]	Schierbaum, F. (Ed), Glicksman, M.Gum Technology in the Food Industry, Academic
24 25	504		Press, London and New York1969.
26 27	505	[5]	Lu, Z.H., Donner, E., Yada, R.Y., and Liu, Q., The synergistic effects of amylose and
28 29	506		phosphorus on rheological, thermal and nutritional properties of potato starch and gel.
30 31	507		Food Chem.2012, 133 (4), 1214–1221.
32 33	508	[6]	Djabali, D., Belhaneche, N., Nadjemi, B., et al., Relationship between potato starch
34 35	509		isolation methods and kinetic parameters of hydrolysis by free and immobilised a-
36 37	510		amylase on alginate (from Laminaria digitata algae). J. Food Compos. Anal.2009, 22 (6),
38 39	511		563–570.
40 41	512	[7]	Horwitz, W., Latimer, G. W. Jr (Eds) Official Methods of Analysis of AOAC
42 43	513		<i>International,</i> 18th ed. Association of Official Analytical Chemists, Gaithersburg, MA,
44 45	514		USA 2005.
46 47	515	[8]	Singh, J., McCarthy, O.J., and Singh, H. Physico-chemical and morphological
48 49	516	[0]	characteristics of New Zealand Taewa (Maori potato) starches. <i>Carbohydr. Polym</i> .2006,
50 51	510		64 (4), 569–581.
52 53	518	[9]	Santacruz, S., Koch, K., Svensson, E., et al. Three under-utilised sources of starch from
54 55		[9]	
56 57	519		the Andean region in Ecuador: Part I. Physico-chemical characterisation. <i>Carbohydr</i> .
58 59	520		<i>Polym</i> .2002, 49 (1), 63–70.
60			

521	[10]	Barrera, G.N., Bustos, M.C., Iturriaga, L., et al. Effect of damaged starch on the
522		rheological properties of wheat starch suspensions. J. Food Eng. 2013, 116 (1), 233-239.
523	[11]	Gibson, T.S., Solah, V.A., McCleary, B.V. A Procedure to Measure Amylose in Cereal
524		Starches and Flours with Concanavalin A. J. Cereal Sci. 1997, 25, 111-119.
525	[12]	Leach, H.W., McCowen, L.D., Schoch, T.J. Structure of starch granule. I. Swelling and
526		solubility patterns of various starches. Cereal Chem. 1959, 36, 534-544.
527	[13]	Zobel, H.F., Young, S.N., and Rocca, L.A. Starch Gelatinization: An X-ray Diffraction
528		Study'. Cereal Chem. 1988,6 (65), 443-446.
529	[14]	Ribotta, P.D., Cuffini, S., León, A.E., and Añón, M.C. The staling of bread: An X-ray
530		diffraction study. Eur. Food Res. Technol. 2004, 3 (218), 219-223.
531	[15]	Batey, I.L., Bason, M.L. Definitions, in The RVA Handbook (eds.in: Crosbie, G.B., Ross,
532		A.S.), AACC International, St. Paul, Minnesota, 2007, pp. 138-140.
533	[16]	Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., et al. InfoStat, FCA,
534		UNC, Cordoba, 2012. On line at: http://www.infostat.com.ar/
535	[17]	Rios de Souza, V., Aparecida Pimenta Pereira, P., Carla Marques Pinheiro, A., et al.
536		Analysis of the Subtropical Blackberry Cultivar Potential in Jelly Processing. J. Food
537		<i>Sci</i> .2014, 79 (9), S1776–S1781.
538	[18]	Ahmad, F.B., Williams, P. a., Doublier, J.L., et al. Physico-chemical characterisation of
539		sago starch. Carbohydr. Polym. 1999, 38 (4), 361–370.
540	[19]	Liu, Q., Donner, E., Tarn, R., Singh, J., et al. in: Singh, J., Kaur, L. (Eds.) Advances in
541		Potatoe Chemistry and Technology, 1sted., Academic Press, New York, 2009, pp. 221-
542		248.
543	[20]	Jane, J.in BeMiller, J., Whistler, R. (Eds.), Starch Chemistry and Technology, 3rded.,
544		Academic Press, New York, 2009, pp. 193–236;226.
545	[21]	Debet, M.R., and Gidley, M.J. Why do gelatinized starch granules not dissolve
546		completely? Roles for amylose, protein, and lipid in granule "ghost" integrity. J. Agric.
547		Food Chem.2007, 55 (12), 4752–4760.
548	[22]	Singh, N., Isono, N., Srichuwong, S., et al. Structural, thermal and viscoelastic properties

Wiley-VCH

549		of potato starches. Food Hydrocoll.2008, 22 (6), 979–988.
550	[23]	Buleon, A., Colonna, P., Planchot, V., and Ball, S. Starch granules: Structure and
551		biosynthesis. Int. J. Biol. Macromol. 1998, 23 (2), 85-112.
552	[24]	Santacruz, S., Ruales, J., Eliasson, a. C. Three under utilized sources of starch from the
553		Andean region in Ecuador. Part II. Rheological characterization. Carbohydr.
554		<i>Polym</i> .2003, 51 , 85–92.
555	[25]	Tester, R.F., and Morrison, W.R. Swelling and gelatinization of cereal starches. II. Waxy
556		rice starches. Cereal Chem. 1990, 67 (6), 558-563.
557	[26]	Kaur, L., Singh, N., and Sodhi, N.S. Some properties of potatoes and their starches. II.
558		Morphological, thermal and rheological properties of starches. Food Chem. 2002, 79 (2),
559		183–192.
560	[27]	Imberty, A., Buléon, A., Tran, V., and Pérez, S. Recent Advances in Knowledge of
561		Starch Structure. Starch - Stärke1991, 43 (10), 375–384.
562	[28]	Zobel, H.F. Molecules to Granules: A Comprehensive Starch Review. Starch -
563		<i>Stärke</i> 1998, 40 (2), 44–50.
564	[29]	Nara, S., Mori, a., and Komiya, T. Study on Relative Crystallinity of Moist Potato
565		Starch. <i>Starch - Stärke</i> 1978, 30 (4), 111–114.
566	[30]	Iturriaga, L., Lopez, B., and Añon, M. Thermal and physicochemical characterization of
567		seven argentine rice flours and starches. Food Res. Int. 2004, 37 (5), 439-447.
568	[31]	Miles, M.J., Morris, V.J., and Ring, S.G. Gelation of amylose. Carbohydr. Res. 1985, 135
569		(2), 257–269.
570	[32]	Doublier, J.L., Llamas, G., and Le Meur, M. A rheological investigation of cereal starch
571		pastes and gels. Effect of pasting procedures. Carbohydr. Polym. 1987, 7 (4), 251-275.
572	[33]	Clark, A. H. and Ross-Murphy, S.B. Structural and mechanical properties of biopolymer
573		gels. Adv. Polym. Sci. 1987, (83), 57-192.
574		
575		
576		

$\begin{array}{c}1&2&3&4&5&6&7\\8&9&1&0&1&1&2\\1&1&1&1&1&1&1&1\\1&1&1&1&1&1&1&2\\2&2&2&2&$	
50 51 52	

577	List of tables
578	
579	Table 1. Proximate analysis of starches expressed in % (w:w).
580	
581	Table 2. Characteristic parameters of particle size analysis, AM content, SF, CD and DSC
582	parameters.
583	
584	Table 3.Rheological properties and RVA parameters of starch pastes.
585	
586	Table 4. Pearson correlation coefficients for the properties of Andean potato and tuber starches
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	

3	605	Figure Legends
4 5	606	
6		
7	607	Figure 1: SEM and optical micrographs of isolated starches from Andean potatoes and tubers
8 9	608	and the Control starch. From the left, the first two are SEM images at 600x and 1500x; the third
10 11 12	609	image was taken under polarized light at 1000x magnification.
13 14	610	
15 16	611	Figure 2: Granule size distribution of starches suspended in water measured by laser light
17 18	612	scattering.
19 20	613	
21 22	614	Figure 3: G' vs. frequency of gelatinized starch suspensions at 5 % w:w.
23 24 25	615	
26	616	Figure 4: RVA diagrams of starch suspensions at 6.25 % w:w.
27	010	rigure 4. KVA diagrams of staten suspensions at 0.25 % w.w.
28 29 30	617	
31 32	618	Figure 5: PCA: score and loading plot of PC1 and PC2 describing the overall variation among
33 34 35	619	the Andean tuber starches.
36 37	620	
38 39	621	
40 41		
42 43	622	
44	63 2	
45 46	623	
40 47		
48	624	
49		
50 51 52	625	
53 54	626	
55		
56 57	627	
58 59		
60		

Sample	moisture ¹	ash ²	lipid ²	protein ²	Purity ³
Papalisa	16.2 ^b	0.71 ^d	0.32 ^b	0.52 ^c	98.45
Oca	14.0 ^a	0.24 ^a	0.15 ^a	0.58 °	99.03
Cuarentona	16.3 ^b	0.48 ^b	0.24 ^{ab}	0.29 ^b	98.99
Imilla	14.1 ^a	0.61 °	0.25 ^{ab}	1.18 ^e	97.96
Rosadita	14.3 ^{ab}	1.06 ^e	0.34 ^b	1.13 ^e	97.47
Waycha	15.5 ^{ab}	1.14 ^e	0.21 ^{ab}	0.9 ^d	97.83
Control	19.5 °	0.33 ^a	0.32 ^b	0.04 ^a	99.31

628 Table 1. Proximate analysis of starches expressed in (%, w:w).

629 Values within each column with the same superscript letters are not significantly different

630 (p>0.05). ¹ wet basis. ² dry basis (db). ³Purity= [100 % (db) - (ash % + lipid % + protein %).

Wiley-VCH

STARCH

Table 2. Characteristic parameters of particle size analysis, AM content, SF, CD and DSC parameters.

Sample	D[4,3] ¹ (µm)	specific surface area (m ² /g)	Span	AM (%)	SF ² ,*	CD (%)	To (°C)	Tp (°C)	Δ <i>H</i> * (J/g)
Papalisa	23.30 ^a	0.307 ^b	1.161ª	20.4 ^a	19.3 ^c	18.1 ^a	58.3 ^b	62.7 ^b	18.0 ^t
Oca	29.90 ^b	0.225 ^a	0.912 ^d	22.4 ^b	18.0 bc	23.8 ^c	55.9 ^a	60.8 ^a	17.7 [°]
Cuarentona	42.82 ^d	0.206°	1.285 ^b	27.6 ^{d,e}	17.3 ^{ab}	24.0 ^c	58.3 ^b	63.2 ^{bc}	18.7 ^I
Imilla	39.29 ^c	0.185 ^b	1.214 ^c	26.8 ^{c,de}	17.6 ^{bc}	21.9 ^b	59.9 ^{cd}	64.4 ^d	15.2
Rosadita	43.91 ^e	0.201 ^d	1.310 ^f	28.03 ^{cd}	18.3 ^{bc}	24.6 ^c	60.3 ^d	65.5 ^e	18.6
Waycha	48.11 ^g	0.188 ^e	1.518 ^e	26.2 ^e	18.8 ^{bc}	24.4 ^c	59.4 ^c	63.7 ^c	14.8
Control	46.43 ^f	0.163°	1.333 ^f	26.2 ^c	18.2 bc	23.8 ^c	61.0 ^e	66.1 ^e	19.7

* Values expressed on dry basis (db) Values within each column with the same superscript letters are not significantly different (p>0.05).

 1 D[4,3] standard deviation ranged from 0.03 to 1.21 µm.

² SF: 5 min in boiling water bath.

Table 3.Rheological properties and RVA parameters of starch pastes.

Sample	G' (Pa) ¹	G" (Pa) ¹	Tan δ	K (Pa.s)	n	PT (°C)	PV (cP)	BD (cP)	FV (cP)	SB (cP)
Papalisa	122.1 ^{cd}	13.4 ^a	0.110 ^a	8.8 °	0.479 ^a	68,7 ^{cd}	2037 ^{cd}	577 ^b	1865 ^b	405 ^b
Oca	76.2 ^a	15.2 ^a	0.199 °	6.0 ^a	0.532 ^d	65.3 ^a	1602 ^a	443 ^{ab}	1586 ^a	426 ^b
Cuarentona	$170.2^{\rm \ f}$	55.3 °	0.325 °	16.7 ^f	0.474 ^a	68.7 ^{cd}	3152 ^e	497 ^{ab}	3222 ^g	568 °
Imilla	113.9 bc	32.8 °	0.288 ^d	8.0 ^b	0.514 °	69.4 ^d	1902 bc	376 ^{ab}	2698 ^e	1172 ^e
Rosadita	110.1 ^b	22.9 ^b	0.208 ^c	12.6 ^d	0.476 ^a	70.6 ^e	1741 ^{ab}	368 ^{ab}	2216 ^d	844 ^d
Waycha	139.8 ^e	39.8 ^d	0.285 ^d	9.5 °	0.523 °	67.9 ^b	2198 ^d	364 ^a	$3107 \ ^{\rm f}$	$1273 \ ^{\rm f}$
Control	119.2 bcd	32.4 °	0.272 ^d	13.3 °	0.504 ^b	68.3 ^{bc}	4895 ^f	3132 °	2050 °	288 ^a

Values within each column with the same superscript letters are not significantly different (p>0.05).

¹ Mean values of G' and G" that were taken from rheograms at frequency = 1 Hz.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		D[4,3]	Span	AM	SF	CD	То	Тр	ΔH	PT	PV	BD	FV	SB	Κ	Area	G'	G"	Tan δ	ash	protein
AM 0.90* 0.62 1.00 SF -0.35 0.17 -0.58 1.00 CD 0.78* 0.30 0.71 -0.51 1.00 TO 0.66 0.74 0.63 0.04 0.15 1.00	D[4,3]	1.00																			
SF-0.350.17-0.581.00CD0.78*0.300.710.511.00To0.660.740.630.040.151.00Tp0.680.670.670.040.250.98*1.00Tp0.680.670.070.000.050.000.201.00Tp0.480.520.040.250.98*0.201.00Tp0.440.530.010.050.201.00Tp0.430.540.560.100.550.400.560.20PV0.450.350.270.170.190.490.560.400.10FV0.450.350.270.170.190.490.540.340.401.00FV0.450.350.270.170.190.490.540.540.401.00FV0.450.550.440.500.340.460.450.401.00FV0.450.450.460.330.300.230.430.460.401.00FV0.450.450.460.350.440.400.440.320.400.440.400.440.40FV0.450.450.460.460.550.500.500.410.320.410.350.411.00FV0.430.450.450.460.550.400.50 <t< td=""><td>Span</td><td>0.78</td><td>1.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Span	0.78	1.00																		
CD 0.78* 0.30 0.71 -0.51 1.00 To 0.66 0.74 0.63 0.04 0.15 1.00 Tp 0.68 0.67 0.67 0.04 0.25 0.98* 1.00 AH -0.08 -0.23 -0.04 0.20 0.95* 0.20 1.00 PT 0.34 0.55 -0.04 0.05 0.05 0.20 1.00 PV 0.45 0.35 0.20 -0.04 0.05 0.05 0.20 1.00 PV 0.45 0.35 0.21 0.10 0.05 0.25 0.24 0.05 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 </td <td>AM</td> <td>0.90*</td> <td>0.62</td> <td>1.00</td> <td></td>	AM	0.90*	0.62	1.00																	
To 0.66 0.74 0.63 0.04 0.15 1.00 Tp 0.68 0.67 0.67 0.67 0.04 0.25 0.98 1.00 AH 0.08 0.23 0.04 0.09 0.05 0.05 0.20 1.00 PT 0.34 0.54 0.56 2.1E4 0.09 0.76 0.74 0.66 1.00 PV 0.45 0.35 0.27 0.17 0.19 0.49 0.54 0.04 1.00 FV 0.45 0.35 0.27 0.17 0.19 0.49 0.54 0.04 0.10 1.00 FV 0.45 0.57 0.19 0.49 0.55 0.04 0.10 1.00 SB 0.30 0.17 0.88 0.31 0.31 0.33 0.32 0.43 0.46 0.51 1.00 SB 0.45 0.51 0.63 0.48 0.30 0.41 0.32 0.45 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40	SF	-0.35	0.17	-0.58	1.00																
Tp 0.68 0.67 0.67 -0.04 0.25 0.98* 1.00 ΔH -0.08 -0.23 -0.04 -0.09 0.05 0.05 0.20 1.00 PT 0.34 0.54 0.56 -2.1E4 -0.09 0.76* 0.74 0.06 1.00 PV 0.45 0.35 0.27 -0.17 0.19 0.49 0.55 -0.04 0.91* 1.00 FV 0.63 0.70 0.68 0.11 0.48 0.54 0.55 -0.04 0.91* 1.00 FV 0.63 0.70 0.67 0.33 0.30 0.23 -0.43 0.36 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.44 -0.53 0.63 1.00 -0.44 -0.53 0.63 1.00 -0.44 -0.59 -0.19 1.00 -0.44	CD	0.78*	0.30	0.71	-0.51	1.00															
Tp 0.68 0.67 0.67 -0.04 0.25 0.98* 1.00 AH -0.08 -0.23 -0.04 -0.09 0.05 0.20 1.00 -	То	0.66	0.74	0.63	0.04	0.15	1.00														
AH -0.08 -0.23 -0.04 -0.09 0.05 0.05 0.20 1.00 PT 0.34 0.54 0.56 -2.1E-4 -0.09 0.76* 0.74 0.06 1.00 PV 0.45 0.35 0.27 -0.17 0.19 0.49 0.54 0.04 1.00 BD 0.30 0.17 0.08 0.01 0.11 0.48 0.55 -0.04 0.91* 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.26 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.26 1.00 K 0.55 0.51 0.63 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.26 1.00 K 0.55 0.51 0.63 0.63 0.63 0.63 1.00 -0.16 0.10 0.41 0.30 1.00 -0.16 <	Тр							1.00													
PT 0.34 0.54 0.56 -2.1E-4 -0.09 0.76* 0.74 0.06 1.00 PV 0.45 0.35 0.27 -0.17 0.19 0.49 0.54 0.04 1.00 BD 0.30 0.17 0.08 0.01 0.11 0.48 0.54 0.55 -0.40 0.91* 1.00									1.00												
PV 0.45 0.35 0.27 -0.17 0.19 0.49 0.54 0.04 1.00 BD 0.30 0.17 0.08 0.01 0.11 0.48 0.55 -0.04 0.91* 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.26 1.00 SB 0.45 0.52 0.48 -0.05 0.24 0.29 0.18 0.36 0.10 -0.26 1.00 K 0.55 0.51 0.63 -0.35 0.24 0.29 0.18 -0.85 0.51 0.63 1.00 K 0.55 0.51 0.63 -0.36 0.35 0.44 0.52 0.55 0.50 0.61 0.32 0.50 -0.19 1.00 Area -0.89* -0.45 -0.81* 0.57 -0.81 0.52 0.57 0.10 -0.10 -0.41 -0.39 -0.41 -0.35 -0.31 1.00 -0.41 -0.35 0.41 0.10 1.00 -0.41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td>										1.00											
BD 0.30 0.17 0.08 0.01 0.11 0.48 0.55 -0.04 0.91* 1.00 FV 0.63 0.70 0.67 -0.36 0.33 0.30 0.23 -0.43 0.36 0.10 -0.26 1.00 SB 0.45 0.52 0.48 -0.05 0.24 0.29 0.18 -0.86* 0.33 -0.46 -0.53 0.63 1.00 K 0.55 0.51 0.63 -0.36 0.35 0.44 0.52 0.55 0.50 0.61 0.32 0.50 -0.10 1.00 Area -0.89* -0.45 0.81* 0.57 -0.81* -0.52 0.57 0.10 -0.10 -0.44 -0.32 0.51 -0.31 1.00 G' 0.43 0.66 0.44 -0.17 0.06 0.30 0.24 3.8E-4 0.41 0.37 -0.30 0.43 0.18 0.75* -0.10 1.00 G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.											1.00										
FV0.630.700.67-0.360.330.300.23-0.430.360.10-0.261.00SB0.450.520.48-0.050.240.290.18-0.86*0.33-0.46-0.530.631.00K0.550.510.63-0.360.350.440.520.550.500.610.320.50-0.191.00Area-0.89*-0.45-0.81*0.57-0.81*-0.52-0.570.10-0.10-0.44-0.39-0.41-0.35-0.311.00G'0.430.660.44-0.170.060.300.243.8E-40.410.37-0.020.83*0.180.75*-0.101.00G''0.700.590.71-0.580.470.280.27-0.100.210.430.050.90*0.300.70-0.550.841.00												1.00									
SB 0.45 0.52 0.48 -0.05 0.24 0.29 0.18 -0.86* 0.33 -0.46 -0.53 0.63 1.00 K 0.55 0.51 0.63 -0.36 0.35 0.44 0.52 0.55 0.50 0.61 0.32 0.50 -0.19 1.00 Area -0.89* -0.45 -0.81* 0.57 -0.81* -0.52 -0.57 0.10 -0.10 -0.44 -0.39 -0.41 -0.35 -0.31 1.00 G' 0.43 0.66 0.44 -0.17 0.06 0.30 0.24 3.8E-4 0.41 0.37 -0.02 0.83* 0.18 0.75* -0.10 1.00 G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.21 0.43 0.05 0.30 0.70 -0.55 0.84 1.00																					
K 0.55 0.51 0.63 -0.36 0.35 0.44 0.52 0.55 0.50 0.61 0.32 0.50 -0.19 1.00 Area -0.89* -0.45 -0.81* 0.57 -0.81* -0.52 -0.57 0.10 -0.14 -0.39 -0.41 -0.35 -0.31 1.00 G' 0.43 0.66 0.44 -0.17 0.06 0.30 0.24 3.8E-4 0.41 0.37 -0.02 0.83* 0.18 0.75* -0.10 1.00 G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.21 0.43 0.05 0.90* 0.30 0.70 -0.55 0.84 1.00																					
Area -0.89* -0.45 -0.81* 0.57 -0.81* -0.52 -0.57 0.10 -0.10 -0.44 -0.39 -0.41 -0.35 -0.31 1.00 G' 0.43 0.66 0.44 -0.17 0.06 0.30 0.24 3.8E-4 0.41 0.37 -0.02 0.83* 0.18 0.75* -0.10 1.00 G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.21 0.43 0.05 0.90* 0.30 0.70 -0.55 0.84 1.00	SB				-0.05																
G' 0.43 0.66 0.44 -0.17 0.06 0.30 0.24 3.8E-4 0.41 0.37 -0.02 0.83* 0.18 0.75* -0.10 1.00 G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.21 0.43 0.05 0.90* 0.30 0.70 -0.55 0.84 1.00	K	0.55	0.51	0.63	-0.36	0.35		0.52	0.55	0.50	0.61	0.32	0.50	-0.19	1.00						
G'' 0.70 0.59 0.71 -0.58 0.47 0.28 0.27 -0.10 0.21 0.43 0.05 0.90* 0.30 0.70 -0.55 0.84 1.00	Area	-0.89*	-0.45	-0.81*	0.57	-0.81*	-0.52	-0.57	0.10	-0.10	-0.44	-0.39	-0.41	-0.35	-0.31	1.00					
	G'	0.43	0.66	0.44	-0.17	0.06	0.30	0.24	3.8E-4	0.41	0.37	-0.02	0.83*	0.18	0.75*	-0.10	1.00				
Tan δ 0.80* 0.48 0.80* -0.72 0.66 0.32 0.33 -0.21 0.09 0.41 0.15 0.77* 0.40 0.49 -0.83 0.53 0.90 1.00	G"	0.70	0.59	0.71	-0.58	0.47	0.28	0.27	-0.10	0.21	0.43	0.05	0.90*	0.30	0.70	-0.55	0.84	1.00			
	Tan δ	0.80*	0.48	0.80*	-0.72	0.66	0.32	0.33	-0.21	0.09	0.41	0.15	0.77*	0.40	0.49	-0.83	0.53	0.90	1.00		

																							. ~9
1 2 3 4																							
5 6		ash	0.33	0.67	0.30	0.47	0.07	0.40	0.31	-0.46	0.56	-0.40	-0.44	0.41	0.70	0.04	0.02	0.26	0.06	-0.06	1.00		
7 8		protein	0.07	0.10	0.24	0.04	0.05	0.12	0.00	0.69	0.20	0.70*	0.60	0.10	0.01*	0.42	0.00	0.24	0.10	0.05	0.65	1.00	
9 10		lipid	0.09	0.36	0.24	0.32	-0.30	0.72	0.74	0.47	0.38	0.33	0.38	-0.13	-0.19	0.42	0.11	0.18	-0.13	-0.28	0.03	-0.05	1.00
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 42\\ 52\\ 62\\ 7\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 55\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 44\\ 5\end{array}$	640						-0.30																
46 47 48											V	Viley-V	СН										

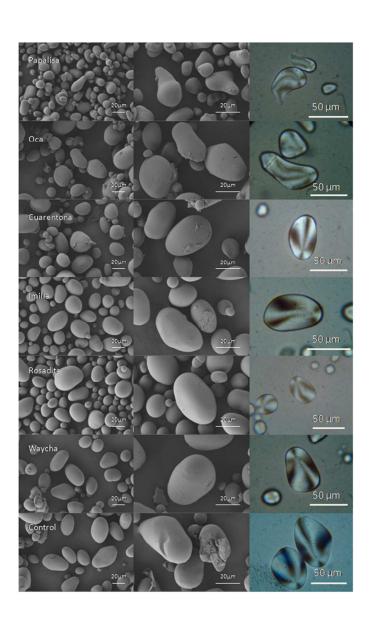
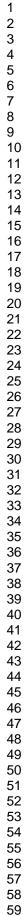



Figure 1: SEM and optical micrographs of isolated starches from Andean potatoes and tubers and the Control starch. From the left, the first two are SEM images at 600x and 1500x; the third image was taken under polarized light at 1000x magnification. 190x275mm (96 x 96 DPI)

Wiley-VCH

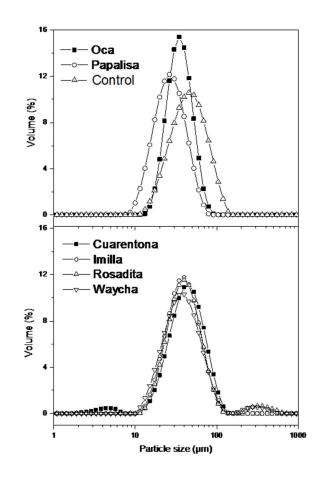


Figure 2: Granule size distribution of starches suspended in water measured by laser light scattering. 190x275mm (96 x 96 DPI)

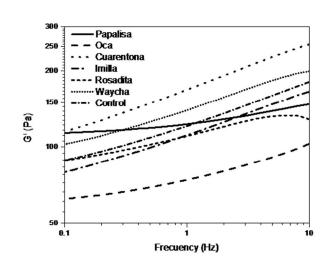


Figure 3: G' vs. frequency of gelatinized starch suspensions at 5 % w:w. 190x275mm (96 x 96 DPI)

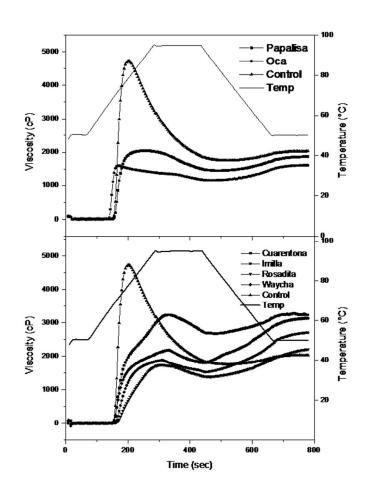


Figure 4: RVA diagrams of starch suspensions at 6.25 % w:w. 190x275mm (96 x 96 DPI)

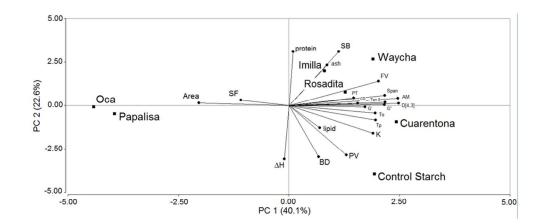


Figure 5: PCA: score and loading plot of PC1 and PC2 describing the overall variation among the Andean tuber starches. 275x190mm (96 x 96 DPI)