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INTRODUCTION

Among physical factors, rainfall has great impor-
tance, directly and indirectly affecting the structure
and dynamics of terrestrial (Knapp et al. 2002, Sala et
al. 2012) and marine environments (Philippart et al.
2011). Due to global climate change (GCC) and other
global-scale events such as the El Niño Southern
Oscil lation (ENSO), rainfall patterns change world-
wide (Bates et al. 2008). For example, rainfall can

directly modify the flow and availability of water in
terrestrial systems, generating extreme droughts
(Ciais et al. 2005) as well as persistent floods (Camil-
loni & Barros 2000). In coastal marine ecosystems,
rainfall can in crease freshwater input through river
runoff (Philippart et al. 2011). Biological responses
may be behavioral (Parmesan 2006), phenological
(Peñuelas et al. 2004), or demographic (Ogutu et al.
2008), and may even entail species distribution shifts
(Zhu et al. 2012) and extinctions (Parmesan 2006). In
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Atlantic salt marsh (Mar Chiquita coastal lagoon, Argentina). Field surveys showed that the abun-
dance of A. azarae increased during rainy summers (i.e. El Niño 2005 and 2007) and had lowest
values during dry summers (i.e. La Niña 2008). Salt content in sediment and plant tissue were neg-
atively related with rainfall. In addition, field experiments showed that increased sediment salinity
resulted in increased salt content in plant tissues. Elevated soil salinity also increased the propor-
tion of senescent S. densiflora tissues and reduced plant growth. The consumption of S. densiflora
leaves by A. azarae also decreased with increased soil salinity. The proportion of S. densiflora in
feces collected during the driest summer was very small. Therefore, changes in the abundance of
A. azarae could be mediated by plant−rodent trophic interaction or by plant cover changes. In
conclusion, rainfall fluctuations changed the abiotic environment (i.e. salinity), decreasing
 primary production and indirectly modifying habitat use by the omnivore A. azarae and its trophic
interaction with S. densiflora. The present study provides evidence that rainfall can modify eco-
logical processes that affect the structure and dynamics of coastal marine ecosystems.
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addition, new biological interactions or changes in
existing ones may arise (Birkett & Stevens-Wood
2005). Thus, extreme rainfall fluctuations can lead to
changes in carbon cycling (Ciais et al. 2005), above-
ground productivity (Knapp et al. 2002, Fay et al.
2008) and biological diversity (Walther et al. 2002).

On a global scale, physical factors such as tem -
perature and rainfall determine climatic conditions,
biome boundaries, species distributions (Whittaker
1975) and belowground productivity (Pandey &
Singh 1992). However, at smaller spatial scales, the
abundance and distribution of organisms are affec -
ted by both physical and biological factors (Bertness
& Callaway 1994). Biological interactions are impor-
tant ecological processes that modify the structure
and organization of natural communities (Brown et
al. 2001, Bruno et al. 2003) and can even affect their
biological diversity (Hillebrand et al. 2007). Trophic
interactions may be key factors in natural systems,
and can have large-scale ecological effects (Pace et
al. 1999, Estes et al. 2011). Nevertheless, biological
interactions are context dependent because their
effects may change along physical gradients (Menge
& Sutherland 1987, Bruno et al. 2003). In summary,
extensive evidence shows how rainfall fluctuations
and biological interactions affect many terrestrial
and marine systems, but ecological consequences
under this changing climatic scenario in coastal mar-
ine communities remain poorly understood (but see
Eslami Andargoli et al. 2009, Cane puccia et al. 2010).

Salt marshes are coastal marine ecosystems subject
to variations in the timing and amount of fluxes of
freshwater, nutrients, sediment and tides (Scavia et
al. 2002, Valiela 2006). Salt marshes are physically
harsh environments where periodic tidal floods and
high evaporation lead to high sediment salinities,
usually generating a physical gradient that varies
according to marsh elevation (Bertness 1999). Salt
stress has strong impacts on the biomass (Brown et
al. 2006), zonation (Bertness et al. 1992, Pennings et
al. 2005), and survival (Brown et al. 2006) of salt
marsh plants as well as their consumption by inverte-
brates (Silliman et al. 2005) and vertebrates (Cane -
puccia et al. 2010). Thus, rainfall fluctuations could
directly and indirectly trigger biological responses in
salt marshes through changes in sediment salinity.

Rainfall patterns in South America are intensely
affected by GCC and ENSO events (Grimm & Te des -
chi 2009). The climate of the eastern-central region of
Argentina is temperate-subhumid, but rainfall inten-
sity has shown an increasing trend during the last 5
decades (Berbery et al. 2006, Canepuccia et al. 2010),
with disruptions by cycles of heavy rainfall (El Niño)

and dry periods (La Niña) (Grim & Tedeschi 2009).
This region has many salt marshes, where the halo-
phytic species Spartina densiflora, S. alterniflora and
Sarcocornia perennis dominate (Isacch et al. 2006).
The structure and dynamics of these marshes can be
mediated by plant−consumer interactions (Alberti et
al. 2007, Canepuccia et al. 2010); the most abundant
marsh herbivores are the wild guinea pig Cavia
aperea (Canepuccia et al. 2010) and the burrowing
crab Neohelice (Chasmagnathus) granulata (Alberti
et al. 2007). However, these marshes also harbor
Azara’s grass mouse Akodon azarae (Canepuccia et
al. 2008), which is one of the most abundant murid
rodents inhabiting grassland and agroecosystems
of the Pampas region (Bilenca & Kravetz 1998). A.
azarae can feed on the leaves and seeds of S. densi-
flora (Cane puccia et al. 2008). Previous studies focus-
ing on the interplay between rainy periods and her-
bivory in southwestern Atlantic salt marshes have
shown that crab herbivory on S. densiflora is en -
hanced during rainy periods due to prolonged floods
(Alberti et al. 2007), whereas herbivory by wild guinea
pigs is re duced during dry periods due to reduced
plant quality (Canepuccia et al. 2010). However, it is
not clear how rainfall changes affect omni vorous spe-
cies such as A. azarae, which does not exclusively
feed on marsh plants. 

The aim of this study was to evaluate the effects of
rainfall fluctuations on the cordgrass S. densiflora,
marsh use by A. azarae and the trophic interaction
between them. Specifically, we studied the relation-
ship between rainfall and (1) sediment salinity, (2) S.
densiflora salinity, and (3) the abundance of A. azarae
in the vegetation. Finally, we evaluated if increased
sediment salinity modified their trophic interaction.

MATERIALS AND METHODS

Study site

The present study was conducted in a marsh loc -
ated at the Mar Chiquita coastal lagoon (Argentina,
37°45’ S, 57°23’W; Fig. 1). The climate in the region
is subhumid to humid (76 to 84% humidity), meso -
thermal (12.9 to 15°C) and with greater seasonal
rains during the warm semester (October−March).
Precipitation peaks in December (104 mm) and
March (107 mm). The annual mean precipitation
oscillates between 578 and 1200 mm (Reta et al.
2001). The lagoon is a 46 km2 body of brackish water
affected by low-amplitude tides (up to 1.38 m at the
lagoon entrance; Lanfredi et al. 1987). It is charac -
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terized by intertidal mudflats and large surrounding
marsh areas dominated by Spartina densiflora and
Sarcocornia perennis (Isacch et al. 2006). During the
study period (February 2004 to March 2008), 2 El
Niño (2005 and 2007) and one La Niña (2008) events
occurred (Climate Prediction Center). The Argen-
tinean National Wea ther Service (Servicio Meteoro -
lógico Nacional Ar gentino, SMN) provided rainfall
data from Mar del Plata weather station, located 25 km
south of the study site.

Relationship between rainfall and sediment salinity

During the summer of 2008, we evaluated whether
variations in sediment salinity were related to rainfall
fluctuations and marsh elevation. We obtained sedi-
ment samples for 8 wk with different cumulative
rainfall levels each week (hereinafter weekly rain-
fall). Sampling was performed on December 21 and
31, January 5, 18, 25 and 31, and February 1 and 28.
We divided the marsh into 3 tidal zones with eleva-
tions above mean low tides of 0.70, 0.80 and >0.92 m
for low, middle and high zones of marsh, respec-
tively. High marsh flooding occurs only during the
highest spring or storm-induced tides. The low marsh
area is ~9225 m2, while the middle and high zones

are ~6750 and 10 125 m2 respectively. Each week, 7
sediment samples (12 m apart, 2 cm deep and 4 cm
diameter) were collected in each marsh zone and in
areas with similar vegetation cover. Sediment sam-
ples were weighed, oven dried (60°C until constant
weight) and dissolved with distilled water (30 ml).
After a 48 h period, the salinity of the solution was
measured with a conductivity meter (sensION 156
Hach, accuracy of 0.1 psu). We estimated soil salinity
as mg salt per g sediment. To evaluate the relation-
ship between sediment salinity and weekly rainfall,
we randomly reduced salinity samples to one for
each cumulative weekly rainfall (1000 iterations). For
each iteration, we calculated a simple linear regres-
sion model (Zar 1999) and then obtained the distri -
butions of slope values. The relationship between
sediment salinity and weekly rainfall was considered
significant when zero was not included within the
95th percentile of the slope values (following Manly
1998). Statistical assumptions of all models and tests
were evaluated in all cases. If necessary, transforma-
tions were used to meet the as sumptions. Square root
transformations of the salt content in sediment were
performed to satisfy the assumptions of the linear
regression models (see Zar 1999).

Relationship between rainfall and Spartina
 densiflora

The salt content in S. densiflora was quantified
during the 8 wk period described above. Each week
in each marsh zone, 7 samples (6 plants each) were
taken. Plants were dissected to separate stems and
leaves, washed and dried to constant weight (60°C).
Stems and leaves were crushed and hydrated with
distilled water (30 ml) and the salinity of the solution
was measured after 48 h as described previously.
Water content was estimated as the difference be -
tween wet and dry weight. To evaluate the relation-
ships be tween weekly rainfall and water content
and be tween weekly rainfall and plant salinity, we
random ly reduced plant samples and calculated sig-
nificance as described in the previous section.

Finally, we compared the flower production of S.
densiflora among years with spring rainfall regimes,
since the growing season of S. densiflora starts dur-
ing spring (Alberti et al. 2011) and salinity can affect
reproductive output (Minchinton 2002). For this com-
parison, we counted inflorescences of S. densiflora in
10 plots (1 m2) in the middle marsh (zone with the
greatest abundance of A. azarae; Canepuccia et al.
2008) during the summers of 2006, 2007 and 2008
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Fig. 1. Location of study site in Mar Chiquita coastal lagoon 
(MCCL) in Buenos Aires, Argentina
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(n = 3). An ANOVA (Zar 1999) was used to compare
the mean number of re productive structures of S.
densiflora between years with different rain intensi-
ties, followed by a Tukey test to determine which
years differed. Square root transformation of the
number of spikes was performed to satisfy the
assumptions of ANOVA (see Zar 1999).

Relationship between rainfall and Akodon azarae

At a local scale, sediment salinity changes across
marsh elevation (Pennings & Bertness 2001) and the
performance and nutritional quality of marsh plants
is affected by salinity (Cane puccia et al. 2010).
Therefore, precipitation could indirectly affect her-
bivory by rodents through sediment salinity changes.
Thus, during the 2004 to 2008 southern hemisphere
summers (n = 5), we studied the relationship between
rainfall and the abundance of A. azarae. To estimate
rodent abundance (ind. ha−1 d−1), capture samplings
were carried out at each marsh zone by placing two
5 × 10 grids of Sherman live traps (n = 50 traps, 10 m
apart, 5000 m2 per grid). Baited traps (mix of bovine
fat and rolled oats) were left for 24 h (following
Canepuccia et al. 2008). Captured species were iden-
tified and then released at the original location. All
procedures for rodent trapping followed the guide-
lines recommended by the American Society of Mam -
malogists (ACUC 1998). Linear regression analyses
(one per tidal zone; Zar 1999) were used to evaluate
the relationship between weekly rainfall and the
abundance of A. azarae.

Effects of salt addition on A. azarae and 
S. densiflora

To test the relative importance of increased salinity
to marsh plants, consumers and their interaction, we
conducted a field experiment manipulating sediment
salinity. During the summer of 2008, 20 plots (3 ×
3 m2, 10 m apart) were selected in the middle marsh.
Salinity was increased in 10 plots (salt addition plots)
by adding salt pellets on the sediment surface, while
the other 10 plots remained undisturbed (ambient
plots). Salt addition plots and ambient plots were ran-
domly intermixed in areas with similar vegetation
cover. The amount of salt added was enough to main-
tain the sediment salinity at ~53‰, which was the
highest salinity observed during our samplings (see
Results). Sediment salinity was monitored weekly as
described above. After a month, a 2 × 2 grid using

Sherman traps (1.5 m apart) was placed in each plot.
Traps were baited with S. densiflora plants from the
corresponding plot and were left for 4 nights but
checked daily. Captures were identified to species
and then released in far locations to prevent recap-
tures. Finally, salt content in S. densiflora was deter-
mined by analyzing 6 plants per plot as described
above. t-tests (Zar 1999) were used to compare the
abundance of A. azarae and salt content in S. den -
siflora between treatments with and without salt
addition.

To evaluate the separate and interactive effects of
salinity and A. azarae herbivory on S. densiflora, a
2 × 2 full-factorial field experiment was conducted.
The experiment ran from December 2007 to March
2008. Two factors were manipulated: salt content in
the sediment and the presence of A. azarae; 50 plots
were placed in the middle marsh, in areas with simi-
lar vegetation cover (n = 10 per treatment, plus 10
cage controls). Salt content in the sediment was mon-
itored weekly as described above. Plots with salt
addition were kept at highest salinity values (as
explained before). Ambient plots maintained the nat-
ural variation of salt in sediment. Plastic fences (50 ×
50 × 50 cm, 1 cm mesh) were used to manipulate the
presence of A. azarae (no fences in grazed plots).
Cage controls had 3 fence sides, allowing free move-
ment of rodents (Fig. 2).

To evaluate the effects of salt addition on S. densi-
flora, 5 plants in each plot were tagged using plastic
flags. The height and basal diameter of stems were
measured both at the beginning and at the end of the
experiment. We then quantified both the number of
nibbles and the proportion of senescent tissues in
leaves at the end of the experiment. For this, we only
considered the youngest 4 leaves to exclude the
effects of tissue senescence over time. Leaf nibbling
by A. azarae was easily distinguished from traces of
consumption made by other consumers such as Cavia
aperea, since the latter only consumes the bases of S.
densiflora stems and discards the rest (Canepuccia et
al. 2010). The abundance and activity of the herbivo-
rous burrowing crab Neohelice granulata is greatly
reduced at this intertidal height (Méndez Casariego
et al. 2011). At the end of the experiment, green
cover was estimated and the aboveground biomass
of S. densiflora was harvested and oven dried at 60°C
to constant weight. Two-way ANOVAs were used to
evaluate the effects of both factors on S. densiflora
stem growth and basal diameter, proportion of senes-
cent tissues, green cover, live aboveground biomass
and number of nibbled leaves. Finally, to identify
possible effects of fences, t-tests were used to com-
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pare the variables between ambient plots and cage
controls. Square root transformation was performed
on stem growth to satisfy the assumptions for 2-way
ANOVA. To confirm the herbivory of S. densiflora by
A. azarae, composition of 50 fresh feces was analyzed
during the summer of 2008. Feces were collected
from live traps used during rodent samplings. The
percentages of different food items in feces were esti -
mated through microhistological analyses (Holechek
et al. 1982). Using an optical microscope (400×), fecal
fragments were quantified and classified in 3 cate-
gories: S. densiflora, other plants, and invertebrates.
To confirm that plant fragments were correctly as -
signed to S. densiflora, a collection of S. densiflora
slides was prepared following the Metcalfe scraping
technique (Metcalfe 1960).

RESULTS 

Relationship between rainfall and sediment salinity

There were negative relationships between week ly
rainfall and salt content in sediment in the middle
(mean slope = −1.29, min. = −2.22, max. = −0.01,
mean r2 = 0.46, mean p < 0.001) and low marsh (mean
slope = −1.15, min. = −2.21, max. = −0.26, mean r2 =

0.36, mean p < 0.05). In both cases, zero was not
included within the first 950 iterations of the slope
values. No relationship was found in the high marsh
(mean slope = −0.04, min. = −0.33, max. = 0.20, mean
r2 = 0.02, mean p > 0.05) because zero was included
within the first 950 iterations of the slope values.

Relationship between rainfall and 
Spartina densiflora

Water content in S. densiflora was not related to
weekly rainfall (in all cases, zero was included within
the first 950 iterations of the slope values). There was
a negative relationship between rainfall and salt con-
tent in stems of S. densiflora in the middle marsh
(mean slope = −1.19, min. = −2.57, max. = −0.01,
mean r2 = 0.19, mean p < 0.05). Similar relationships
were found between rainfall and salt content in
leaves of S. densiflora in the middle (mean slope =
−1.23, min. = −1.91, max. = −0.35, mean r2 = 0.23,
mean p < 0.05) and low marsh (mean slope = −1.49,
min. = −2.92, max. = −0.05, mean r2 = 0.22, mean p <
0.05). No relationships were found in the high marsh.
The flower production of S. densiflora decreased dur-
ing years with spring rainfall below the historical
mean (200 mm; Table 1).

75
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and cage control (bot-
tom right) treatments
in the experiment to
evaluate the effects of
increased salinity and
Akodon aza rae on Spar -
tina densiflora perfor -
mance and their trophic
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Relationship between rainfall and Akodon azarae

There was a positive relationship between the
abundances of A. azarae and rainfall (r2 = 0.89, p <
0.05, n = 5; Fig. 3) in the middle marsh. Higher
abundances of rodents were observed during rainy
summers (El Niño 2005 and 2007), but rodents
were not captured in any of the marsh zones during
the driest summer (La Niña 2008). No relationships
were found at the high and low marsh (in both
cases p > 0.1).

Effects of salt addition on A. azarae and 
S. densiflora

As expected, the abundance of A. azarae in plots
with salt addition was 21.5% lower than in ambient
plots (Table 2). In turn, the salt content in plants from
plots with salt addition was 75% higher in stems and
43% higher in leaves compared with plants from
ambient plots (Table 2). However, there were no
effects of increased salinity on S. densiflora water
content (p > 0.05).

In the second experiment, A. azarae presence and
salinity did not show interactive effects for any of the
dependent variables (Table 3). S. densiflora stem
growth, live biomass and green cover were reduced
by salt additions by 18, 21 and 24% respectively,
while the proportion of senescent tissue increased by
32%, but was not affected by herbivory (Table 3).
The basal diameter of stems was not affected by salt
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df MS F p

Stem growth
Herbivory (H) 1 4.45 2.47 0.12
Salt (S) 1 36.04 20.06 0.001
H × S 1 0.09 0.05 0.82
Error 36

Senescent tissues (leaves)
H 1 106.25 2.29 0.13
S 1 478.75 10.32 <0.005
H × S 1 0.95 0.02 0.88
Error 36 46.40

Aboveground live biomass
H 1 162.7 1.17 0.29
S 1 1507.5 10.85 <0.01
H × S 1 153.2 1.1 0.3
Error 36 138.9

Damaged leaves
H 1 0.7 64 <0.001
S 1 0.07 6.58 0.01
H × S 0.03 2.75 0.1
Error 36 0.01

Green cover
H 1 2.5 0.02 0.87
S 1 1428.02 13.94 <0.001
H × S 1 2.5 0.02 0.87
Error 36 102.39

Table 3. Two-way ANOVA of the effects of salt addition
(S) and herbivory by Akodon azarae (H) on the cordgrass 

Spartina densiflora. Significant values in bold

Year Spring Flower production (spikes m−2)
rainfall Mean SD df F p
(mm)

2006 172.9 10.4 8.59
2007 El Niño 256.5 12.2 11.72
2008 La Niña 68.1 1.3 3.86 2.27 8.16 <0.01

Table 1. Flower production of Spartina densiflora after
growing seasons with different rainfall regimes during the 

2006−2008 period, and ANOVA results

Mean SD n t18 p

A. azarae abundance (ind. ha−1 d−1)
Salt addition 186 5 10 −2.92 <0.05
Control 237 7.48

Salt content in S. densiflora (mg g−1)
Stem
Salt addition 128.9 21.2 10 −7.34 <0.05
Control 73.8 10.7

Leaves
Salt addition 134.6 25.77 10 −3.27 <0.05
Control 93.9 29.66

Table 2. t-tests of the effects of salt addition on the abun-
dance of Akodon azarae and on Spartina densiflora salt 

content. Significant values in bold

Fig. 3. Relationship between Akodon azarae abundance and rain-
fall in the middle marsh during the summers of 2004− 2008. Cap-
tures were obtained from two 5 × 10 grids of Sherman live traps (n =
50 traps, 10 m apart, 5000 m2 per grid). (d) Mean values from total 

captures in grids (n = 2)
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addition (F = 0.002, df = 1, p > 0.1). Finally, leaves of
S. densiflora nibbled by A. azarae (damaged leaves)
decreased by 40% in salt addition plots (Fig. 4).

Microhistological analyses show that feces of
A. azarae were mostly composed of invertebrates
(mean = 63%, SD = 24), followed by non-Spartina
plants (mean = 32%, SD = 24) and finally by S. densi-
flora fragments (mean = 5.2%, SD = 2.5).

DISCUSSION 

Salinity stress has pervasive effects in salt marshes,
being able to affect species distributions (Bertness
1999) and biological interactions (Bertness & Ewan -
chuk 2002, Goranson et al. 2004). Tidal flooding fre-
quency and sun exposure jointly regulate the salinity
of marsh sediment (Bertness et al. 1992). In the middle
and low marsh, sediment salinity decreased with rain-
fall, but this was not observed in the high marsh. Pre-
vious evidence showed that the highest mean values
of sediment salinity are observed in the middle marsh
(Fanjul et al. 2008). In our case, sediment salinity in
the middle marsh varied widely due to rainfall fluc -
tuations, ranging from being high during the dry peri-
ods (~50 psu) to being reduced by 80% during rainy
weeks. High salinity in sediment im poses severe diffi-

culties for marsh organisms, particu-
larly for plants, because it reduces wa-
ter potential (Brown & Pezesh ki 2007),
nutrient uptake and growth (Brown et
al. 2006). Spartina densiflora has de-
veloped adaptations to re duce both
water loss and internal salt concentra-
tions, including salt-secreting glands
on leaf surfaces (Maricle et al. 2009).
In addition, the genus Spartina may
store salt in vacuoles, allowing it to
tolerate high concentrations of salt
(Brown & Pezeshki 2007, Maricle et al.
2009). Our results are consistent with
previous knowledge, be cause salt con-
tent in S. densiflora was negatively
correlated with rainfall. Indeed during
dry periods, the salt content in leaves
and stems was 2× higher than during
rainy periods. In addition, our field
 experiment supported these observa-
tions, showing the same effects fol-
lowing increased salinity (Table 2).

Salinity stress reduces translocation
and availability of nutrients (Hu &
Schmidhalter 2005). Jointly, the os -

mo regulatory effort required and the toxicity of Cl−

and Na+ ions reduce photo synthetic capability, plant
growth via translocation of nutrients (Cavalieri &
Huang 1981) and plant survival (Brown & Pezeshki
2007). As ex pec ted, the performance of S. densiflora
was im paired by salt addition (see Results), showing
re du c ed growth and biomass and in creased propor-
tions of senescent tissue. However, these negative
effects can be reduced during rainy periods. For
example, reproductive structures of less salt tolerant
species are positively affected by increased rainfall
during El Niño episodes (Minchinton 2002). In our
study, during rainy periods (El Niño 2007), the num-
ber of reproductive structures was 3.5× higher than
during dry periods (La Niña 2008) when there was
almost no spike production. Although S. densiflora
mainly spreads through clonal growth (Nieva et
al. 2005), seed production provides an important
resource for seed eaters, such as birds (Cardoni et al.
2007) and rodents (Canepuccia et al. 2008).

Herbivory has been extensively studied in salt
marshes (Bos et al. 2005, Silliman et al. 2005) and
how this interaction varies along environmental gra-
dients has been of primary interest to ecologists
(Crain 2008, Pennings et al. 2009). Plant−consumer
interactions may change in different ways depending
on the identity of the species involved (Goranson et
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Fig. 4. Effects of salt addition (S) and herbivory by Akodon azarae (H) on the
proportion of (A) senescent tissues in leaves, (B) live aboveground biomass, (C)
stem growth and (D) damaged leaves of Spartina densiflora. Boxes: quartiles, 

vertical lines: 1st and 95th percentiles, dots: medians

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 523: 71–80, 2015

al. 2004, Pennings & Silliman 2005). At local scales,
high salinities may increase (Silliman et al. 2005,
Gedan et al. 2009) or decrease top-down effects
(Moon & Stiling 2002, Canepuccia et al. 2010). In
addition, salinity conditions can also indirectly affect
habitat use by herbivores (Parsons & De la Cruz
1980). For example, during the breeding and post
breeding phases, the clumped distribution of the salt
marsh harvest mice may be associated with mid-
range salinities in plants (Padgett-Flohr & Isakson
2003). Here we show that the abundance of Akodon
azarae in the marsh de creased under stressful con -
ditions (e.g. during dry years or experimentally in -
creased salinity) and that the consumption of S. den-
siflora by rodents de creased by ~40% following salt
addition. Moreover, live S. densiflora cover, height
and biomass de creased under these experimental
conditions. Consistent with studies of stomach con-
tent (Bilenca & Kravetz 1998), the fecal analyses of A.
azarae during the driest summer (La Niña 2008)
showed that rodents consumed both invertebrates
and plants. The proportion of S. densiflora in these
feces was very small. Hence, feces should also be
analyzed during rainy summers for a better under-
standing of the relationship between the S. densiflora
− A. azarae trophic interaction and the rodent’s habi-
tat use. Changes in the abundance of A. azarae could
also be mediated by other mechanisms (e.g. plant
cover changes; see Table 3) (Bonaventura et al. 1992,
Bilenca & Kravetz 1998). Alternatively, the availabil-
ity of non-vegetal trophic resources (e.g. inverte-
brates) could also explain the observed changes in A.
azarae abundance since the abundance and compo-
sition of insect assemblages may change with rainfall
variations (Polis et al. 1997). Finally, this study pro-
vides evidence that rainfall can modify A. azarae’s
use of suitable habitats other than cropfield edges,
roadsides and fencerows affected during postharvest
periods (Busch & Kravetz 1992, Bilenca & Kravetz
1998).

The future climate scenario (GCC and ENSO) pre-
dicts more frequent and ex treme rainfall events
(Timmerman et al. 1999, Bates et al. 2008, Re & Barros
2009). Therefore, understanding how rainfall fluctua-
tions can affect natural systems is of considerable
importance in managing and preserving biological
diversity and ecosystem functioning. 
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