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a b s t r a c t

Brushite samples doped with Ni(II) in different concentrations, from 5% to 20%, were prepared in aqueous
solution at pH ¼ 7 and at two temperatures: 25 and 37 �C. The solid samples were characterized by
chemical analysis, infrared spectroscopy (FTIR) and x-ray powder diffraction (XRPD). Chemical analysis
has shown Ni(II) almost complete incorporation to the solid phase up to 15%. X-ray diffraction patterns
have allowed to identify brushite phase with almost no modification of the line breadth and only small
shifts of lines positions with increasing Ni(II) incorporation up to 15%. For larger Ni(II) concentration, in
solution, a mixture of phases has been detected. Infrared spectra have supported diffraction results. For
Ni(II) 20% and over the characteristic bands of HPO4

2- anions tend to vanish, and the typical shaped PO4
3�

bands are observed. These results have allowed to establish that the presence of low levels of Ni in the
synthetic process not only helps brushite formation; but, also prevents brushite from apatite conversion
and, in addition, preserves brushite crystallinity. According to these findings, it is possible to propose that
nickel traces present in the urinary system might be a trigger to brushite stone formation and/or growth,
rather than the expected brushite conversion to hydroxyapatite. This outcome would explain the
recurrent detection of difficult to treat brushite stones, observed in the last three decades.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Urinary calculi precipitate in the urinary tract of human and
animals as consequence of a number of health disorders. Several
statistical studies in humans, performed in different countries, had
shown that the prevalence of kidney stones has increased over the
last three decades and that one of three stone formers experienced
recurrence with the consequent costly, painful and chronic
healthcare problem [1]. Another finding of care providers and re-
searchers was related with modifications in stones composition. It
was determined that Ca(II) cation is involved in 85% of the found
stones, mainly in the form of oxalate (CaOx) admixed with some
form of calcium phosphates (CaP), especially apatite and brushite
(CaHPO4$2H2O, calcium monohydrogen phosphate dihydrate). 25%
of CaP patients form brushite stones. These stones have been found
aggressive, difficult-to-treat and recurrent, with increase
com, jguerra@unlu.edu.ar
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proportion of brushite in calculi composition [2]. Several surveys
and researches have been performed in the last decade addressing
biochemical, physicochemical and physiological conditions of
brushite stone patient, trying to find ways to deal with them [3e6].
According to several authors hypercalciuria, a diminished citrate
excretion and an elevated urine pH increase stone risk. While low
sodium diets and thiazide-type diuretics potentially reduce stone
recurrence, see for example refs. [1,5]. Though no clear and unique
factor can be related to prevention of calculi reappearance in the
case of idiopathic renal stones all the above mentioned studies
indicate that knowledge of their composition is an important, and
sometimes the only tool to identify disorder origin [7e9] or more
appropriate ways of treatment. Therefore, the analysis must be
performed under reliable analytical methods [9e11].

Other approaches have also been tried to improve stone treat-
ment. They have been related with the study of the influence of
different elements or ambient conditions in phases present in
urinary stones, with the microelemental composition of CaP or
with the stabilization and grain growth of brushite [12e14].

In this work, we try to add to the knowledge of brushite for-
mation and stabilization in controlled conditions. In previous work,
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we had studied the influence of foreign metal ions on calcium
phosphate crystallization and their incidence on biological miner-
alizations. From those studies we found out that calcium hy-
droxyapatite (CaHAP) can be thermally stabilized by Ca(II)
substitution by Zn(II) [15], while could not crystallize in presence of
Ni(II) [16].

Here we are presenting the investigation of the effects of Ni(II)
on the transformation of brushite to CaHaP and relating this with
the development of kidney stones. Samples were characterized by
atomic absorption (A.A.), x-ray powder diffraction (XRPD) and
infrared spectroscopy (FTIR). The results are presented below.
2. Experimental

2.1. Brushite synthesis

Brushite was prepared by the method of Tovborg-Jensen and
Rathlev [17]. A solution containing Na2HPO4$8H2O and KH2PO4 and
a solution containing CaCl2$6H2O both 0.1 M were prepared. These
solutions were added simultaneously at the same rate to a
constantly stirred solution containing KH2PO4 0.1 M at 25 �C. The
addition rates were maintained in order to keep the pH at 4.8. The
solid was filtered, washed with H3PO4 0.05% and dried at 60 �C.
2.2. Brushite synthesis doped with Ni(II) cations

The preparation method was adapted from a previous hy-
droxyapatite synthetic procedure [15]. The phosphates were pre-
pared by dropwise addition of two solutions 0.2 M (one of calcium
and nickel acetate and other of ammonium phosphate) to a stirred
solution of ammonium acetate. The amount of [H3Oþ] in solution
changes during the synthesis. Then, to keep the pH of the solutions
at the constant value of 7, NH3 or acetic acid 0.1 M were added; pH
measurements were made with an MV 870 digital pH meter and
using a combined glass electrode. The electrode was calibrated at
25 �C with a buffer prepared according to the National Bureau of
Standards [15]. After the above procedure, the synthesized phos-
phates were kept into a water bath for 24 h at 25 �C (or 37 �C) and
pH 7.

The composition of the solution was varied in steps, from pure
calcium acetate to 20% of Ni and 80% of calcium acetate. The upper
range of [Ni/Ca] ratio in the solution was selected based on a pre-
vious study [16], which showed that nickel concentrations of 20%
and over induced formation of mixed phases. The solid samples
obtained were named by the nickel symbol followed by a number
(n) (Nin), which indicated the nickel concentration in the solution
expressed as percent.

The composition of the products was checked by determination
of Ca, Ni and P content. Ca and Ni were determined by atomic ab-
sorption spectrometry and phosphorus was determined spectro-
photometrically. The solid phases obtained from [Ni/Ca] molar ratio
solutions ranging from 5% to 20%, at 25 �C and 37 �C, were analyzed
by FTIR and XRPD, as the rest of samples previously studied [16].

FTIR spectra of powdered samples in the form of pressed KBr
pellets were measured with a Bruker IFS 66 FTIR spectrometer in
the range 4000e400 cm�1 (4 cm�1 resolution).

The X-ray diffraction data were obtained with a Philips PW1710
powder diffractometer with a scintillation counter and an exit
beam graphite monochromator using CuKa radiation
(l¼ 1.5406 Å). The 2q range coveredwas: 7� 2q� 120�, with a step
interval of 0.02� and a counting time of 5s.
3. Results and discussion

3.1. Chemical analysis

The results of the chemical analysis of the synthesized (Ca,Ni)
HPO4$2H2O samples are collected in Table 1. The molar (Ca þ Ni)/P
ratio found in the solid was in the range of 0.97e1. Analysis of data
of Table 1 shows that nickel incorporation in the solid is almost
complete from Ni5 to Ni15 (82%). For Ni20 sample, however, the
(Ca þ Ni)/P ratio is higher than 1. This behavior is attributed to the
coexistence of phases. (see spectroscopic and diffraction results
below).

3.2. X-ray diffraction results

The obtained XRPD patterns of brushite and (Ni,Ca)HPO4$2H2O
samples synthesized at 25 �C are shown in Fig. 1. Diffraction lines
observed in this figure only showed a small variation in position
and breadth with increasing Ni(II) concentrations up to Ni 15%. This
indicated that neither loss of crystallinity nor new phases forma-
tion have been caused by Ni incorporation. For Ni(II) concentration
in solution higher that 15%, the contribution of brushite to the
pattern drastically diminishes, see Ni20 in Fig. 1, and other phase
starts to form.

Following Curry and Jones structural model for brushite [18] the
XRPD patterns of samples Nij (j � 15) could be fitted assuming the
monoclinic non centrosymmetric space group Cc. The structure can
be described as sheets perpendicular to the b axis linked by waters'
hydrogen bonds (HB), as shown in Fig. 2. Calcium (or Ca,Ni) cations
are coordinated by eight oxygen atoms, two from the two crystal-
lographically inequivalent water molecules and the remaining six
from the phosphate anions. The resulting dodecahedron polyhedra
shear two edges and build infinite zigzag chains along c axis as
shown in Fig. 2B. Chains are connected by the tetrahedral phos-
phate anions forming the mentioned sheets.

The inequivalent water molecules show some differences in the
strengths of their HB. The HB connecting the layers show in both
molecules the same OH/O length value (d) within 3 e.s.d.�s, mean
d ¼ 2.805(5) Ǻ. Whereas the HB linking oxygen atoms within the
same layer exhibits an appreciable d value difference, dW1 ¼ 2.76
(1)Ǻ and dW2 ¼ 3.08(1) Ǻ. It should be noticed that W2 HB acceptor
is the hydroxyl O atom.

3.3. Infrared spectra

Fig. 3 compares the infrared spectra of synthesized samples in
different Ni(II) concentrations, from Ni5 to Ni20 at 25 �C. It can be
seen from it, in agreement with X-ray diffraction results, that from
Ni5 to Ni15 small and continuous changes can be observed, but for
concentrations greater than 15% a mixture of phases tends to form.
The FTIR spectra of samples obtained at 37 �C are not shown
because no appreciable differences were observed.

Table 2 summarizes the assignments of infrared fundamental
modes for brushite and (Ca,Ni)HPO4$2H2O. All assignments are
consistent with those observed by other authors [17,19,20]. Due to
the small differences observed in the band positions coming from
samples Ni5 to Ni15, only data from sample Ni5 were included in
this table.

The OeH stretching mode appeared in a wide spectral region
3700-3200 cm�1 for the phase brushite. The inequivalence of water
molecules -pointed out before from the crystal structure analysis-
was also evidenced by the splitting of the antisymmetric mode (n3)
of the twowater molecules at 3545, and 3490 cm�1. The splitting of
the symmetric one (n1) was also observed at 3280 and 3169 cm�1.
Since W1 forms stronger H-bonds, according to the bond distances



Table 1
Inclusion of Ni(II) in solid phase.

Initial Ni(II) in preparation Synthesis results

x ¼ Ni (% in mol)a Ni (% in wt) Ni in solid (% in wt)b Ni in solid (% in wt) Ni in solid (% in wt)b Ni in solid (% in wt)b

5 3.0 2.8 ± 0.1 97.0 3.0 1
10 5.9 5.2 ± 0.1 88.0 12.0 0.98
15 8.8 7.2 ± 0.1 82.0 18.0 0.95
20 NC

c
NC

c
NC

c
NC

c Mixture

a Initial Ni concentration before reaction, calculated by: Ni/(Ca þ Ni)*100; x is related to brushite formula: Ca(10-x)NixPO4$2H2O.
b Ni concentration was quantified by atomic absorption (AA).
c Not calculated because mixed phases have been formed (see vibrational spectra discussion).

Fig. 1. X-ray diffraction patterns for (Ca,Ni)HPO4$2H2O samples with different Ni
percentages Ni 0% (brushite), Ni 5%, Ni 15%, and Ni 20% (curves were taken from
samples obtained at 25 �C, curves at 37 �C have not shown differences).
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described above, the n3-n1 set for this molecule should be assigned
to the lowest frequency bands (3490-3169 cm�1), while for the W2
the corresponding bands should be assigned to the remaining set at
3545-3280 cm�1 because this molecule presented the longest H-
bonds. The band profile of this region suffers a gradual change with
the increase of Ni(II) concentration in the samples up to Ni15.

It can also be seen from Table 2 that the incorporation of nickel
provokes a band shift of the modes corresponding to phosphate ion
and n(OH)H2O. The continuous shifts observed in bands spectra for
Bb

(A)                                     

Fig. 2. Brushite crystal packing. A) It shows (Ca,Ni) coordination polyhedra and monohydro
acidic hydrogen bonds in red. B) View of the packing up b. (For interpretation of the reference
samples Ni5 to Ni15 drastically changed when passing to Ni20. The
stretching bands of water at about 3500 cm�1 miss their fine
structure described above, and the typical antisymmetric stretch-
ing (n3) bands of phosphate appeared at about 1100 cm�1. At the
same time, small components of HPO4

2- bands were still observed in
Ni20. These spectroscopic results were in agreement with X-ray
diffraction findings.

Present XRPD and FTIR results have allowed to establish that the
presence of low levels of Ni(II) in the synthetic process not only
helps brushite formation; but, also prevents brushite from apatite
conversion and, in addition, preserves brushite crystallinity. While,
in similar conditions in absence of nickel previous studies have
evidenced that, at neutral pH and a temperature of 25 �C the for-
mation of hydroxyapatite was favoured [11,16].

These findings seem to be at least controversial in view of the
fact that brushite has been considered a precursor phase of hy-
droxyapatite [7,10,11,21,22] and that for this reason

dicalcium phosphate cements were developed two decades ago,
and ever since there has been a substantial growth in research
aimed to the improvement of their properties in order to satisfy the
requirements for different clinical applications.

However, the formation of brushite in synthetic and biological
systems are governed by factors such as the nature of the media:
pH, temperature and the presence of trace elements [14,16,19],
which prevent brushite from convert to hydroxyapatite. If this
conversion does not happen in the urinary system, brushite stones
would form. Unlike hydroxyapatite, which fragments easily,
brushite stones are exceptionally hard and difficult to remove
surgically [7,10,11,23].

As, Krambeck et al. [6] had reported, the calcium phosphate
stone disease is increasing; specifically brushite stone disease has
                                      (B)

phosphate tetrahedra. W1 hydrogen bonds in blue, W2 hydrogen bonds in green, and
s to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Infrared spectra of (Ca,Ni)HPO4$2H2O with different Ni percent: Ni 0% (brushite), Ni 5%, Ni 10%, Ni 15% and Ni 20% (spectra were taken from samples obtained at 25 �C).

Table 2
Observed infrared bands (cm�1) for Brushite and (Ca,Ni)HPO4$2H2O (Ni5) and its
assignment (Data from samples obtained at 25 �C).

Mode CaHPO4$2H2O (Ca,Ni)HPO4$2H2O (Ni5)

n3(H2O) 3545s, 3490s 3536 s, 3489 s
n1(H2O) 3280 s, 3169 s 3302 w, 3167 s
n(POeH) 2930 sh, 2380 w, 2270 sh 2400 vw, 2268 w
d(H2O) 1648 1648
d(POeH) 1215 w, 1200 sh 1218 s
nd(PeOH) 1140s, 1123 sh, 1075 sh,

1057 s
1134 s, 1121 sh, 1074 sh,
1063 s

ns(PeOH) 1000 sh, 984 s 987 s, 1004 sh
n(PeO(H)) 875 s 875 s
d(PeO(H)) 785 vw 792 w
Waters

libration
665 vw, 663 w 670 m, 653 wh

d(OePeO(H)) 583 w 576 s
d(OePeO(H)) 535 sh, 519 w 527 s
d(OePeO(H)) 417 w 430 w

vs: very strong, s: strong, m: medium, w: weak, vw: very weak, sh: shoulder.
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been shown to be on the rise. Furthermore, these authors have
found evidence to support some correlation between brushite
stone disease and previous calcium oxalate stone treatment.

Recent investigations have found that brushite may play crucial
roles in oxalate renal stones formation [24], however latest
research [ [25] and references therein] seems to indicate that is
unlike that brushite may promote oxalate stones, but found that
amorphous calcium phosphate is central in the nucleation of cal-
cium oxalate. Both results are compatible with our results on the
role of Ni in the formation of different phosphates.

Taking into account the results presented in this work, that Ni
presence in human beings as contaminant is not infrequent and
that it primary accumulates in lungs and kidneys, it seems
reasonable to propose that nickel traces present in the urinary
system may trigger brushite stone formation, with the possible
development of these stones rather than their conversion to hy-
droxyapatite. Nickel may also favor the presence of amorphous
calcium phosphate [16] helping oxalate nucleation as determined
by Xie et al. [25].

4. Conclusions

We have investigated the effect of nickel on brushite crystals
formation by x-ray diffraction and FTIR. Results coming from both
techniques showed that under the synthesis conditions (neutral pH
and at two different temperatures: 25 and 37 �C) only one phase is
formed when up to a 15% of Ni(II) is included in phosphate syn-
thesis. For larger Ni(II) concentration in solution other phases are
formed as can be seen from the diminution of the contribution of
brushite to the obtained XRDP pattern and the observation in the
FTIR spectra of the typical tetrahedral phosphate bands and loss of
the fine structure of water stretching bands.

Present results would have some biological implications as they
suggest that brushite kidney stones may develop as results of
presence of traces of Ni(II) in biological fluids and that Ni(II) traces
may also induce amorphous calcium phosphate formation, which
facilitates calcium oxalate nucleation.

In future work we are planning to synthesize different calcium
phosphates from simulated biological fluids. To characterize the
solid materials to be obtained we have designed a set of experi-
mental techniques to validate our present assumptions.
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