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Abstract

Motivation: Computational methods for the prediction of peptide-MHC binding have become an

integral and essential component for candidate selection in experimental T cell epitope discovery

studies. The sheer amount of published prediction methods—and often discordant reports on their

performance—poses a considerable quandary to the experimentalist who needs to choose the best

tool for their research.

Results: With the goal to provide an unbiased, transparent evaluation of the state-of-the-art in the

field, we created an automated platform to benchmark peptide-MHC class II binding prediction

tools. The platform evaluates the absolute and relative predictive performance of all participating

tools on data newly entered into the Immune Epitope Database (IEDB) before they are made public,

thereby providing a frequent, unbiased assessment of available prediction tools. The benchmark

runs on a weekly basis, is fully automated, and displays up-to-date results on a publicly accessible

website. The initial benchmark described here included six commonly used prediction servers, but

other tools are encouraged to join with a simple sign-up procedure. Performance evaluation on 59

data sets composed of over 10 000 binding affinity measurements suggested that NetMHCIIpan is

currently the most accurate tool, followed by NN-align and the IEDB consensus method.

Availability and implementation: Weekly reports on the participating methods can be found online

at: http://tools.iedb.org/auto_bench/mhcii/weekly/.

Contact: mniel@bioinformatics.dtu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antigen presentation to helper T cells typically begins with the uptake

of antigenic material from extracellular proteins, which are processed

by proteases into short peptides typically 10–25 amino acids long.

Peptides can then be loaded onto Major Histocompatibility Complex

(MHC) class II molecules and transported to the surface of the cell,

where they are scrutinized by helper (CD4þ) T cells (Blum et al., 2013).

The various steps in the pathway leading to peptide presentation should

ensure that the immune system has the ability to distinguish between

self and non-self material, and mounts an immune response if foreign

antigens are detected. Failure to differentiate self and non-self can result

in autoimmunity and other serious health complications.

Peptide binding to MHC class II molecules is probably the most

studied and well-understood step in antigen presentation to CD4þT

cells. Although significant progress has been made toward developing

cost-effective experimental methods for screening peptide binding to
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MHC class II (Justesen et al., 2009), the effort involved in performing

an exhaustive characterization of the binding specificity of all prevalent

MHC class II molecules remains prohibitive. Several computational

methods for the prediction of MHC class II binding have been devel-

oped, offering an attractive alternative to costly experimental methods.

These include ARB (Bui et al., 2005), SVRMHC (Wan et al., 2006),

MHCpred (Doytchinova and Flower, 2003), NN-align (Nielsen and

Lund, 2009), TEPITOPE (Sturniolo et al., 1999a), and several others

(Dhanda et al., 2016). Pan-specific methods such as TEPITOPEpan

(Zhang et al., 2012) and NetMHCIIpan (Nielsen et al., 2008) can infer

the binding specificities of molecules with scarce or no measured bind-

ing data by inferring binding specificity from other well-characterized

molecules, and are therefore applicable to a larger library of MHC

molecules; in the case of NetMHCIIpan that extends to all molecules

with known MHC protein sequence. With variable degrees of accu-

racy, all these methods allow the identification of peptides that are

likely binders of MHC class II molecules. However, the large number

of available methods may be daunting for the user when it comes to

selecting the best method for a given problem.

Several studies have performed systematic evaluations of the per-

formance of peptide-MHC II binding predictors (Lin et al., 2008;

Wang et al., 2008, 2010). The general conclusion of these studies is

that, despite encouraging improvements, the performance of

peptide-MHC II binding algorithms remains considerably inferior to

that of MHC class I binding predictors. While informative and use-

ful, these benchmark studies are all based on a static dataset, often

from a single lab, and may not accurately represent the global per-

formance of the different methods. Additionally, there is often a

considerable lag between the time a benchmarking study is carried

out and the publication of the results in a manuscript. As prediction

methods are rapidly improved and updated, the results of these eval-

uations are often outdated by the time they become public. Finally,

as users gravitate around older and well-established methods, novel

algorithms from research groups that are new in the field may not

receive the attention they deserve in the absence of an open, trans-

parent benchmarking scheme.

In a recent study, Trolle et al. (2015) described a platform that

automatically runs weekly benchmarks of peptide-MHC class I

binding predictions on data newly deposited into the Immune

Epitope Database (IEDB) (Vita et al., 2015), and reports the results

online in real time. Because the data are drawn from different sour-

ces and studies, and the results are immediately available to the pub-

lic, this strategy provides an up-to-date and unbiased assessment of

the different prediction methods. The benchmark started with four

participating methods in 2014 and has later seen its number of

competitors increase to nine, attracting interest and participation

also from externally developed tools.

Here, we describe a strategy for the automated benchmarking of

MHC II binding prediction methods, in analogy to the approach

developed by Trolle et al. (2015) for MHC class I predictors. The

benchmarking platform sends data newly entered in the IEDB to

each of the participating methods, which are hosted externally as

RESTful web services, and retrieves their prediction scores. The per-

formance of the participating methods is then displayed in real time

on a public webpage, providing a timely and up-to-date evaluation

of the prediction methods. The effort required from tool developers

to participate is minimal—they are only required to provide a mini-

mal functioning RESTful web service with the ability to accept input

sequences and return prediction scores.

2 Materials and methods

2.1 Participating methods
The initial panel of participants consisted of 6 methods: NN-align (ver-

sion 2.2), NetMHCIIpan (version 3.1), Comblib, SMM-align (version

1.1), TEPITOPE and IEDB consensus. The first two methods are based

on artificial neural networks (ANN), the following three are based on

scoring matrices, and the IEDB consensus is a combination of several

prediction methods. NetMHCIIpan-3.1 is the only pan-specific predic-

tor in the panel, and can therefore be applied to a much larger number

of MHC molecules than the other predictors (Table 1). NetMHCIIpan

is hosted at DTU Bioinformatics, Technical University of Denmark, to

demonstrate the ability to support external servers; while all other meth-

ods in the initial benchmark are hosted at the La Jolla Institute, USA.

After the initial benchmark, other servers will be encouraged to

enroll in the panel of participants. Data are sent to the participating

servers with simple cURL requests, using either the GET or the

POST request methods. The default format for a GET request is:

curl‘<1>? peptide¼<2>&allele¼<3>’, where the three

variable fields will be substituted with (i) the complete server URL;

(ii) a comma-separated list of peptides; (iii) the MHC allele associ-

ated to the peptides. The benchmarking platform expects the servers

to return predictions in a three-column format: MHC allele; peptide

sequence; prediction value. Detailed instructions to join the bench-

mark, including templates to set up RESTful web services, are avail-

able at: http://tools.iedb.org/auto_bench/mhcii/join.

2.2 Criteria for inclusion of a data set
The platform checks during the weekly updates of the IEDB whether

new references (RefID) that contain data suitable for the benchmark

Table 1. Prediction methods participating in the initial benchmark

Method Type MHCa Short description References

NN-align-2.2 ANN 27 A neural network training procedure that simultaneously estimates

the optimal peptide binding register and network weight

configuration.

(Nielsen and Lund, 2009)

NetMHCIIpan-3.1 ANN 5625 Pan-specific method that includes sequence information of the

MHC molecule as training input.

(Nielsen et al., 2008;

Andreatta et al., 2015)

Comblib Matrix 16 Scoring matrices generated with positional scanning combinatorial

libraries.

(Sidney et al., 2008)

SMM-align-1.1 Matrix 29 Stabilized-matrix method optimized with a Monte Carlo heuristic. (Nielsen et al., 2007)

TEPITOPE Matrix 51 Profiles of binding preferences determined for the main HLA-DR

binding pockets.

(Sturniolo et al., 1999)

IEDB consensus Mixture 67 A combination of the predicted rank of several methods. (Wang et al., 2008, 2010)

aNumber of MHC molecules in the library of each method.
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were added to the database. A single reference may contain several

individual data sets. A data set consists of a number of data points

from the same reference, restricted to the same MHC molecule and

measured with the same assay type. Supported assay types are; IC50

(inhibitory concentration to displace 50% of a high affinity ligand),

t1/2 (half-life of the binding interaction) and binary (positive or neg-

ative annotation from manually curated references). The IEDB cap-

tures data from publications accepted in peer-reviewed journal

indexed in PubMed. Beyond that, it does not directly impose any

additional quality filter. By breaking down the data submitted to the

IEDB into individual data sets, we make the evaluation transparent

so that researchers can disregard certain studies or assay types if

they believe they are not reliable.

For a given allele and measurement type, a data set is bench-

marked if there are at least 10 valid data points, of which at least 2

are positive and 2 are negative. The threshold to define positives

was set to 500 nM for the IC50 data type and 120 min for half-lives.

Valid peptides contain only standard amino acids and have lengths

between 15 and 25 residues. The lower threshold on 15mers is due

to several of the methods participating in the initial benchmark

being limited to this hard-coded length, but we are planning to allow

for shorter lengths down to 11 residues. New participants will be

allowed to elect whether to evaluate queries in terms of overlapping

15mers, or directly on the full-length peptides. Because the main

goal of the benchmark is to be able to compare multiple methods on

the same evaluation data, it is performed only for MHC molecules

that are included in the list of supported alleles of at least two

methods.

2.3 Evaluation and performance measures
The predictive performance of the participating servers is evaluated

in terms of Spearman rank correlation coefficient (SRCC) and area

under the receiver-operating curve (AUC). The SRCC should satis-

factorily represent the rank correlation between target and predicted

values for quantitative measurements (IC50 and t1/2), whereas the

AUC is probably more adequate to describe the categorical separa-

tion of binary data. Therefore, we opted to represent performance

using both of these metrics.

Servers are assigned a relative rank score for each evaluated data

set using the scheme previously described by Trolle et al. (2015).

The best performing server receives a rank of one, the worst per-

forming server a rank of zero, and all remaining servers are assigned

scores evenly spaced between zero and one. For example, on a data

set where six servers could generate predictions, they are assigned

the ranks of 1, 0.8, 0.6, 0.4, 0.2 and 0. If only three methods could

be applied to a data set, they will receive the ranks 1, 0.5 and 0. In

case of ties, all methods with equal performance receive the highest

rank score. Each server is assigned a rank score based on SRCC and

a rank score based on AUC. Note that with this schema there is no

penalty for servers with a limited library of MHC alleles; they will

receive rank scores only for datasets where they can generate

predictions.

An aggregate score, tracking the performance of the different

methods through time, is calculated on the latest references added to

the benchmark, and is updated every time new data are bench-

marked. If five or more references are added in a given week, all of

them are used to calculate the latest aggregate score. If less than five

references are added to the weekly evaluation, the most recently

evaluated references are also included to ensure that at least five

references are comprised in the aggregate score.

3 Results

In summary, we have established an automated platform that (i)

periodically queries the IEDB for new references, and examines if

they contain suitable data for the MHC class II benchmark (see

Materials and Methods); the identified datasets are then (ii) used to

evaluate the prediction performance of the participating methods;

the results of the evaluation are (iii) shown on a public webpage as

soon as they become available. Figure 1 shows the basic workflow

of the benchmarking procedure, and each of these steps is explained

in more detail below.

3.1 Suitable references and data sets for the automated

benchmark
The number of individual references and datasets (a single reference

may contain multiple data sets) in the IEDB that pass the suitability

criteria for the automated benchmark by year of publication are

shown in Figure 2. With the exception of 2016, there have been con-

sistently at least 20 data sets that satisfy the requirement for inclusion

in the benchmark every year since 2005. As experimental methods

become increasingly high-throughput with time, we observed that the

cumulative number of data points in suitable references increased

from about 10 000 in 2008 to over 70 000 in 2016 (Fig. 2B).

3.2 A benchmark on recent references (2014–2016)
The initial benchmark was performed on data submitted to the

IEDB in the period 2014–2016. In this period of time, a total of 296

references containing MHC ligand assays were added to the IEDB.

Filtering these references for supported MHC molecules, peptide

lengths and measurement types identified 74 references with at least

one data point. Out of these, 33 references contained 76 individual

data sets with sufficient data for evaluation, covering 32 different

MHC II molecules. However, only 17 of these MHCs were present

in the library of at least two participating methods, reducing further

the number of suitable datasets to 59, from 19 different references.

The methods participating in the initial benchmark were evaluated

on these 59 data sets, comprised of a total of 10 323 affinity meas-

urements and ranging in size from 14 to 889 data points.

The results of the benchmark in terms of Spearman’s rank coeffi-

cient (SRCC) and Area under the ROC curve (AUC) are shown in

Figure 3. The performance values are expected to be fair estimates

of the participating methods performance as they were trained on

data from 2013 or earlier. NetMHCIIpan appears to be the best per-

forming method, with average SRCC¼0.566 and AUC¼0.835.

NN-align also has respectable performance (SRCC¼0.519,

AUC¼0.807), but can applied to a smaller subset of alleles than

NetMHCIIpan. The IEDB consensus method, which combines pre-

dictions from several methods including Comblib, comes in third

(SRCC¼0.454, AUC¼0.753), probably driven down by the very

low performance of the combinatorial libraries (Comblib). SMM-

align has comparable performance to the IEDB consensus method.

TEPITOPE seems to perform well on some alleles but worse than

random for several others. Complete performance values for all data

sets and methods are listed in Supplementary Table S1.

As an alternative scheme of comparing the performance of the

methods, they were ranked from best to worst in each of the 59 data

sets included in the initial benchmark. The best performing server in

terms of SRCC receives a rank of one, the worst performing server a

rank of zero, and all remaining servers are assigned scores evenly

spaced between zero and one (see Materials and methods). Ranks are

only calculated for methods that contain the MHC molecule of the

data set in their library; in this way, predictors are not penalized for
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not providing predictions for certain MHC molecules. NetMHCIIpan

again outperforms the other participants according to this metric,

reporting a rank R�0.8 for 38 out of 59 data sets, and R�0.6 for

46 data sets (Fig. 4A). The second-best method in terms of ranks is

NNAlign, with R�0.8 for 19, and R�0.6 for 35 of the 53 data sets

it was evaluated on. In contrast, SMM-align, TEPITOPE and

Consensus IEDB reported R�0.8 for, respectively, seven, four and

ten data sets; Comblib could produce predictions only for 24 MHC

datasets, with R<0.4 for 21 of them. Similar results were observed

when the ranking was based on AUC scores (Fig. 4B), and when

methods were compared pairwise on the subset of MHC molecules

supported by each pair of predictors (Fig. 4C).

For the best performing method NetMHCIIpan, we aimed to

quantify the overlap between the data used to train the method and

the data evaluated by the benchmark. For each benchmarked pep-

tide, we calculated the edit distance to its nearest neighbor in the

NetMHCpan training set. The edit distance here is the minimal

number of substitutions or terminal extensions required to mutate a

peptide in the evaluation set into the most similar peptide in the

training set, restricted to the same MHC molecule. Of the 76 data

sets with sufficient data for evaluation in the period 2014–2016, 21

covered MHC molecules not included in the NetMHCIIpan training

sets, and accounted for 54% of the evaluation data. In the remaining

55 data sets, only a negligible fraction of peptides consisted of exact

hits to training points (0.15%), while the majority of evaluated pep-

tides had an edit distance�10 (Fig. 5). The average edit distance per

evaluated data set did correlate poorly with the SRCC performance

of NetMHCIIpan (PCC ¼ �0.11, SRCC ¼ �0.12). These results

A B

Fig. 2. Amount of public data available for the benchmark. (A) Number of references and data sets that pass the criteria for inclusion in the benchmark by year of

submission. (B) Cumulative number of MHC II binding data points in suitable data sets by year of submission

Fig. 1. Workflow of the automatic benchmarking platform. The program checks on a weekly basis whether new references were added in the Immune Epitope

Database (IEDB); when a new reference is detected, it is split into homogenous data sets consisting of unique combinations of MHC allele and measurement

type; sufficiently large data sets (at least 10 data points, of which at least two are positive and at least two are negative) are sent to the participating servers, inde-

pendently of where they are hosted, through a standardized RESTful protocol; the predictions are retrieved from the servers; performance values in terms of

SRCC and AUC are calculated for each participant; the servers are ranked from best to worst according to their performance values; the results of the evaluation,

including aggregated scores over historical evaluations, are displayed on a web page publicly accessible online
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show a very limited overlap between training data and the bench-

marked data sets, and confirm the general unbiasedness of the

benchmark.

3.3 Weekly IEDB benchmark and live results
Server rankings are updated each time a sufficiently large set of data

is submitted to the IEDB and benchmarked by the automated pipe-

line. Live, up-to-date performance evaluations of the participating

methods can be found on the IEDB Analysis Resource at: http://

tools.iedb.org/auto_bench/mhcii/weekly/.

The page reports weekly ranking scores (listing ranking scores

for all weeks with new references), and an aggregate score that

tracks performance of the servers through time (Fig. 6). Clicking on

individual weekly entries reveals detailed information on the refer-

ences and data set that were evaluated, as well as performance val-

ues in AUC and SRCC. The user can access the complete data sets

evaluated through the weeks of the benchmark and inspect the pre-

diction scores assigned by each server to individual peptide-MHCs

in a given data set. Since the release of the benchmarking platform

on January 1, 2017, three sufficiently large references (grouped in

two weeks) were identified by the platform and benchmarked. They

are displayed as two new entries in the weekly ranking tables, and

triggered updated aggregate scores for each participating server.

4 Discussion

It is generally accepted that peptide-MHC II binding is more diffi-

cult to predict compared to binding to MHC class I. This is due at

least in part to the structure of the MHC class II binding groove,

open at both ends and allowing binding of long peptides extending

out of the ends of the groove. While MHC I ligands have a very lim-

ited range of length (typically 9mers), MHC II ligands can have a

Fig. 3. Predictive performance of the methods participating in the 2014–2016 benchmark in terms of SRCC (A) and AUC (B). Each dot represents one data set,

and the width of the silhouettes is proportional to the density of points at different values. Solid horizontal bars show the mean performance of each method

(Color version of this figure is available at Bioinformatics online.)

Fig. 4. Relative ranks of the methods participating in the 2014–2016 benchmark. For each dataset, all methods are ranked based on SRCC (A) and AUC (B). The

best performing server in terms of SRCC receives a rank of one, the worst performing server a rank of zero, and all remaining servers are assigned scores evenly

spaced between zero and one. Ranks are binned in five intervals of equal size for the barplots. Servers are sorted from left to right based on the size of their top

quintile. (C) Pairwise performance comparison of the methods on the subset of datasets shared by each pair. For each element M[x][y] in the heatmap, the cell is

colored by the fraction of data sets for which method x outperforms method y (top of the diagonal in terms of SRCC, bottom of the diagonal in terms of AUC); ties

are counted as 0.5. Values on the diagonal represent the total number of datasets in the 2014–2016 benchmark that can be evaluated by each method
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large spectrum of length and need to be correctly aligned before the

basic binding motif can be identified (Nielsen et al., 2010). Several

computational methods have been developed to predict peptide-

MHC binding in silico, but it is not always clear how accurate these

algorithms are, and which one is optimal for a given problem.

In this work, we set out to design a platform for the automatic,

transparent and timely benchmark of prediction methods for

peptide-MHC II binding. Because the participating methods are

evaluated on data newly entered into the IEDB before it is made

publicly available, the comparison between the methods should be

fair and unbiased. The benchmark runs continuously, querying the

database for new references on a weekly basis. Whenever a new

data set is encountered, the methods are evaluated and their per-

formance is displayed publicly on a website, both in terms of per-

formance on individual data sets as well as a cumulative score over

historical submissions. In this way, any potential user can track the

performance of the different methods through time and MHC mole-

cules, and make an informed decision as to which tool is more

appropriate for a given task.

In the initial benchmark, we chose to start with six widely used

prediction methods included in the IEDB Analysis Resource (Fleri

et al., 2017). Many other methods exist, and they will be invited to

join the benchmark as participants. The conditions for enrollment

are minimal, and require from the participants only to host a simple

RESTful web service, for which we also provide templates and

examples. On a benchmarking period spanning 3 years (2014–

2016), NetMHCIIpan appeared to be the best-performing method

in the initial panel of predictors according to several metrics, fol-

lowed by NNAlign, and thirdly by the IEDB Consensus and SMM-

align with comparable performance. In light of these results, we

have decided to switch the method recommended by the IEDB from

‘Consensus’ to NetMHCIIpan.

It is evident that even for the best methods the predictive per-

formance may vary substantially between different data sets (Fig. 3).

Some data sets may be more difficult to predict, either because they

contain subtler differences between positives and negatives (Kim

et al., 2014), or because a given molecule is not well characterized,

or simply because the data are more noisy. In this sense, rank scores

offer a complementary metric for method evaluation, as performan-

ces are compared in relative as opposed to absolute terms. For

example, an AUC of 0.7 may put a method on the top of the list in

terms of relative ranks for a difficult data set where all other meth-

ods have inferior performance, while the same AUC may inflict a

rank of zero for an ‘easy’ data set where all other methods have

higher performance. Ranks are very useful to compare different

methods relative to each other, but they should always be inter-

preted in terms of absolute performance to evaluate their utility.

A possible limitation of the initial benchmark was that it

required that a data set could be evaluated by at least two methods

in the panel. With the exception of NetMHCIIpan, which covers

several thousand alleles, all the other methods have relatively small

libraries of MHC II alleles (Table 1). Therefore, 17 out of 76 suffi-

ciently large data sets had to be excluded from the benchmark

because they could only be evaluated by a single method, typically

NetMHCIIpan. This filter effectively removed nearly all molecules

outside HLA-DR, with only one HLA-DQ data set that could be

evaluated by at least two methods. We expect that as more servers

are added to the benchmark, in particular pan-specific algorithms

with large allele libraries, we will be able to evaluate a larger and

more diverse set of data.

Another practical issue concerns the way peptides are presented

to the participating methods for prediction. In the initial benchmark

we chose to set a minimum peptide length of 15 amino acids, and

represent longer peptides in the form of overlapping 15mers. The

prediction score for a given sequence was then taken as the score of

its highest overlapping 15mer. This design was imposed by the limi-

tation that several participating methods only made predictions for

15mer peptides, and we wanted to apply the same approach to all

methods in order to make the benchmark as uniform as possible. To

Fig. 5. Edit distance between peptides evaluated by the benchmark and the

data used to train NetMHCIIpan. The edit distance is the minimal number of

substitutions or terminal extensions required to mutate a peptide in the eval-

uation set into the most similar peptide in the training set, restricted to the

same MHC molecule. The bar labeled with N identifies benchmarked peptides

restricted to MHC molecules not present in the training data

Fig. 6. The online webpage of the automated MHC class II prediction bench-

mark. Clicking on individual weekly entries shows detailed information on the

data sets evaluated in that time period
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test whether this could be a limitation, we applied NetMHCIIpan to

the same data sets in the benchmark but omitting the digestion into

overlapping 15mers; the AUC of the method presented with full-

length sequences was not significantly different from the AUC of the

method fed with overlapping 15mers (p¼0.37, binomial test exclud-

ing ties), suggesting that this aspect may not be critical. However,

when new servers apply for enrollment in the benchmark, they will be

given the option to choose whether they should receive full-length

peptides or overlapping 15mers for evaluation, and we plan to evalu-

ate the ability to directly predict peptides of any length in the future.

Ultimately, the goal of peptide-MHC binding prediction is to

identify peptides with immunogenic potential. However, binding

affinity alone cannot fully explain MHC presentation and T cell

activation, and the performance of algorithms trained solely on

binding affinity remains limited for the prediction of T cell epitopes

(Mazor et al., 2015). Recent advances in proteomics and mass-

spectrometry hold great promise for overcoming these limitations.

These techniques provide a large and relatively unbiased sampling

of the population of peptides available for T cell recognition,

accounting not only for binding to the MHC II but also for process-

ing and presentation to the cell surface (Caron et al., 2015;

Mommen et al., 2016). As these techniques mature and become

more accurate, they provide a tantalizing opportunity to improve T

cell epitope prediction methods by integrating naturally presented

ligands in their training pipelines.

The benchmarking platform for peptide binding prediction to

MHC class II described here extends our previous work for MHC

class I binding predictions. In future work, we plan to extend this

automated benchmarking approach to other important problems in

immunoinformatics, including prediction of naturally eluted ligands

and T cell epitopes, as well as the evaluation of prediction methods

for B cell epitopes.
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