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More than 170 human papillomavirus (HPV) types have been completely sequenced, curated and

divided into five genera: Alphapapillomavirus, Betapapillomavirus, Gammapapillomavirus,

Mupapillomavirus and Nupapillomavirus. With the application of PCR methods, hundreds of

putative novel HPV types have been identified as PCR amplicons in mucosa and skin. However, at

present there are no studies reporting a systematic search of the currently known L1 amplicons

and their phylogenetic relationships. This survey revealed the existence of at least 202 different

putative HPV types that are pending for full-genome characterization: five alphapapillomaviruses,

37 betapapillomaviruses, 159 gammapapillomaviruses and one mupapillomavirus. All potential

viruses of the genera Alphapapillomavirus and Betapapillomavirus were grouped in the defined

species, while 59 putative gammapapillomaviruses types were segregated in 21 unidentified

putative species. These data highlight the need for progress in the identification of additional taxa

of the family Papillomaviridae in order to elucidate the diversity, evolution and medical implications

of these viruses.

Papillomaviruses (PVs) are small non-enveloped DNA
tumour viruses with a circular genome of nearly 8 kb. PVs
infect the epithelia of vertebrates and are host specific
(Bernard et al., 2010). By convention, designation of a
novel PV type requires the genome to be cloned and
curated by the Papillomavirus Reference Center and show
less than 90 % identity in the L1 ORF with respect to any
known PV type, while PV types belonging to new species
within a genus share 60–70 % nucleotide identity with PV
types within this genus (de Villiers et al., 2004).

Presently, 170 human PV (HPV) types have been officially
designated and completely sequenced (de Villiers, 2013;
http://www.hpvcenter.se/html/refclones.html), and divided
into five genera according to their L1 ORF phylogenetic
relationships: Alphapapillomavirus, Betapapillomavirus,
Gammapapillomavirus, Mupapillomavirus and Nupapillo-
mavirus. There is diversity in the pathology of the HPV
types across the genera and species, in particular in relation
to the epithelium infected and the oncogenic potential of
the viral type. The genus Alphapapillomavirus is hetero-
geneous, containing: (i) the high-risk mucosal HPV types
in species a-7 and a-9; (ii) low-risk mucocutaneous genital
types in species a-10; and (iii) viruses grouped in the

species a-4, which are most frequently associated with
common skin warts (Bernard et al., 2010; de Villiers et al.,
2004).

Other HPV-containing genera are less heterogeneous. The
betapapillomavirus (b-PV) types cause flat lesions in
epidermodysplasia verruciformis patients, but evident
HPV lesions are rare in immune-competent individuals
(Pfister et al., 2003). The mupapillomavirus (m-PV) and
some gammapapillomavirus (c-PV) types cause proliferat-
ive cutaneous lesions in humans, although the recently
identified c-PV types are not associated with known
lesions. In addition, c-PV and m-PV types differ from each
other in that the E5 ORF is missing from members of the
genus Gammapapillomavirus, as it is in members of the
genus Betapapillomavirus. However, multiple b-PV and c-
PV types have been identified in the oral [e.g. HPV-120 and
HPV-145 (b-2); 124 (b-1); HPV-121 (c-10); HPV-134 (c-
7)] (Bottalico et al., 2011; Kocjan et al., 2011) and cervical
[e.g. HPV-109 (c-7), HPV-112 (c-8); HPV-101, HPV-103
and HPV-108 (c-6)] mucosa (Bernard et al., 2010). These
findings raise new questions about the anatomical tissue
tropisms, the evolution of HPVs and the epidemiological
associations of HPV with oral and skin neoplasia.

To date, 66 a-PVs, 45 b-PVs, 54 c-PVs, two m-PVs and one
nupapillomavirus (g-PV) have been isolated from humans

One supplementary figure is available with the online version of this
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(de Villiers, 2013), but it is assumed that a higher number
exists in nature. With the development of different PCR
methods for cutaneous and/or mucosal screening, hun-
dreds of putative HPV types have been identified in the
form of PCR amplicons of 80–450 bp in mucosa (Menzo
et al., 2001; Peyton & Wheeler, 1994) and skin lesions
(Asgari et al., 2008; Berkhout et al., 2000; Chouhy et al.,

2010; Forslund et al., 2003, 2007; Harwood et al., 2000,
2004; Shamanin et al., 1994, 1996), as well as in normal
skin (Antonsson et al., 2000; Chen et al., 2008; Chouhy
et al., 2010, 2013; Hazard et al., 2007b). Previously,
phylogenetic analyses showed that many HPV types/
putative HPV types, particularly those belonging to the
genus Gammapapillomavirus, are found segregated outside
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Fig. 1. (continued over page) Phylogenetic trees of 190 putative HPV types identified in the FAP/CUT region and 33 putative HPV
types found in the MY region, and 166 characterized PV types. (a) Genus Alphapapillomavirus. (b) Genus Betapapillomavirus. (c)
Genus Gammapapillomavirus: the left part of the tree is indicated as ‘c-Collapsed’ in the right part of the figure and vice versa.
Protein sequence-derived nucleotide multiple alignments were performed with MEGA5 (Tamura et al., 2011), and phylogenetic
relationships were inferred by Bayesian analysis using BEAST 1.7.2 (Drummond et al., 2012). To do so, Markov Chain Monte Carlo
simulations were performed on 107 generations, sampling one state every 1000 generations, with a burn-in of 10 %. Evolutionary
substitution model for each run was set as the rtREV+C+I. Node values represent Bayesian posterior probability values (BPP). Each
putative HPV type is noted by its GenBank accession number followed by the isolate name. For reasons of clarity, the other genera
different from those under analysis, were collapsed in each subtree, except for those containing few taxa (m-PVs and g-PVs). Only
species containing putative HPV types in either subgenomic region are shown. Arrows indicate putative HPV types in the MY region
that are potentially different from those in the FAP/CUT region. c-Xn, additional putative species inferred in this work.
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the current species (Chouhy et al., 2010, 2013; Forslund,
2007), indicating the anticipation of additional species
groups. There are no present studies reporting a systematic
search of the currently known L1 amplicons or its putative
phylogenetic relationships. Also, the identification of new
putative HPV species may help to direct the attention for
generic or specific primer designs in order to speed up the
complete characterization of HPV genomes.

The aim of this study was to update the knowledge of the
HPV putative types identified to date by the use of different
primer systems targeting the L1 gene, and to determine
their phylogenetic associations. With that purpose, a
systematic search was done in the GenBank database using
the term ‘papillomaviridae L1’. A total of 5509 sequences
were retrieved that included complete genome PV
sequences or partial PV sequences of different PV genes.
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Table 1. Main features of the 223 putative HPV types identified in this work

GenBank accession numbers/strains shown in bold indicate the 21 potentially redundant putative HPV types. c-Xn, additional putative species inferred in this work.

GenBank accession no./

strain

Species Epithelium/

sourceD

GenBank accession no./

strain

Species Epithelium/sourceD GenBank accession no./

strain

Species Epithelium/

sourceD

AF091448.1/HPVXS1 a-2 S/NR AF121433.1/FA12 c-7 S/BSL JQ612577/GC20 c-12 S/HS IC

AF091452.1/HPVXS5 a-2 S/NR AF479250.1/FA86 c-7 S/HS IC AF217678.1/FA33 c-13 S/HS IS

AF539622.1/JEB a-3 NR/NR AF479251.1/FA87 c-7 Environment AF489706.2/FAIMVS4 c-13 S/HS IC

AY573931.1/JEB2 a-3 NR/NR AY009888.1/FA54 c-7 S/HS IC JF906528.1/SE4 c-13 S/SCC-AK

EU256380.1/JEB-3 a-13 M/ASCUS AY040276.1/FA57 c-7 S/HS IC AF217662.1/FA19 c-15 S/HS IS

AF019978.1 b-1 S/Scar Ca AY040284.2/FA64 c-7 S/HS IC AF440449.1/FA77 c-15 S/HS IC

AF054881.1/HPVX24 b-1 S/NR AY204682.1/FA99 c-7 NR/NR AY009879.1/FA48 c-15 S/HS IC

AF055710.1/HPVX34 b-1 S/BSL AY204684.1/FA101 c-7 NR/NR DQ418472.1/FA156 c-15 S/HS IC

AF217656.1/FA14 b-1 S/HS IS AY502594.1/FA138 c-7 S/AK JF906539.1/SE18 c-15 S/SCC-AK

AF217660.1/FA17 b-1 S/HS IS DQ418467.1/FA151 c-7 S/HS IC AF121425.1/FA3 c-16 S/HS IC

AF217661.1/FA18 b-1 S/HS IS EF422278.1/FA142 c-7 S/SCC JQ250745.1/SE49 c-16 NR/NR

AF217670.1/FA25 b-1 S/HS IS JF906536.1/SE14 c-7 S/SCC-AK JQ250746.1/SE50 c-16 NR/NR

AF455145.1/FA82 b-1 S/HS IC JQ250743.1/SE2 c-7 S/SCC-AK JQ250761.1/SE65 c-16 NR/NR

AF489716.1/FAIMVS11.1 b-1 S/SCC (PL) JX316023.1/SE83 c-7 NR/NR AY040281.1/FA61 c-18 S/HS IC

AF542099.1/FA93 b-1 S/HS IC JX316025.1/SE86 c-7 NR/NR JX429974/GC24 c-18 S/HS IC

AY468424.1/FA127 b-1 S/SeK AF217675.1/FA30 c-8 S/HS IS JQ250762.1/SE67 c-X1 NR/NR

AY468429.2/FA132 b-1 S/HS IC DQ418476.1/FA160 c-8 NR/NR AY049759.1/FA68 c-X2 S/HS IC

FJ617576.1/RRT-08 b-1 S/EV JF906530.1/SE7 c-8 S/BSL AF217657.1/FA15 c-X3 S/HS IS

L38919.1/RTRX2 b-1 S/SCC JQ250749.1/SE53 c-8 NR/NR AF489702.1/FAIMVS1 c-X3 S/SoK

L38921.1/RTRX4 b-1 S/SCC JQ250750.1/SE54 c-8 NR/NR AF489714.1/FAIMVS9 c-X3 S/SCC

Z95963.1/DL231 b-1 M/SCC JQ250760.1/SE64 c-8 NR/NR AY009880.1/FA46 c-X3 S/HS IC

Z95969.1/DL287 b-1 S/SCC JQ250770.1/SE77 c-8 NR/NR AY204686.1/FA103 c-X3 NR/NR

Z95971.1/DL297 b-1 S/melanoma JX316020.1/SE80 c-8 NR/NR DQ418464.1/FA148 c-X3 S/HS IC

AF012461.1/uwS-D b-2 M/intestine AF121426.1/FA4 c-9 S/HS IC DQ418468.1/FA152 c-X3 S/HS IC

AF017184.1 b-2 S/SCC AF217668.1/FA24.1 c-9 S/HS IC JQ250748.1/SE52 c-X3 NR/NR

AF042002.1/IA06 b-2 M/oral cavity AF440448.1/FA76 c-9 S/HS IC JQ250751.1/SE55 c-X3 NR/NR

AF054873.1/HPVX13d b-2 S/AK AF479252.1/FA88 c-9 S/HS IC AY204690.1/FA107.1 c-X4 NR/NR

AF054875.1/HPVX14bd b-2 S/AK AY009884.1/FA49 c-9 S/HS IC AF217679.1/FA34 c-X5 S/HS IS

AF054883.1/HPVX26 b-2 S/NR AY049757.1/FA66 c-9 S/HS IC AY081196.1/FA89 c-X5 S/HS IC

AF055712.1/12226 b-2 NR/NR AY204683.1/FA100 c-9 NR/NR AY204681.1/FA98 c-X5 NR/NR

AF193301.1/uwSCC53.1 b-2 S/SCC JF906538.1/SE17 c-9 S/SCC-AK AY468431.1/FA134 c-X5 S/HS IC

AF193303.1/uwBCA34 b-2 S/Bowen Ca JF906553.1/SE36 c-9 S/BSL JF906549.1/SE32 c-X5 S/SCC-AK

AF489720.1/FAIMVS13.1 b-2 S/BCC (PL) JF906561.1/SE44 c-9 S/SCC-AK JF906552.1/SE35 c-X5 S/BSL

AJ000150.1/DL369 b-2 M/SCC JQ250747.1/SE51 c-9 NR/NR JN129832.1/SE21 c-X6 S/SCC-AK

AJ001060.1/ga9-4 b-2 S/HS IC JQ250764.1/SE69 c-9 NR/NR AY468430.1/FA133 c-X7 S/HS IC

AJ010825.1/DL473 b-2 S/SCC JX316021.1/SE81 c-9 NR/NR DQ418470.1/FA154 c-X7 S/HS IC

AY040279.1/FA60.1 b-2 S/HS IC AF455142.1/FA79 c-10 S/HS IC JF906558.1/SE41 c-X8 S/SCC-AK

AY204692.1/FA108 b-2 NR/NR AY049760.1/FA69d c-10 S/HS IC AF217674.1/FA29 c-X9 S/HS IS

AY204696.1/FA112 b-2 NR/NR AY081197.1/FA90 c-10 S/HS IC AF217683.1/FA38 c-X9 S/HS IC

AY468408.1/FA114 b-2 S/BCC AY204695.1/FA111 c-10 NR/NR AY009882.1/FA50 c-X9 S/HS IC
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Table 1. cont.

GenBank accession no./

strain

Species Epithelium/

sourceD

GenBank accession no./

strain

Species Epithelium/sourceD GenBank accession no./

strain

Species Epithelium/

sourceD

AY468411.1/FA116 b-2 S/BCC FJ969898.1/GC05 c-10 S/AK AY009886.1/FA55 c-X9 S/HS IC

AY468413.1/FA118 b-2 S/SCC FJ969907.1/GC12.1 c-10 S/HS IC AY204687.1/FA104 c-X9 NR/NR

AY532317.1/H6-5FR b-2 S/HS IC JF906529.1/SE5 c-10 S/BSL AY204694.1/FA110 c-X10 NR/NR

AY546000.1/FA113 b-2 NR/NR AF489707.1/FAIMVS5 c-11 S/BCC JQ250766.1/SE71 c-X10 NR/NR

DQ641480.1/GRT04 b-2 S/VW AF542101.1/FA95 c-11 S/HS IC JQ250767.1/SE72 c-X10 NR/NR

EU340869.1/FADI1 b-2 S/HS IC AF542102.1/FA96 c-11 S/HS IC JQ250765.1/SE70 c-X11 NR/NR

FJ969914.1/GC17 b-2 S/HS IC AY468410.1/FA115 c-11 S/HS IC JQ250773.1/SE8 c-X12 S/BSL

HE805654.1/Italy 1570*-2011 b-2 Wastewater DQ418473.1/FA157 c-11 S/HS IC AY040282.1/FA62 c-X13 S/HS IC

HE805664.1/Italy 1568*-2011 b-2 Wastewater FJ480954.1/FADI3d c-11 S/HS IC FJ969910.1/GC13 c-X14 S/VW

JF906542.1/SE22 b-2 S/SCC-AK JF906548.1/SE30 c-11 S/SCC-AK AY049756.1/FA65 c-X15 S/HS IC

JF906543.1/SE23 b-2 S/SCC-AK JQ250757.1/SE61d c-11 NR/NR JQ250753.1/SE57 c-X15 NR/NR

JF906550.1/SE33 b-2 S/SCC-AK JQ250772.1/SE79 c-11 NR/NR JQ250754.1/SE58 c-X15 NR/NR

JF906557.1/SE40 b-2 S/SCC-AK AF217664.1/FA21 c-12 S/HS IC JQ250755.1/SE59 c-X15 NR/NR

L38920.1/RTRX3d b-2 S/SCC AF217676.1/FA31 c-12 S/HS IS AF455143.1/FA80 c-X16 S/HS IC

U85661.1/RTRX8 b-2 S/SCC AF217677.1/FA32 c-12 S/HS IS JF906556.1/SE39 c-X16 S/SCC-AK

AY364891.1/J7 b-3 M/NR AF327732.1/FA10 c-12 NR/NR JQ250758.1/SE62 c-X16 NR/NR

AY468425.1/FA128 b-3 S/SCC AF455144.1/FA81 c-12 S/HS IC JF906545.1/SE25 c-X17 S/BSL

JQ250752.1/SE56 b-4 NR/NR AF542103.1/FA97 c-12 S/HS IC JX316024.1/SE84 c-X17 NR/NR

JQ250763.1/SE68 b-4 NR/NR AY040283.1/FA63 c-12 S/HS IC AY009878.1/FA45 c-X18 Environment

AF121429.1/FA7 b-5 S/HS IC AY081198.1/FA91 c-12 S/HS IC AY040278.1/FA59 c-X18 S/HS IC

AF440446.1/FA74 b-5 S/HS IC AY081199.1/FA92 c-12 S/HS IC JF906546.1/SE26 c-X18 S/SCC-AK

AY049761.1/FA70 b-5 S/HS IC AY204685.1/FA102 c-12 NR/NR DQ418463.1/FA145 c-X19 S/HS IC

AY066025.1/uwBD119a b-5 S/BD AY204689.1/FA106 c-12 NR/NR FJ969896.1/GC04 c-X19 S/HS IC

AF121431.1/FA9 c-1 S/HS IC AY468412.1/FA117 c-12 S/BCC FJ969897.1/GC06 c-X19 S/AK (PL)

AF217686.1/FA41 c-1 S/HS IS AY468440.1/FAIMVS15.3 c-12 S/BCC FJ969913.1/GC16 c-X19 S/HS IC

AY204693.1/FA109 c-1 NR/NR AY502595.1/FA139 c-12 S/SeK JQ250768.1/SE74 c-X19 NR/NR

AY468416.1/FA121 c-1 S/BCC DQ418475.1/FA159 c-12 NR/NR JQ612576/GC19 c-X19 S/HS IC

FJ969912.1/GC15d c-1 S/HS IC FJ407049.1/FADI2 c-12 S/HS IC AF121422.1/FA2.1 c-X20 S/HS IC

JQ250756.1/SE6 c-1 S/BSL FJ969899.1/GC07.1 c-12 S/VW (PL) AY468415.1/FA120 c-X20 S/BSL

JX429975/GC23 c-1 S/HS IC FJ969903.1/GC09 c-12 S/SeK(PL) AF121428.1/FA6 c-X21 S/HS IC

FJ969906.1/GC11 c-2 S/BSL (PL) FJ969904/GC08 c-12 S/AK (PL) AF252606.1/FA43 c-X21 S/HS IC

JQ612578/GC21 c-2 S/AK FJ969905.1/GC10 c-12 S/HS IC DQ418469.1/FA153 c-X21 S/HS IC

AF217672.1/FA27 c-3 S/HS IS FJ969911.1/GC14 c-12 S/AK FJ947082.1/GC03 m-PV S/HS IC

AY040277.1/FA58 c-3 S/HS IC JF906526.1/SE1 c-12 S/SCC-AK

AF121432.1/FA11 c-7 S/HS IC JN129833.1/SE28 c-12 S/SCC-AK

DEpithelium: M, mucosal epithelium; S, skin epithelium. Source: AK, actinic keratosis; ASCUS, atypical squamous cells of undetermined significance; BCC, basal cell carcinoma; BD, Bowen’s

disease; BSL, benign skin lesion (keratoacanthoma, fibroma, benign adnexal tumour); Ca, carcinoma; EV, epidermodysplasia verruciformis; HS IC, healthy skin from immune competent

individual; HS IS, healthy skin from immune suppressed individual; NR, not reported; (PL), perilesional sample; Scar Ca, recurrent scar carcinoma; SCC, squamous cell carcinoma; SCC-AK,

pooled biopsies of SCC and AK; SeK, seborrheic keratosis; SoK, solar keratosis; VW, viral wart.

dRecently fully characterized viruses: HPVX13 (b-2), HPV-159 variant; HPVX14b (b-2), HPV-174 variant; RTRX3 (b-2), KC176801 variant; GC15 (c-1), HPV-163 subtype; FA69 (c-10), KC108722

variant; SE61 (c-11), JF966374 variant; FADI3 (c-11), HPV-154 variant.
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In order to keep subgenomic sequences corresponding to
HPV putative types, complete genome sequences, non-
human PV sequences and partial sequences with truncated
protein sequences were removed. Putative HPV types and
novel putative species within a genus were defined
according to the current criteria based on the nucleotide
identities in the L1 fragment sequences (de Villiers et al.,
2004). Next, those sequences with more than 90 %
nucleotide identity with a previously known HPV type
were removed to exclude subtypes and variants of
characterized HPV types. The final number of sequences
corresponding to putative HPV types was 223, with lengths
ranging from 90 to 480 nt (,200 nt58; 200–400 nt573;
.400 nt5142). These putative HPV sequences split into
two major regions: (i) 190 were in the Forslund–Antonsson
primers (FAP) (Forslund et al., 1999)/CUT (Chouhy et al.,
2010) primers region (nt 6061–6600 in the HPV-5 genome;
GenBank accession no. NC_001531); and (ii) 33 were in
the MY (Manos et al., 1989) primers region (nt 6841–7365
in the HPV-5 genome).

Subsequently, the taxonomic validity of the FAP/CUT and

MY sequence regions was investigated. Pairwise compar-

isons of the complete L1 sequences, the FAP/CUT and the

MY sequence regions of 166 different characterized PV

types (151 HPVs and 15 non-human PVs) were compared

with respect to each closest relative type. This analysis

revealed a mean difference between known defined HPV
types and closely related partial fragments of 1.6 % (range,
0–4.7 %) nucleotide identity in the FAP/CUT region, and
of 1.6 % (range, 0–5 %) nucleotide identity in the MY
region with respect to the L1 ORF of each closest relative
type across the 166 viral types. These values were in
agreement with the mean differences of nucleotide
identities between the L1 ORF and the FA subgenomic
sequences obtained by other authors (Forslund, 2007;
Hazard et al., 2007a). Therefore, a putative HPV type
showing 90.0±1.6 % nucleotide identity with its closest
relative in either FAP/CUT or MY regions may indicate a
novel type worth being completely cloned and sequenced.

Comparative analysis of trees based on the L1 ORF and in
the subgenomic sequences under analysis demonstrated
largely congruent tree topologies and high Bayesian
posterior probability (BPP) values (Fig. S1, available in
JGV Online), indicating that the FAP/CUT and the MY
sequence regions were useful for phylogenetic analyses. In
most cases each type had the same closest relative PV type
in both partial regions when compared with the tree
constructed from alignments of the L1 ORF. The only
exception was HPV-126 (c-11), which was grouped in the
species c-9 in both FAP/CUT and MY regions phylogenies.
Even so, the phylogenies obtained with both L1 sub-
genomic regions were suitable to group the types, and
therefore the putative HPV types, in the defined species to
which they belonged.

The phylogenetic analyses of the FAP/CUT region from
190 putative HPV types and 166 reference PVs classified 30

as b-PVs (Fig. 1b, left), 159 as c-PVs (Fig. 1c) and one as m-
PV (Fig. 1). On the other hand, the phylogenetic analyses
of the MY region from 33 putative HPV types and 166
reference PVs classified five strains as a-PVs (Fig. 1a) and
28 as b-PVs (Fig. 1b, right). Clearly, the primers used for
HPV identification have different specificities, those
designed in the MY region being more specific for the
genera Alphapapillomavirus and Betapapillomavirus, while
those targeting the FAP/CUT region are more specific for
genera Betapapillomavirus and Gammapapillomavirus. In
fact, putative HPV types of the genus Alphapapillomavirus
were identified only in the MY region, those grouped in the
genus Gammapapillomavirus were found exclusively in the
FAP/CUT region, while strains belonging to the genus
Betapapillomavirus were found in both subgenomic
regions.

To go further in the identification of the different putative
HPV types existing in nature so far, and considering that
both subgenomic regions do not overlap, we selected all
190 putative HPV types found in the FAP/CUT region (30
b-PVs, 159 c-PVs and one m-PV), five putative a-PV types
identified in the MY region and seven b-PV strains located
in the MY region presenting different closely related HPV
types in the FAP/CUT region (Fig. 1b, see arrows). This
criterion was applied to avoid considering the same strain
as two different putative HPV types when appearing in
both subgenomic regions (i.e. b-PVs, Fig. 1b). Therefore,
this survey indicates that out of 223 subgenomic sequences
identified, at least 202 may correspond to different putative
HPV types (five a-PVs, 37 b-PVs, 159 c-PVs and one m-
PV). Table 1 summarizes all HPV subgenomic sequences
identified in this report, including the 21 potentially
redundant strains, which are depicted in bold.

According to their phylogenetic associations, all putative
HPV types identified in the genera Alphapapillomavirus (Fig.
1a) and Betapapillomavirus (Fig. 1b) were segregated inside
the defined species. In contrast, only 98 out of the 159
putative types found in the genus Gammapapillomavirus
were segregated in the defined species (c-1–c-17) (Fig. 1c,
Table 1) (de Villiers, 2013). Moreover, two putative HPV
types belonged to a recently identified species (c-18)
(Chouhy et al., 2013), and 59 were segregated in 21
unidentified putative species (named c-X1–c-X21) (Fig. 1c,
Table 1). In addition, the strain GC03 (Fig. 1) may pro-
bably define a new putative species within the genus
Mupapillomavirus (69.8 and 68.2 % nucleotide identities
with HPV-1a and HPV-63, respectively). Comparative
analysis of trees generated by the maximum-likelihood
method (RaxML program, evolutionary substitution model
set as rtREV+C+I with fast bootstrap of 1000 replicates)
revealed almost the same phylogenetic associations as those
obtained by Bayesian analysis (data not shown), further
supporting the overall relationships found and the existence
of additional undefined putative species within the genera
c-PV and m-PV as well. Interestingly, those species of
the genera Betapapillomavirus and Gammapapillomavirus
containing viruses that showed incongruences in the
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phylogenetic analysis of the FAP/CUT and MY regions (Fig.
S1: b-1, b-2, c-7, c-8, c-10, c-11, c-12) had the greatest
number of putative HPV types within both subgenomic
regions (FAP/CUT region, Fig. 1b, c: b-159, b-2515, c-
7516, c-858, c-1057, c-1159, c-12524; MY region, Fig.
1b: b-159, b-2517). This may be explained by the poor
taxon sampling in these species (Hedtke et al., 2006; Zwickl
& Hillis, 2002) and highlights the need to progress in the

identification of the missing taxa in order to have a complete

picture of the diversity of the genera Betapapillomavirus and

Gammapapillomavirus. However, poor taxon sampling does

not seem to be the case for the genus Alphapapillomavirus,

taking into account the few novel putative HPV strains

described until now. In this survey, putative HPV types

found in the genus Alphapapillomavirus belonged to species

containing low-risk mucosal types (a-3 and a-13) or mainly

skin associated types (a-2), suggesting that all high-risk

mucosal types have been identified. Thus, the phylogenetic
incongruences observed in the genus Alphapapillomavirus
(Fig. S1) could be explained by alternative evolutionary
mechanisms such as within-host virus duplication, viral
sorting, or viral adaptation after a host switch (Gottschling
et al., 2011), in addition to ancestral recombination events
(Narechania et al., 2005; Varsani et al., 2006). However, we
cannot exclude the possibility that the information content
present in the L1 subgenomic fragments may influence the
phylogenetic relationships with respect to those obtained
with the L1 ORF phylogeny.

Since the phylogenetic analysis of HPV subgenomic
amplicons performed by Forslund (2007), the number of
characterized genomes of HPV from the genera
Betapapillomavirus (25 HPVs previously known versus 45
viruses currently known) and Gammapapillomavirus (nine
HPVs previously known versus 54 viruses currently
known) has increased considerably (de Villiers, 2013).
Although many putative HPV types have been fully
characterized so far, there are still a large number of novel
genomes to be described. In fact, only putative HPV types
obtained with the FAP primers (36 b-PV and 97 c-PV
putative HPV types) were previously analysed (Forslund,
2007). In that sense, this report updates the knowledge of
the remaining putative HPV types to be characterized,
including those strains identified with other primer
systems, and their phylogenetic associations.

This survey demonstrated that the putative HPV types
widely outnumber the HPV types that have been completely
sequenced, with the existence of at least 202 potential viruses
whose genomes need to be fully characterized. Most
subgenomic sequences identified belonged to the genus
Gammapapillomavirus, and many of them were segregated
in the currently defined species (de Villiers, 2013).
Moreover, we could infer 21 additional putative species
inside this genus which are supported by two different
phylogenetic inference methods. In conclusion, our data
highlight the need to progress in the identification of
the missing taxa in order to elucidate the evolution

and the medical implications of members of the family
Papillomaviridae. This knowledge is required to address
important questions, such as the definition of putative
sequence signatures able to understand the differential
tropism observed in some HPV types at the molecular
level.
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