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The double electron capture into the continuum states of the projectile (double ECC) is investigated the-
oretically in collisions of 100 keV He2+ ions with He atoms. The process is described within the frame-
work of the impact parameter and frozen-correlation approximations where the single-electron events
are treated by the continuum distorted wave method. On the other hand, the Wannier theory is employed
for describing the angular correlation between both ejected electrons. This treatment substantially
improved the agreement between the theory and experiment as compared to the previous version of
the theory (Gulyás et al., 2010) in which the correlation between the ejected electrons was taken into
account by the Coulomb density of states approximation.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Threshold phenomena have attracted the interest of many
researchers dealing with scattering processes since the formula-
tion of the threshold laws by Wigner in 1948 [1]. One of the rea-
sons for this interest is explained by the universality of these
laws: The energy dependence of the cross section of a collision pro-
cess in the neighborhood of the threshold energy is governed only
by the type of the interaction (long- or short-range, attractive or
repulsive), and it is not influenced by the detailed dynamics of
the collision.

In the field of energetic ion-atom collisions a unique possibility
to study the threshold behavior is provided by the so-called cusp
phenomenon. The cusp is a peak appearing in the energy spectrum
of the electrons emitted from the collision in the forward direction.
The electrons contributing to the cusp move with velocities
approximately equal to that of the bombarding ion (atom), i.e.,
they fly with very small velocities relative to the projectile. By elec-
tron spectroscopic measurements of the cusp one can obtain infor-
mation about extremely low-energy (�meV) electron emission.
This property is due to the kinematic amplification of the electron
energies when transformed from the projectile-centered reference
system to the laboratory frame. The cusp is regarded as a threshold
phenomenon because the final relative electron-projectile energy
is just above the ionization limit. A negative relative energy would
produce the population of the bound states of the projectile ion.
Due to the dominant role of the electron-projectile interaction,
the cusp formation is governed by two-body threshold laws. The
study of the cusp with different projectiles makes it possible to
obtain information about the threshold laws for various types of
interactions (Coulomb, dipolar, short-range, see, e.g., Refs. [2–7]).

In the exploration of the threshold character of the cusp, an
important step was the experiment by Sarkadi and Orbán [8] in
which the two-electron cusp, i.e., the simultaneous emission of
two electrons in the forward direction with velocities equal to that
of the projectile, was observed. The experiment was carried out for
100 keV He0 + He collisions. The energies of the electrons resulting
from the mutual ionization of the target and the projectile were
measured by detecting the triple coincidence between the elec-
trons and the outgoing He+ ion. A strong correlation between the
electron energies in the vicinity of the cusp was observed, which
on its turn could be explained by an angular correlation of 180�
in the projectile frame [8].

In the final state characterizing the two-electron cusp, the two
electrons move slowly relative to the projectile ion. A similar final
state consisting of two electrons and an ion occurs in the double
photoionization or the electron-impact single ionization of an
atom. In 1953 Wannier [9] showed for the first time that the
threshold break-up of this three-body system is a highly correlated
process, in which the electrons tend to move symmetrically
in opposite directions. Since Wannier’s pioneering work the
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correlation between two low-energy electrons in the field of an ion
has been the subject of numerous experimental and theoretical
studies (see Refs. [10,11] for a review).

In their analysis of the experimental data obtained for the two-
electron cusp, Sarkadi and Orbán carried out a Monte Carlo simu-
lation [8,12], in which the correlated motion of the electrons was
taken into account according to the Wannier theory. From the sim-
ulation they concluded that the prediction of the latter theory was
consistent with the observed correlation.

The question of the existence of the two-electron cusp was
further investigated by Gulyás et al. [13]. For the description of
the double ionization of He by He2+ impact they employed the
impact parameter and frozen-correlation approximations.
Furthermore, in order to better describe the electron–electron
correlation, they modified the corresponding Coulomb normaliza-
tion factor by means of a dynamically screened effective charge.
The calculations showed the existence of the two-electron cusp.
However, the model described the observed correlation only
qualitatively.

The aim of the present work is to improve this model by apply-
ing a correlation function that is better suited for the description of
the threshold behavior of the two-electron emission. The Monte
Carlo simulations performed by Sarkadi et al. [8,12] indicate that
the Wannier theory correctly gives account of the angular correla-
tion of the electrons at threshold, therefore in the derivation of the
correlation function we rely on this latter theory.

2. Hyperspherical coordinates

Let us consider two electrons in the field of an ion of charge ZP .
The potential reads,

V ¼ �ZP
1
r1

þ 1
r2

� �
þ 1
r12

; ð1Þ

with r12 ¼ r1 � r2. Here r1 and r2 are the positions of the electrons in
the reference system centered at the projectile ion. We parametrize
these quantities in terms of hyperspherical coordinates [14–16]

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
;

# ¼ arctan
r2 � r1
r2 þ r1

; ð2Þ

u ¼ p� arccosðr̂1 � r̂2Þ
2

;

so that the potential reads,

V ¼ � Zð#;uÞ
R

; ð3Þ

with

Zð#;uÞ ¼ 2
ffiffiffi
2

p
ZP cos#

cos 2#
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos 2# cos 2u
p : ð4Þ
3. Wannier mechanism

The key point in the previous rewriting of the potential in terms
of # and u is that while the hyperradius R parametrizes the size of
the two-electron system, the angles # and u characterizes the
radial and angular correlations, respectively. As the system
expands (i.e. for increasing R) at the energy threshold, the
dynamics tends to be dominated by the symmetric escape of both
electrons along opposite sides of the ion. This so-called Wannier
mechanism is clearly shown by the function Z which has a saddle
point at # ¼ u ¼ 0. Around this point the effective charge Z can be
approximated by
Zð#;uÞ � Z0 þ 1
2
Z1 #

2 þ 1
2
Z2u2; ð5Þ

with Z0 ¼ 4ZP � 1ð Þ=
ffiffiffi
2

p
; Z1 ¼ 12ZP � 1ð Þ=

ffiffiffi
2

p
and Z2 ¼ �1=

ffiffiffi
2

p
. The

motion around u ¼ 0 (i.e. r1 ¼ r2) is therefore stable and represents
the angular correlation between the electrons, whereas the motion
around # ¼ 0 (i.e. r̂1 ¼ �r̂2), which corresponds to the radial corre-
lation, is unstable. For future reference, let us note that around this
point,

r12 �
ffiffiffi
2

p
R 1� 1

2
#2 � 1

2
u2

� �
: ð6Þ

Furthermore, let us note that while the basis of the hyperspherical
method lies in replacing the radial distances r1 and r2 by the hyper-
radius R as a measure of the mean size of the system, different
authors have employed different sets of pseudo-angles to represent
the relative positions of the particles at fixed R [17]. In this context,
our particular choice of # and u leads to a more symmetric repre-
sentation of the effective charge Z and other related quantities than
more commonly employed definitions.

4. Continuum distorted wave theories

Wannier [9] showed that this mechanism, where both electrons
escape along opposite sides of the ion, is of the utmost relevance in
the threshold limit, i.e. at the two electron cusp. However, standard
continuum distorted wave (CDW) theories fail to describe this
limit correctly. In order to understand the origin of this failure,
let us follow Brauner et al. [18] and Briggs and Schmidt [11], and
consider the normalization

F ¼ 2p
k12

exp
2p
k12

� 1
� ��1

; ð7Þ

of the electron–electron continuum state. Here k12 ¼ k1 � k2, where
k1 and k2 are the momenta of the electrons with respect to the pro-
jectile. This factor is not the only one responsible for the angular
correlation, but it provides the major contribution [11]. In the
asymptotic (ballistic) regime (i.e. for ri / ki), we resort to Eq. (6)
and write, for an equal energy-sharing condition,

k12 � 2
ffiffiffi
E

p
1� 1

8
ðp� h12Þ2

� �
; ð8Þ

with E ¼ ðk12 þ k22Þ=2and h12 ¼ arccosðk̂1 � k̂2Þ. Therefore, in the
threshold limit (i.e. for E ! 0) we can write [11],

F � pffiffiffi
E

p e�p=
ffiffi
E

p
exp � p

8
ffiffiffi
E

p ðp� h12Þ2
� �

; ð9Þ

As it was pointed out by Brauner et al. [18], while the gaussian
dependence on p� h12 is in concordance with Wannier theory,
the remaining factor expð�p=

ffiffiffi
E

p
Þ produces a exponential decrease

in the threshold limit, even if the electrons were moving in opposite
directions.

Following a proposal by Ward and Macek [19], Otranto and
Garibotti [20] introduced a multiplicative energy-dependent
parameter in the electron–electron coordinate in order to
compensate this effect, and applied this theory to the study of
photo double ionization processes. Even though this technique
represents a clear improvement over standard models, it did not
manage to fully compensate the exponential decrease at threshold.

5. Coulomb density of states approximation

In 2010 Gulyás el al. [13] proposed a method to improve the
performance of the CDW theory at the two-electron cusp. In the
framework of the Coulomb density of states (CDS) approximation,
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they assumed that the double ionization cross section could be
well expressed by the factorization

dr
dp1dp2

¼ Fðk1;k2Þ � drIPM

dp1dp2
; ð10Þ

where drIPM=dp1dp2 was calculated in the independent particle
model (IPM) using the CDW method. Here, pi ¼ ki þ vP are the
momenta of each electron with respect to the residual target ion.
In order to improve the description of the electron–electron
correlation in the continuum state, a dynamically screened
effective charge was incorporated in the corresponding Coulomb
normalization factor, namely

Fðk1;k2Þ ¼ 2pZ12

k12
exp

2pZ12

k12
� 1

� ��1

; ð11Þ

with

Z12 ¼ 1� k212
ðk1 þ k2Þ2

: ð12Þ

This methodology of including a momentum-dependent charge
was employed, for instance, by Peterkop [21] in 1962 and by Rudge
and Seaton [14] in 1965, and by many other authors thereafter (see
references in [13]). By replacing 8 in 12, we can approximate

Z12 � ðp� h12Þ2=4, and therefore

Fðk1;k2Þ � p
4
ffiffiffi
E

p ðp� h12Þ2 � exp � p
4
ffiffiffi
E

p ðp� h12Þ2
� �

; ð13Þ

It is clearly seen that, even though this correction succeeds in
incorporating some extra correlation on the angle h12, now the
normalization factor incorrectly vanishes for h12 ¼ p at all
energies E.
6. Wannier theory revisited

Let us analyze the physical origin of the gaussian distribution in
Eqs. (9) and (13). To this end, we write the corresponding wave
function as

w12 ¼ expðiSÞ; ð14Þ
and assume that the complex action function S verifies the
Hamilton–Jacobi equation,

ðr1SÞ2 þ ðr2SÞ2 ¼ 2ðE� VÞ; ð15Þ
which, in terms of the hyperspherical coordinates, reads

@S
@R

� �2

þ 1
R2

@S
@#

� �2

þ 1
R2 cos2 2#

@S
@u

� �2

¼ 2Eþ 2
Zð#;uÞ

R
: ð16Þ

Now we follow the usual approach [22,23] and expand the
phase S in the hyperspherical coordinates up to the same order
than the effective charge in Eq. (5) in the vicinity of the saddle
point # ¼ u ¼ 0, namely

S � l0ðRÞ þ
1
2
l1ðRÞ#2 þ 1

2
l2ðRÞu2: ð17Þ

Upon substituting in Eq. (16), we obtain at the lowest order in
the energy, the following set of independent equations

dlo

dR
¼

ffiffiffiffiffiffiffiffi
2Zo

R

r
ð18Þffiffiffiffiffiffiffiffi

2Z0

R

r
dln

dR
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R
� l2

n

R2 ð19Þ

with n ¼ 1 or 2. Their solutions read
l0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2Z0R

p
ð20Þ

ln ¼ l0

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8
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s
� 1

 !
; ð21Þ

so that,

l0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4ZP � 1ÞR=

ffiffiffi
2

pq
; ð22Þ

l1 ¼ l0

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100ZP � 9
4ZP � 1

s
� 1

 !
;

l2 ¼ l0

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ZP � 9
4ZP � 1

s
� 1

 !
:

Note that for ZP 6 2, the parameter l2 has an imaginary part.
This leads to an exponentially decreasing solution for R ! 1,
which produces a contribution to the probability,

F / Wj j2 ¼ exp �Imðl2Þ u2
� �

¼ exp � 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9�4ZP ÞRffiffi

2
p

q
u2

h i
:

ð23Þ

In the asymptotic (ballistic) regime, at the limit of zero total
energy, Zo=R � E and u � ðp� h12Þ=2. Therefore,

F / exp � 1
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9� 4ZPÞð4ZP � 1Þ

E

r
ðp� h12Þ2

" #
;

In the followings we consider the case ZP ¼ 1 (the justification
of this choice is given later) that yields

F / exp � 1
16

ffiffiffiffiffiffi
15
E

r
ðp� h12Þ2

" #
: ð24Þ

This distribution has a similar gaussian shape as the one ana-
lyzed in a previous section, namely

F / exp �4 ln2
ðp� h12Þ2
DðEÞ2

" #
: ð25Þ

but with a different half-width at half maximum (HWHM). Here,
DðEÞ � 3:38E1=4; while from Eq. (9) we obtain DðEÞ � 2:66E1=4.
Many other authors (see, for instance, [18,23–34]) have proposed
the same gaussian distribution for the angular correlation, and with
the same DðEÞ ¼ cE1=4 dependence for the HWHM that is character-
istic of the Wannier theory, but with different proportionality fac-
tors c, ranging from 2.66 [11,29] to 3.55 [28]. Departures from the
E1=4 energy-dependence have also been reported in the literature
[35–37].

Let us finally point out that even though some previous models
managed to obtain the gaussian shape 25, they also lead to the
incorrect vanishing of the cross section for E ! 0 or h12 ! p, as
shown in Eqs. (9) and (13), respectively. Here we have demon-
strated that these shortcomings can be avoided by means of a
Wannier analysis, without resorting to any ad hoc argument. The
same applies to our proposed value for c, which is derived directly
from a Wannier theory, with no need of any extra assumption or
data fitting procedure.

7. Results and discussion

Applying the Fðk1;k2Þ correlation function given by Eq. (24) to
drIPM=dp1dp2 in Eq. (10), we calculated the energy spectra of the
electrons emitted in the forward direction in the double ionization
of He by the impact of 100 keV He2+ ions. The details of the calcu-
lations are given in Ref. [13]. In Fig. 1 we plotted the energy spectra
of one of the ejected electrons, say e1, with the condition that the



Fig. 2. The same as Fig. 1, but the solid and the dashed line are results of Monte
Carlo simulation carried out with c ¼ 3:38 and c ¼ 2:66, respectively.

Fig. 1. Energy spectra of the electron e1 emitted from the process 100 keV He2
+ + He! He2+ + He2+ + e1 + e2 with the condition that the energy of e2 lies in the
interval (a) 11–12.5 eV, (b) 13–14.2 eV and (c) 14.5–16 eV. Both electrons are
ejected in the forward direction. Full circles: experimental data from the process
100 keV He0 + He ! He+ + He+ + e1 + e2 [8]. The solid and dashed line correspond to
the present calculations made with c ¼ 3:38 and c ¼ 2:66, respectively. The dashed-
dotted line represents the previous calculations of Gulyás et al. [13].
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energy of the other electron, e2, lies in a narrow range (we may call
it ‘‘coincidence window”). Panels (a), (b), and (c) correspond to
three different coincidence windows. The spectra are normalized
at their maxima. We performed the calculations using two differ-
ent Gaussian widths: c ¼ 3:38, as evaluated in the previous section,
and c ¼ 2:66, which corresponds to the lowest value published in
the literature [11,29]. Furthermore, in the figures we have also
included the results of the previous calculations by Gulyás et al.
[13] that were made with the correlation function expressed by
Eqs. (12) and (11). In lack of an experiment for the double ECC
process, we compared these theoretical results with the data
measured by Sarkadi and Orbán [8]. Although in the experiment
the two electrons were emitted in a different process (mutual ion-
ization of the target and the projectile), such a comparison
between the theory and experiment can be justified by considering
that the main features of the two-electron cusp are dominantly
determined by the electron–electron correlation, i.e., the shape of
the energy distribution of the electrons is expected to be more or
less independent from the primary process by which the two
electrons are produced. Larger deviations may occur regarding
the absolute scale of the cross section, however, the focus of the
present work was on the relative cross section. We note that in
the experiment the outgoing ion is He+, i.e., the two low-energy
electrons move in the field of a particle of unit positive charge
(with respect to the projectile). This justifies the choice ZP ¼ 1 in
Eq. (24). Since the electron–electron correlation strongly
depends on the asymptotic charge of the projectile, the choice
ZP ¼ 2 would lead to results that could not be compared with the
experimental data.
According to the figure, the application of the correlation func-
tion proposed in the present work substantially improved the
agreement between theory and experiment. Its effect is large on
the low-energy tail of the cusp for the coincidence conditions
defined in panels (b) and (c). However, there is only a small differ-
ence between the theoretical curves belonging to the two c values.

Let us note that the agreement between the theories and the
experiment in Fig. 1 is significantly better when the ‘‘coincidence
window” is below the cusp’s energy than when it is above it. The
most probable explanation for this effect is related to the post-
collisional interaction (PCI) exerted on the electrons by the reced-
ing ionized target, as it is discussed in [12]. As is seen in Fig. 1 of
[12], the effect is larger for the lower energy electrons, as expected.
This PCI effect could be taken into account properly only by means
of a four-body treatment of the process.

The Monte Carlo simulation worked out for the two-electron
cusp [8,12] confirms this weak dependence of the energy spectra
on c, as we show in Fig. 2. In the simulation, the electron pairs
are created randomly in the projectile-centered reference frame
with theoretically calculated velocity distribution, and the path
of the electrons is tracked until they reach the detectors. As
explained in Ref. [12], the main assumptions of this model are that
(i) the emission of the electron pairs is isotropic, (ii) the differential
cross section for the emission of the electron pair is a linear func-
tion, dr=dE ¼ c0 þ c1E, (iii) The energy E is uniformly shared
between the two electrons and (iv) the angular correlation of the
electrons is a Gaussian function of width cE1=4 peaking at h ¼ p.
The c0=c1 ratio was varied in order to fit the experimental data,
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resulting c0=c1 ¼ 1:25� 10�4 [8,12] In Fig. 2 this simulation with
c ¼ 2:66 and 3.38 are compared with the experimental data. The
change of c affects the spectra in a small extent also in this case,
although the difference between the curves belonging to c ¼ 2:66
and 3.38 is larger than that for the corresponding curves in Fig. 1.

8. Conclusions

In this work we made an attempt to improve the model of
Gulyás et al. [13] by applying a correlation function that is better
suited for describing the threshold behavior of the two-electron
emission. The correlation factor was derived within the WKB
approximation, following the approach by Peterkop [22]. With this
modified model a substantial improvement was achieved in the
theoretical description of the two-electron cusp, as it can be
observed in Fig. 1.

In spite of this success, we might note that there is still ample
room for improvement in the theoretical description. For instance,
our observation that the energy spectra of the electrons depend
weakly on the width of Gaussian function describing the angular
correlation might be indicating that the width is not so narrow
as to make the expansion around the saddle point up to the second
order in u valid [18]. Thus, in spite of the widespread use of
Gaussian distributions to represent the angular correlation and
the success shown in this and other applications, an improved
description is needed [38].

Also from the side of the theory, our model relies on a equal
energy sharing emission. This is a basic assumption in most of
the models cited in Section 6. However, it might not be well suited
for the analysis of the present results. In this sense, a generalization
to an unequal energy sharing regime [39] might lead to an
improved description of the two-electron cusp.

Furthermore, let us note that the Fðk1;k2Þ correlation function
given by Eq. (24) depends on the asymptotic electron momentum.
This means that the correlation between the two ejected electrons
is included only at infinitely large scattering distances. A further
improvement in the theoretical description of the two-electron
cusp is expected by applying a correlated two-electron wave func-
tion in the transition matrix element, i.e., by a theory that would go
beyond the independent particle model (IPM). This theory should
give also account of a two-center effect discussed in Ref. [12],
namely that the angular correlation between the separating elec-
trons is perturbed by the ionized target.

From the experimental side, more accurate and detailed infor-
mation about the correlated Wannier state could be obtained by
means of the measurements of the two-electron cusp with a con-
siderably improved angular and energy resolution. Furthermore,
to make a comparison between theory and experiment for the
same collision system and the same reaction process, new experi-
ments and/or further theoretical works are needed.
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