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Summary

MHC class II molecules play a fundamental role in the cellular immune

system: they load short peptide fragments derived from extracellular pro-

teins and present them on the cell surface. It is currently thought that the

peptide binds lying more or less flat in the MHC groove, with a fixed dis-

tance of nine amino acids between the first and last residue in contact

with the MHCII. While confirming that the great majority of peptides

bind to the MHC using this canonical mode, we report evidence for an

alternative, less common mode of interaction. A fraction of observed

ligands were shown to have an unconventional spacing of the anchor resi-

dues that directly interact with the MHC, which could only be accommo-

dated to the canonical MHC motif either by imposing a more stretched

out peptide backbone (an 8mer core) or by the peptide bulging out of the

MHC groove (a 10mer core). We estimated that on average 2% of pep-

tides bind with a core deletion, and 0�45% with a core insertion, but the

frequency of such non-canonical cores was as high as 10% for certain

MHCII molecules. A mutational analysis and experimental validation of a

number of these anomalous ligands demonstrated that they could only fit

to their MHC binding motif with a non-canonical binding core of length

different from nine. This previously undescribed mode of peptide binding

to MHCII molecules gives a more complete picture of peptide presenta-

tion by MHCII and allows us to model more accurately this event.

Keywords: deletions; insertions; machine learning; MHC class II; non-

canonical binding.

Introduction

The primary function of class II MHC molecules

(MHCII) is to alert the immune system to the presence

of a pathogen by binding and presenting short peptide

fragments derived from exogenously derived proteins.

Once outside the cell, T helper lymphocytes bearing

receptors specific for the peptide–MHCII complex can

recognize the peptide as non-self and help to initiate an

appropriate immune response.1–3 Structurally, MHCII

consists of two non-covalently bound amino acid chains,

the a and b chains. The two domains a1 and b1 of these

chains combine to form the peptide-binding groove.

Because the MHCII groove is open at the extremities, the

peptide ligand can freely extend outside both ends.

The stretch of peptide residues directly interacting with

the groove, the so-called binding core, is the main deter-

minant of peptide binding to MHCII. Ample structural

data show that the peptide binds lying flat in the groove,

with an extended conformation and a fixed distance of

typically nine amino acids between the first and last pep-

tide residue in contact with the MHCII groove.4 The resi-

dues at positions P1, P4, P6 and P9 of the binding core,

termed anchor residues, are normally directed towards

the MHC, and they can engage in interactions with pock-

ets in the binding groove. As the a1 and b1 chains are

highly polymorphic, the preferences of these pockets in

terms of which residues they can accommodate can vary

greatly. As a consequence, different MHCII alleles bind

distinct subsets of peptides.5

In contrast to MHCII, the binding groove of class I

MHC molecules (MHCI) is closed at both ends, with

most binding peptides having a length of nine amino

acids. Longer peptides are accommodated either by taking

on a bulged conformation with the middle of the peptide

protruding out of the MHC groove,6 or less frequently by
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extending outside the C or N termini.7,8 Peptides of

length eight amino acids can also bind to the MHCI, by

assuming a more stretched configuration of the back-

bone.3 We have shown with the most recent versions of

NETMHC9 and NETMHCPAN
10 that these alternative

modes of binding could be modelled with deletions and

insertions in the binding core of the peptide. Deletions

allow removal of consecutive residues in peptides longer

than nine amino acids to effectively align 10mers, 11mers,

etc. to the same binding core of nine positions. Ideally,

the deleted positions represent the residues that bulge out

of the MHCI groove, whereas an insertion mimics a more

stretched-out backbone and adapts 8mers to the common

window of nine residues. This strategy has proven highly

successful for MHCI binding prediction because it allows

training models on peptides of all lengths at the same

time, resulting in improved performance for all peptide

lengths.9

NETMHCIIPAN is a widely used computational method

that can predict quantitative binding of peptides to any

MHCII molecule of known sequence. In several bench-

marks, it has been shown to be the state-of-the-art for

the prediction of peptide binding to MHCII.11–13 Simi-

larly to the methods for peptide–MHCI binding predic-

tion by NETMHC and NETMHCPAN discussed above, the

algorithm underlying NETMHCIIPAN relies on the neural

networks training pipeline NNALIGN.14,15 One major chal-

lenge faced when training machine learning methods for

the prediction of peptide binding to MHCII stems from

the open binding cleft of the MHCII molecule. This open

conformation makes the location of the binding core

within the peptide unknown a priori. Because the pep-

tide-binding core is the main determinant of the interac-

tion with the MHC molecule, correct alignment of

peptides is essential to identify the MHCII binding

motifs. The NNALIGN method allows for such accurate

alignment based on quantitative peptide–MHC binding

affinity.14 It does so by encoding the amino acid sequence

of the peptide and of the MHC and several other features

of the training examples [e.g. peptide length, peptide

flanking region (PFR) composition and PFR length] to

predict quantitative measurements of peptide–MHC bind-

ing affinity.

In this work, we applied the extended NNALIGN pipe-

line (version 2.0) including modes for deletions and

insertions, allowing us to model the peptide–MHCII

binding event with cores of variable length. In the context

of MHCII, binding cores with insertions and deletions

would indicate a non-canonical mode of binding with

either a bulged or stretched configuration of the peptide

in the binding groove. We assessed the predictive perfor-

mance of the method on several data sets, and carried

out mutational studies to validate the occurrence of non-

canonical binding cores of length different from nine.

Materials and methods

Data sets

The method was trained on the binding data used in the

NETMHCIIPAN-3.0 publication16 (available at http://www.

cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0). This

set consists of quantitative peptide–MHC class II binding

data from the Immune Epitope Database,17 comprising

52 062 affinity measurements covering 24 HLA-DR, 5

HLA-DP, 6 HLA-DQ, and 2 murine H-2 molecules. The

IC50 (half inhibitory concentration) values in nanomoles

were transformed using the logarithmic formula 1 – log

(IC50)/log(50 000) as previously described18 to make

them fall within the range between 0 and 1.

Training the artificial neural networks

The method was implemented as an ensemble of feed-

forward neural networks with a single hidden layer as

previously described.19 Peptide and MHC sequences were

presented to the input layer of each network using BLO-

SUM encoding, where each amino acid was encoded as

the BLOSUM50 matrix score vector of 20 amino acids.20

The optimal 9mer core of a peptide therefore required

9 9 20 = 180 input neurons. Deletions and insertions

were encoded as previously described:9 cores longer than

nine amino acids were reduced to nine positions by

applying consecutive deletions at all possible positions in

the core; cores shorter than nine were completed by

introducing the wildcard X amino acid, encoded as a vec-

tor of zeros. The lengths of insertions Li and deletions Ld
were encoded with four input neurons with values Li/

(Li + 1), 1 – Li/(Li + 1), Ld/(Ld + 1) and 1 – Ld/(Ld + 1).

Forty additional input neurons were used to encode the

composition of the PFRs, calculated as the average BLO-

SUM scores on a maximum window of three amino acids

at either end of the binding core.19 C- and N-terminal

PFR lengths (LPFR) were each encoded using two input

neurons with values LPFR /(LPFR + 1) and 1 – LPFR/

(LPFR + 1), respectively. The peptide length L was

encoded with two input neurons taking the values LPEP
and 1 – LPEP, where LPEP = 1/(1 + exp((15 – L)/2)).

These transformations ensure that the normalized input

values to the neural networks fall in the range between 0

and 1. MHC molecules were represented in terms of a

pseudo-sequence defined by polymorphic residues in

potential contact with a bound peptide.21 We used the

same pseudo-sequences of 34 residues for the MHC a
and b chains defined by Karosiene et al.,16 resulting in

additional 34 9 20 = 680 inputs. As a result, the total

size of the input layer amounted to 910 neurons.

The single hidden layer was composed of 10, 15, 40 or

60 hidden neurons, and network weights were initialized

ª 2017 John Wiley & Sons Ltd, Immunology2

M. Andreatta et al.

http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0
http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0


with 10 different random configurations for each archi-

tecture. The resulting complete ensemble was therefore

composed of 200 networks (5 cross-validation folds 9 4

hidden layer sizes 9 10 initial weights). The output layer

was composed of a single neuron having as target value

the binding affinity of the training example rescaled

between 0 and 1 as described in the section Data sets.

When allowing insertions and/or deletions, networks were

trained using a burn-in period, a number of initial itera-

tions where insertions and deletions were not allowed.

After the burn-in, this constraint is relaxed and the algo-

rithm starts attempting to introduce insertions/deletions

as well.

Cross-validation subsets

The performance of the method on the binding affinity

data set used a fivefold cross-validation, where four-fifths

of the data were used for training and one-fifth for evalu-

ation, repeating the procedure five times for all evaluation

fifths. We used the same data partitions that had been

generated to train NETMHCIIPAN-3.0.16 To minimize

over-estimation of predictive performance, these subsets

for cross-validation were created using a Hobohm1-like

algorithm called ‘common-motif’.22 Common-motif first

selects seed sequences sharing at most a continuous

stretch of eight amino acids, and then splits these seed

sequences randomly into five partitions. The redundant

sequences, i.e. those peptides with a common subse-

quence of nine or more contiguous amino acids, are then

added to the group containing the seed used to define

their redundancy.

Reduced subsets with minimal redundancy

Although the procedure outlined above reduces the over-

lap between partitions compared with a random split of

the data, some degree of overlap is unavoidable without

removing data points. We constructed a reduced data set

that ensures no overlap between the partitions. The algo-

rithm to create the subsets starts with a prioritized list of

sequences, sorted by the number of MHCs that each pep-

tide is measured in complex with. That is, we start with

peptides that have affinity measurements with the largest

number of MHCs and proceed to accept or reject

sequences based on their similarity to the ones that were

already accepted. As we proceed down the list of

sequences, there are three possible outcomes for a query

sequence Q:

1 Q shares no contiguous stretch ≥ N amino acids with

any of the accepted peptides; it is accepted and

assigned randomly to one of the subsets.

2 Q shares a contiguous stretch ≥ N amino acids only

with sequences of one subset S; it is accepted and

placed in the subset S. Note that it can match several

sequences, but as long as they all belong to the same

subset, it is still accepted.

3 Q shares a contiguous stretch ≥ N amino acids with

sequences belonging to more than one subset; the pep-

tide is discarded.

Starting with a prioritized list aims at removing as few

sequences as possible while at the same time ensuring no

overlap ≥ N amino acids between the subsets.

Statistical tests

The predictive performances of alternative methods were

compared using binomial tests. Given a pair of methods,

the null hypothesis is that the two methods have equal

probability of returning higher Pearson Correlation Coef-

ficient (PCC) [or area under the curve (AUC)] on a given

MHC allele. If method 1 has higher PCC in n1 alleles and

method 2 has higher PCC in n2 alleles, we estimated the

P-value of this event as the two-tailed probability of

observing n1 or more wins by chance in a binomial dis-

tribution B(n1 + n2, 0�5). Ties were excluded from the

counts of n1 and n2.

Measurement of MHC–peptide interactions by mono-
clonal antibody capture

The binding capacity of peptide ligands to bind MHC

molecules was measured using direct and quantitative

binding assays as previously described elsewhere.23 In

brief, inhibitor peptides to be tested were prepared at

10 mg/ml in 100% DMSO and subsequently diluted to

the desired concentration in 0�05% NP-40 [0�05% (v/v)

Nonidet P-40 (NP-40; Fluka)/PBS, pH 7�2]. Then, 5 ll of
each peptide dose was loaded into a 96-well plate. For

positive (i.e. no inhibitor peptide) and negative (no

MHC) controls 5 ll 0�05% NP-40 was used. For each

plate, an unlabelled standard peptide (i.e. peptide with

known IC50 for the tested MHC) was used. Next, radioac-

tively labelled standard peptide (for labelling procedure

refer to Support Protocol 223) was mixed with PBS (pH

7�2), MHC, protease inhibitor cocktail and either 1�6%
(v/v) NP-40/PBS or 0�82% Pluronic to make the reaction

mix (hot mix). For plate layouts and the exact amounts

of ingredients used in this assay, please refer to Sidney

et al.23 as they vary among different MHCIIs tested. Ten

microlitres of hot mix was immediately added to all wells

except for the negative control. For negative controls,

10 ll of reaction mix lacking MHC (cold mix) was

added. Next, 96-well plates were sealed with Costar mats

(Fisher Scientific, Pittsburgh, PA; #07-200-614) and incu-

bated for 48 hr at room temperature (most assays). Alter-

natively, some assays required 72 hr of incubation and/or

an incubation temperature of 37° or MHC-specific modi-

fications, e.g. adjustment of final pH to optimize
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reactions.23 Finally, MHC–peptide complexes were cap-

tured using monoclonal antibody-coated plates (Support

protocol 423) and IC50 was determined using the Top-

count (PerkinElmer Instruments, Waltham, MA) bench-

top microplate scintillation and luminescence counter.

Results

Modelling peptide binding to MHCII, and particularly

which peptide residues are implicated in the interaction,

requires an alignment of the peptide sequences. We inves-

tigated whether by allowing the peptide alignment to con-

tain insertions and deletions, we could generate better

prediction models compared with what would be

obtained with an un-gapped alignment, and experimen-

tally validated the binding mode of a set of peptides pre-

dicted to contain non-canonical binding cores.

Priming neural networks with a burn-in period

When expanding the mode of binding cores to include

insertions and deletions, the solutions space becomes sub-

stantially larger. For instance, there are seven possible un-

gapped 9mer cores in a 15mer peptide, but there are 45

possible 10mers with one deletion, and 56 possible 8mers

with one insertion. The abundance of possible core con-

figurations makes it likely that a naive network will get

lost in local minima mainly composed of these non-9mer

cores. To avoid this, we introduced a burn-in period, in

which a number of initial iterations in neural network

training were performed without allowing for insertions

and deletions. The burn-in period has the function of

guiding the neural networks onto the right path, using

the prior knowledge that 9mer cores should be the norm

and that cores with insertions/deletions are the exception.

We trained neural networks on the binding affinity

data set (see Materials and methods) with and without

insertions/deletions, and with different burn-in periods.

The method without insertions/deletions can be thought

of as having a burn-in period equal to the total number

of training iterations, and is essentially equivalent to the

NETMHCIIPAN-3.0 method.16

It is evident from Fig. 1 that the burn-in iterations are

crucial to drive neural network learning: training without

this initial priming (burn-in = 0) did not improve the

performance compared with the method trained without

insertions and deletions, termed NoGap in Fig. 1

(P = 0�26, two-tailed binomial test). With an appropriate

burn-in rate (around 50–150 out of 500 total iterations)

and a maximum length for deletions and insertions of

one amino acid, we observed an average improvement in

predictive performance in a cross-validation set-up

(Fig. 1). The increase in PCC compared with NoGap was

significant, with higher performance observed on 34/37

molecules with burn-in = 100 (P = 10�7, two-tailed

binomial test). Similarly, when we evaluated predictive

performance in terms of AUC, the method with inser-

tions/deletions outperformed NoGap on 33 out of 37

molecules (P = 10�6), with average AUC = 0�875 com-

pared with 0�870 of the NoGap method. The method

trained with at most one deletion and one insertion also

outperformed neural networks trained with at most one

deletion and no insertions (P = 10�7), and networks

allowing no more than one insertion and no deletions

(P = 10�6). Allowing longer deletions of up to two amino

acids did not further improve cross-validated perfor-

mance (P = 0�32). Figure 2 summarizes these compar-

isons.

Insertions and deletions are relatively rare and allele-
specific

To estimate the frequency of the deletion and insertion

events, we submitted 3.7 million (100 000 for each of the

37 molecules in the data set) random natural 15mer pep-

tides to the neural networks. Defining peptides within the

top 10th percentile as binders, we find that 2�0% of the

binders were predicted to contain a core deletion, and

0�45% presented an insertion. However, we observed that

certain molecules had stronger preferences for insertions/

deletions whereas they were never predicted to occur in

others (Fig. 3). For example, even with a relatively con-

servative burn-in of 100 iterations, DRB3*01:01 and

DRB5*01:01 had > 10% of their predicted binders with

an optimal 8 or 10 amino acids core. Conversely, all

HLA-DP and HLA-DQ showed < 1% of predicted bin-

ders with non-canonical cores. The mouse molecules

0·734

0·732

150

P
C

C

Burn-in iterations
NoGap250100501050

0·736

0·738

0·740

0·742

0·744

0·746

Figure 1. Correlation coefficient (average over 37 molecules) of the

method versus the number of burn-in iterations used to prime the

networks. Networks were trained in cross-validation with a maxi-

mum insertion length of one amino acid and a maximum deletion

length of one amino acid. NoGap corresponds to the method trained

without insertions and deletions.
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H-2-IAb and H-2-IAd also had a very low fraction of

insertions/deletions. The profiles of insertion and deletion

frequencies for different values of the burn-in rate are

shown in the Supplementary material (Fig. S1).

Data redundancy and its effect on cross-validated
performance

The data partitions used to train NETMHCIIPAN-3.0 in

cross-validation were generated using a common-motif

procedure (described in the Materials and methods and in

ref. 22), which aimed at limiting the sequence similarity

between partitions. Although this procedure reduces the

overlap between partitions compared with a random split

of the data, some degree of sequence similarity is unavoid-

able without removing data points. Indeed, on the binding

affinity data set, after applying the common-motif, 45% of

the sequences still shared a continuous stretch ≥ 9 amino

acids with at least one other sequence in a different parti-

tion. Such redundancy can lead to overestimating the pre-

dictive performance in cross-validation,24 as these

examples are relatively easy to predict – the neural net-

works have seen a very similar example in the training

phase. Over-estimation of the predictive performance is

expected to be more pronounced for methods with larger

search spaces and model parameters. Therefore, one may

argue that the gain in performance obtained by including

deletions and insertions could be an artefact of data redun-

dancy and of the increase in model complexity.

To investigate this, we generated reduced data sets that

ensured no overlap ≥ N contiguous amino acids between

any sequence in different cross-validation subsets, apply-

ing the algorithm described in the Materials and methods.

Depending on the length of the common-motif threshold

N, a different number of sequences must be removed

from the data set to fulfil the no-overlap condition.

Figure 4 shows the percentage of removed sequences

depending on N. For common-motif lengths 3–5, as

expected, the number of removed peptides decreases

when considering longer cores. However, the number of

peptides removed for lengths 6–10 is essentially the same

(about 14–15% of the sequences). This is probably due to

a significant fraction of peptides tested for binding being

generated as 15mers overlapping by 10 residues, which is

a common approach to cover an antigen of interest.25,26

Therefore, for a more stringent reduction of redundancy

(without losing any extra data), we continued the analysis

using N = 6. In other words, we removed about 7800

sequences of the 52 062 in the training set, ensuring that

no two sequences across subsets shared more than five

consecutive amino acids. Approximately the same number

of peptides would have to be removed to ensure a maxi-

mum overlap of 8 (N = 9).

The MHCII–peptide-binding predictor was retrained

on these reduced partitions, both with and without inser-

tions/deletions. As expected, the cross-validated perfor-

mance on the data set without overlap between partitions

dropped significantly (P = 10�8) compared with the

method trained on all data, as all the evaluation examples

now have a lower degree of similarity to the training data.

However, even in this extreme scenario, the performance

of the method remains high with average PCC values in

the order of 0�7 for all burn-in rates (Fig. 5). More

importantly, we observed also on these data that the

method with insertions/deletions performs significantly

better than the NoGap counterpart, with higher PCC for

31/37 molecules (P = 4*10�5) with a burn-in rate = 100.

This demonstrates that the prediction of peptides with

non-canonical binding cores was not merely a result

memorized by the neural networks as outliers, and that

the rules of placing insertions/deletions could be general-

ized and applied on a set of peptide sequences very differ-

ent from the ones used to train the networks.

A mutational analysis supports the hypothesis of
10mer binding cores

To validate experimentally the occurrence of binding

cores with length different from nine amino acids, we

ns

i = 1i = 1i = 1i = 0i = 0

0·740

0·745

0·750

P
C

C

0·730

0·735

**
**

**

d = 2d = 1 d = 1d = 0 d = 0

Figure 2. Correlation coefficient for methods trained with different

deletion (d) and insertion (i) maximum lengths. The method with at

most one deletion and one insertion (d = 1; i = 1) had significantly

higher performance than the method without insertions/deletions

(d = 0; i = 0) with higher Pearson’s correlation coefficient (PCC) in

34/37 molecules (P = 10�7). It also outperformed d = 1; i = 0 on 34/

37 molecules (P = 10�7) and d = 0; i = 1 on 33/37 (P = 10�6) mole-

cules. Allowing longer deletions of up to two amino acids (d = 2;

i = 1) does not significantly improve cross-validated performance

compared with d = 1; i = 1 (P = 0�32). All P-values were calculated

with two-tailed binomial tests. **Highly significant; ns Not significant.
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designed a number of mutations to four validated MHCII

binding peptides. The four wild-type peptides in Fig. 6

were all predicted to contain a 10mer binding core (i.e.

they comprised a deletion). In all four cases, the canoni-

cal and non-canonical predicted cores agree on the loca-

tion of one anchor, and disagree on the position of a

second anchor residue.

The canonical binding motif for DRB1*03:01 has

anchors at P1 with preference for hydrophobic amino

acids, and at P4 with a preference for D (see Fig. 6). Both

DRB1*03:01 binders fail to match this motif, as the D at

P4 is separated by four residues from the nearest

hydrophobic amino acid. Two explanations for this

inconsistency are possible: the P1 anchor can tolerate

non-hydrophobic amino acids, or the distance between

P1 and P4 can be different from three amino acids. In

the second scenario, we would predict that: (i) mutating

the D at P4 to a dissimilar amino acid should abolish

binding; (ii) mutating the putative non-canonical P1 to a

non-hydrophobic amino acid should also remove bind-

ing; (iii) mutating the putative P1 of the 9mer core

should not affect binding; (iv) additional mutations

outside the predicted core should not have an effect on

binding.

The binding motif for DRB5*01:01 has a strong

hydrophobic anchor at P1, and a strong positively

charged anchor at P9 (see Fig. 6). Both binders are

inconsistent with this motif, as the distance between the

P1 and P9 in both cases is 10 residues. If these peptides

interact with the MHCII with a binding core of 10 amino

acids, we would predict that: (i) mutating the F at P1 to

a dissimilar amino acid should abolish binding; (ii)

mutating the P1 + 9 residue (i.e. the last residues in the

predicted 10mer core) should prevent binding; (iii)

mutating the P1 + 8 residue (i.e. the last residue in a

putative 9mer core) should not affect binding; or (iv)

mutations outside the predicted core(s) should not have

an effect on binding.

The effects of targeted mutations on the four peptides

are listed in Table 1. In most cases the measured IC50

affinity of the variants supports the presence of a 10mer

binding core. Mutations on anchors of the 10mer cores

abolished binding, whereas mutated anchors according to

a putative 9mer core did not affect binding affinity com-

pared with the wild-type. Therefore, successful binding

for these peptides requires both anchor residues, and

these are separated by a number of residues that is only

consistent with a 10mer binding core. Although the size

of the effect was not identical for all mutations, the direc-

tion of the change in binding strength was consistent. For

instance, peptide ISFCNANPGLMKDVA was measured to

bind with affinity of 12 nM to HLA-DRB5*01:01, a value

that ranks this sequence among the top 1�2% of predicted

binders when compared with NETMHCIIPAN prediction

scores for a large set of random natural 15mer peptides.

However, the measured affinity of the two mutants

P3F>K (522 nM) and P12K>G (599 nM) translates into

respectively 35% and 38% in terms of such percentile

ranks; in this light, the two mutations had a very severe

effect on the strength of the interaction.

The nearly threefold reduction in binding affinity for

the P4H>G mutant of MYFHKRDMRLLSLAV was some-

how surprising, as the histidine at the predicted P2 of the

core is not expected to play a determinant role in the

binding capability of the peptide. However, glycine is a

special amino acid because it only has a single hydrogen

atom as its side chain. This small side chain grants high

flexibility to the polypeptide chain, and glycine can there-

fore have rotation angles forbidden by most other amino

acids. The mutation H>G could impose structure
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Figure 6. Predicted 9mer and 10mer binding

cores for two DRB1*03:01 and two DRB5*01:01

ligands. The non-canonical spacing of the

anchor residues can only be accommodated

with a deletion in the binding core, which is

depicted here as a protrusion of the peptide

chain at the predicted position of the deletion.

Reference sequence logos are from NNALIGN.15

[Colour figure can be viewed at wileyonline

library.com]
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variations in the peptide conformation not captured by

the prediction method. This said, the mutations at the

predicted P1 and P4 of the binding core (P3F>A and

P7D>V, respectively) have much more dramatic effects

on the measured IC50, pointing to the dominant role of

these two residues in determining the peptide–MHC

interaction. Much more unexpected was the outcome for

the P8D>V variant of LQIIDKIDAAFKVAA, which

turned out as a binder (IC50 = 59 nM) despite losing the

aspartic acid (D) at the P4 anchor of the binding core

(highlighted in bold). The NNALIGN network ensemble

predicts that the P8D>V mutant LQIIDKIVAAFKVAA

has affinity of 230 nM for DRB1*03:01; this peptide prob-

ably uses an alternative binding register, with affinity

comparable to the primary binding register, exploiting

the D three amino acids to the left of the D>V mutation.

Discussion

The currently accepted paradigm for the event of pep-

tide–MHCII binding portrays the peptide lying flat in the

peptide-binding groove of the MHC, extending out of

both sides of the groove. The conformation of the peptide

backbone is highly conserved, with a fixed distance of

nine amino acids (the binding core) between the first and

last peptide residue in contact with the MHCII groove.

This model is supported by a vast amount of literature

and numerous crystal structures of peptide–MHC com-

plexes,4,27 and has been tremendously useful to study the

mechanisms of epitope presentation. While confirming

that the great majority of peptides bind to the MHC

using this canonical mode, in this work we report evi-

dence for an alternative, less common mode of interac-

tion. The basic idea is that a fraction of observed ligands

have an unconventional spacing of the anchor residues

that can only be accommodated to the canonical MHC

motif with a more stretched out peptide backbone, if the

anchors are closer to each other than expected, or by the

peptide bulging out of the MHC groove, if the anchors

are separated by too many residues.

The first, indirect evidence for a non-canonical mode

of binding comes from a machine learning benchmark on

a large set of binding affinity data. Allowing the peptide-

binding core to take on a variable length of either eight,

nine or ten residues, we showed that we could build

models with significantly higher predictive performance

compared with having a fixed binding core of nine con-

tiguous amino acids. Because more accurate models

should correspond to better approximations of the bio-

logical system being modelled, these results suggest that

such non-canonical cores do occur in practice. These

observations were also confirmed in a redundancy-

controlled set-up, where we ensured that the improved

accuracy was not an artefact of over-fitting on highly

similar sequences.

Further evidence for the occurrence of the proposed

non-canonical mode of binding was collected with a

mutational study of four MHCII binders. These peptides

were all predicted to contain a deletion (that is, a 10mer

binding core). We showed that the binding measurements

of the mutated peptides are only coherent with a mode

of binding that involves a binding core of 10 amino acids,

and that a canonical 9mer binding core cannot accom-

modate the peculiar anchor spacing of these peptides.

Taken together, these results are strongly suggestive of a

non-canonical mode of binding for MHCII ligands that,

to the best of our knowledge, has never been described

before.

Recent advances in mass spectrometry have enabled

large-scale analyses of the collection of peptides naturally

presented by MHC molecules in a particular cell line.

These technologies have a tremendous potential as they

can generate thousands of data points in a single experi-

ment (see for instance refs 28,29). However, since anti-

gen-presenting cells normally express multiple MHC

isoforms, the MHC restriction of each ligand is generally

not known and must be assigned, either with a predictor

of binding to MHC or through unsupervised clustering.30

Table 1. Measured IC50 binding affinity for four MHC class II

ligands in their wild-type (WT) and mutated variants

Peptide Mut MHC Pred IC50

MYFHKRDMRLLSLAV WT DRB1*03:01 + 272

MYFHKRVMRLLSLAV P7D>V DRB1*03:01 � 29300

MYAHKRDMRLLSLAV P3F>A DRB1*03:01 � 1780

MYFGKRDMRLLSLAV P4H>G DRB1*03:01 + 743

MEFHKRDMRLLSLAV P2Y>E DRB1*03:01 + 124

LQIIDKIDAAFKVAA WT DRB1*03:01 + 90

LQIIDKIVAAFKVAA P8D>V DRB1*03:01 � 591

LQIADKIDAAFKVAA P4I>A DRB1*03:01 � 539

LQIIRKIDAAFKVAA P5D>R DRB1*03:01 + 89

LQAIDKIDAAFKVAA P3I>A DRB1*03:01 + 152

RNVFDEVIPTAFKIG WT DRB5*01:01 + 37

RNVRDEVIPTAFKIG P4F>R DRB5*01:01 � 652

RNVFDEVIPTAFAIG P13K>A DRB5*01:01 � 666

RNVFDEVIPTARKIG P12F>R DRB5*01:01 + 5

RNEFDEVIPTAFKIG P3V>E DRB5*01:01 + 15

ISFCNANPGLMKDVA WT DRB5*01:01 + 12

ISKCNANPGLMKDVA P3F>K DRB5*01:01 � 522

ISFCNANPGLMGDVA P12K>G DRB5*01:01 � 599

ISFCNANPGLRKDVA P11M>R DRB5*01:01 + 0�2
IEFCNANPGLMKDVA P2S>E DRB5*01:01 + 10

Mutations are listed in the Mut column and highlighted in bold let-

ters in the peptide. The predicted 10mer binding core is underlined.

Pred is the expected outcome if the peptide contained a 10mer bind-

ing core.
1This mutant has a predicted secondary binding core (see text).
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Although most studies in this field have focused on MHC

class I eluted ligands, reports of class II ligandomes have

started to appear (e.g ref. 31). When sufficient and reli-

able MHCII ligandome data become available, and the

issues of restriction assignment are confidently solved, it

will be essential to investigate the presence of non-

canonical binding also in MHCII natural ligands.

Ultimately, crystal structures of peptide–MHC class II

complexes displaying a bulged mode of binding would be

highly desirable, both to further confirm the occurrence

of non-canonical binders and to study their possible

effect on the recognition by the T-cell receptor.

The results described in this work were obtained using

the fully automated NNALIGN machine-learning pipe-

line.32 NNALIGN has been previously applied to generate

models of protease cleavage15 and characterization of

MHCII binding motifs,33 and it forms the foundation for

the state-of-the-art prediction algorithms NETMHC,9

NETMHCPAN,10 NETMHCII14 and NETMHCIIPAN.12 In all

these examples, it has been proven capable of detecting

subtle motifs in quantitative peptide data, and of generat-

ing powerful prediction models for several biological

problems. In this work, NNALIGN highlighted anomalies

in the manner in which a fraction of ligands bind to the

MHCII, and suggested a non-canonical mode of peptide–
MHC binding that was later confirmed by experimental

validation. However, its applications are not limited to

the MHC system, and it can be readily employed to study

other kinds of receptor–ligand interactions.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Frequency of predicted binders with inser-

tions (white) and deletions (black) in the binding core

for different MHC molecules. Increasing the number of

burn-in iterations results in fewer predicted insertions/

deletions and a larger fraction of ungapped binding cores.

The figure was generated, for each allele and burn-in rate,

from the top 10% scoring peptides out of 100,000 natural

random 15-mers.
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