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Abstract

We calculate the critical parameters for some simple quantum wells by means of the

Riccati-Padé method. The original approach converges reasonably well for nonzero

angular-momentum quantum number l but rather too slowly for the s states. We

therefore propose a simple modification that yields remarkably accurate results for

the latter case. The rate of convergence of both methods increases with l and de-

creases with the radial quantum number n. We compare RPM results with WKB

ones for sufficiently large values of l. As illustrative examples we choose the one-

dimensional and central-field Gaussian wells as well as the Yukawa potential. The

application of perturbation theory by means of the RPM to a class of rational

potentials yields interesting and baffling unphysical results.

1 Introduction

The accurate calculation of the number of bound states supported by a fi-

nite quantum-mechanical potential well is of great physical and mathemat-

ical importance and for this reason there has been considerable interest in
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the derivation of upper and lower bounds [1–13]. Most of those bounds are

given in terms of the potential-energy function. In a recent paper Liverts and

Barnea [14] proceeded in a different way and proposed the calculation of the

critical parameters for negative central-field quantum wells. To this end they

applied two exact methods and the WKB approach, the latter for the estima-

tion of the large-quantum number behaviour of the critical parameters. In this

context a critical parameter is the value of a potential parameter for which an

energy eigenvalue is exactly zero (what the authors call a transition state). As

they pointed out, one can obtain the exact number of bound states from the

tables of critical parameters, as well as other relevant information about the

eigenvalue equation [14].

There are local and global methods for the calculation of eigenvalues and

eigenfunctions. The former are based on the behaviour of the solution at a

properly chosen coordinate point; for example, a power-series expansion. On

the other hand, global approaches like the variational method take into ac-

count the whole coordinate interval (through expectation values of the asso-

ciated linear operators, etc.). In principle, local methods are expected to be

unsuitable for the calculation of critical parameters. Even the Riccati-Padé

method (RPM) [15, 16], based on Padé approximants, was shown to be im-

practical for the calculation of the eigenvalues of the Yukawa potential close

to the zero-energy threshold (transition state) [15]. The purpose of this paper

is to investigate in more detail whether those earlier results already prove that

the RPM is actually useless for the calculation of critical parameters.

In section 2 we outline the main ideas of the RPM. In section 3 we briefly

discuss the solutions of the Schrödinger equation with even-parity potential

wells. In section 4 we apply the approach to some simple one-dimensional

models: the Pöschl-Teller potential, the Gaussian well and a rational potential.

We calculate some critical parameters and the corresponding eigenfunctions

for the first and third cases. In section 5 we propose a modified version of
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the RPM that is more suitable for the calculation of critical parameters and

apply it to the Gaussian well. Some of those results also apply to s-states of the

analogous central-field model. In section 6 we apply the modified RPM to the

s-states of central-field models and choose the Yukawa potential as a suitable

illustrative example. We also show that the original RPM is suitable for the

calculation of critical parameters of states with l > 0. In section 7 we discuss

the application of perturbation theory to a model with a rational potential

that is exactly solvable at threshold. In this case we discuss the appearance

of spurious RPM eigenvalues. Finally, in section 8 we summarize the main

results and draw conclusions.

2 The Riccati-Padé method

We consider the eigenvalue equation

ψ′′(x) +Q(E, x)ψ(x) = 0, −∞ < x <∞, (1)

were E is the eigenvalue. We assume that ψ(x) can be expanded about the

origin as

ψ(x) = xs
∞
∑

j=0

cjx
βj , α, β > 0. (2)

It is clear that

f(x) =
s

x
− ψ′(x)

ψ(x)
, (3)

can be expanded about the origin as

f(x) = xβ−1
∞
∑

j=0

fjz
j , z = xβ . (4)
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We approximate f(x) by means of a rational function of the form xβ−1[M/N ](z)

where

[M/N ](z) =

∑M
j=0 ajz

j

∑N
j=0 bjz

j
= T (M +N + 1, z) +O(zM+N+2), (5)

and

T (n, z) =
n
∑

j=0

fjz
j . (6)

We choose M ≥ N and define d = M − N . It is not possible to satisfy the

condition (5) unless Hd
D = |fi+j+d−1|Di,j=1 = 0, D = N + 1. The coefficients fj ,

and thereby the Hankel determinant Hd
D, depend on the eigenvalue E. Some

of the roots E[D,d] of Hd
D(E) = 0 converge toward the eigenvalues of Eq. (1 )

as D increases [15, 16].

The ordinary Padé approximation to f(x) is

[M/N ](z) =

∑M
j=0 ajz

j

∑N
j=0 bjz

j
= T (M +N, z) +O(zM+N+1). (7)

If z0 is a zero of the denominator then

z0 = −bN−1

bN
− bN−2

bNz0
− . . .− b0

bNz
N−1
0

. (8)

Suppose that E∗ is a root of bN(E) = 0 and that bN−1(E) does not vanish

in the interval (E∗ − ǫ, E∗ + ǫ) for a sufficiently small positive real number

ǫ. Therefore |z0| → ∞ as E → E∗. The coefficient bN is proportional to

the Hankel determinant Hd+1
N−1(E) so that the Hankel condition Hd

D(E) = 0 is

equivalent to moving a singularity of a rational approximation towards infinity

[17]. It is also equivalent to moving a zero of the approximate ψ(x) towards

infinity. Consequently, it appears to be reasonable to assume that the Hankel

condition is equivalent to selecting bound states that vanish at infinity.
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The strategy just outlined applies to other nonlinear equations and for this

reason Amore and Fernández [18] chose the more general name Padé-Hankel

method which was later discussed by Abbasbandy and Bervillier [17]. However,

for historical reasons we prefer to keep the original name RPM when the

problem is a Riccati equation derived from the Schrödinger one [15, 16].

3 Parity-invariant finite wells

The Riccati-Padé method is known to produce accurate eigenvalues for infinite

wells or sufficiently deep finite ones [15, 16]. The purpose of this section is to

investigate to which extent it is possible to apply the RPM to shallow wells.

To this end we consider the eigenvalue equation (1) with

Q(E, x) = 2 [E − V (x)] , (9)

where the potential-energy function V (x) exhibits a minimum at V (0) < 0

and V (x → ±∞) = 0. In order to simplify the discussion we assume that

V (−x) = V (x) so that

Q(E, x) =
∞
∑

j=0

Qjx
2j . (10)

The shape of a parity-invariant potential is commonly determined by a smaller

number of parameters. In addition to it, the results for the odd states also

apply to the solutions of the Schrödinger equation with a central-field potential

having zero angular momentum quantum number l (s states).

The eigenfunctions of the Hamiltonian operator with a parity-invariant po-

tential are even or odd; therefore, s = 0 for the former, s = 1 for the latter

and β = 2 in both cases. We thus have

f(x) = x
∞
∑

j=0

fjx
2j , (11)
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where the first coefficients are

f0=
Q0

1 + 2s
,

f1=
Q2

0

(3 + 2s)(1 + 2s)2
+

Q1

3 + 2s
,

f2=
2Q3

0

(5 + 2s)(3 + 2s)(1 + 2s)3
+

2Q0Q1

(5 + 2s)(1 + 2s)(3 + 2s)
+

Q2

(5 + 2s)
.

(12)

Besides, the function f(x) is a solution to the Riccati equation

f ′(x) +
2s

x
f(x)− f(x)2 −Q(E, x) = 0. (13)

For convenience we define v0 = −V (0) > 0 and v(x) = −V (x)/v0. For all

values of the well depth v0 > 0 there is always a bound ground state with

energy E0. The number of bound states with energies E0 < E1 < . . . <

En < 0 depends on v0. As v0 decreases the highest bound-state energy, say

En, approaches the threshold E = 0 from below and we have a critical well

parameter v0,n when En = 0. Consequently, there are n+1 bound states when

v0,n < v0 < v0,n+1.

We assume that V (x) vanishes faster than x−2 as |x| → ∞; that is to say

lim
|x|→∞

x2V (x) = 0. (14)

Therefore, an eigenfunction for the arbitrary energy E < 0 behaves asymp-

totically as

ψ(x) ∼ A(E, v0)e
−αx +B(E, v0)e

αx, |x| → ∞, (15)

where α =
√
−2E. The bound states are given by the condition B(Ej, v0) = 0

that leads to square-integrable eigenfunctions.
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When E = 0 the two asymptotic solutions in Eq. (15) are linearly dependent.

In this case the general solution to ψ′′(x) = 0 behaves as

ψ(x) ∼ A(v0) +B(v0)x, E = 0, |x| → ∞. (16)

The solution at threshold is not square integrable but we can think of it as

the limit of a square integrable one limE→0A(E, v0)e
−αx = A(v0) (|x| → ∞).

Therefore, the critical parameters are roots of B(v0,n) = 0 and the boundary

condition at threshold is

lim
|x|→∞

ψ′(x) = 0, E = 0. (17)

4 Examples

In what follows we discuss some simple model potentials to illustrate the

application of the RPM.

4.1 Modified Pöschl-Teller potential

As a first example we consider the modified Pöschl-Teller potential

V (x) = − v0

cosh2(x)
, v0 > 0. (18)

There are two reasons for this choice: first, we can solve the Schrödinger equa-

tion and obtain a simple expression for the eigenvalues: [19]

En =−(λ− n− 1)2

2
, n = 0, 1, . . .

λ=
1 +

√
1 + 8v0
2

. (19)
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Second, the exact bound-state solutions are hypergeometric functions of y =

cosh2 x so that the RPM based on an x-power series can only yield approx-

imate results. Therefore, this model is a suitable benchmark for testing the

performance of the approach.

As discussed above the critical values of the potential parameter v0 are de-

termined by the condition En(v0,n) = 0. It follows from equation (19) that

v0,n = n(n + 1)/2, n = 0, 1, . . .. We first investigate if there are converg-

ing sequences of roots E[D,d] of the Hankel determinant Hd
D as v0 approaches

v0,0 = 0 and v0,2 = 3. We calculated E[D,0], D = 2, 3, . . . for v0 = v0,n + 10−k,

for k = 1, 2, . . .. The results show that there are convergent sequences of roots

for D = Dk, Dk + 1, . . . and that the starting point of each sequence Dk in-

creases as k increases. There seems to be convergent sequences no matter how

large the value of k. In other words, the RPM appears to be successful no

matter how close v0 is to the critical value v0,n.

Since the roots of the Hankel determinants Hd
D(E, v0) = 0 give rise to se-

quences that clearly converge towards the eigenvalues En(v0) for v0 quite close

to v0,n, then one would expect to find sequences of roots of Hd
D(E = 0, v0) = 0

that converge towards the critical parameters v0,n. This is exactly the case for

this model and one obtains the critical parameters with any desired degree of

accuracy with Hankel determinants of relatively small dimension. There are,

however, two surprising facts. The first one is that the RPM yields all the

critical parameters v0,n, n = 1, 2, . . . when choosing either the even (s = 0) or

odd (s = 1) functions. One would expect the even or odd values of n to appear

separately with even or odd functions, respectively. The second surprising fact

is that the RPM with s = 0 yields the critical parameters with odd n more

accurately than those with even n. The opposite situation takes place when

choosing s = 1.
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We can understand the occurrence of twice as much critical parameters as

expected by obtaining the corresponding wave functions in the usual way [19].

If ψn,s(x) denotes the solution of parity s for v0 = v0,n and E = 0, then the

first of them are given by

ψ1,0(x) =
2x

e2x + 1
− x+ 1,

ψ1,1(x) = 1− 2

e2x + 1
,

ψ2,0(x) =
2 (4e2x − e4x − 1)

e4x + 2e2x + 1
,

ψ2,1(x) =− [e4x (2x− 3)− 8xe2x + 2x+ 3]

4 (e4x + 2e2x + 1)
. (20)

We appreciate that ψ1,1(x) and ψ2,0(x) are convergent while ψ1,0(x) and ψ2,1(x)

are divergent. In general, ψn,s is convergent or divergent provided that n + s

is even or odd, respectively:

lim
|x|→∞

ψn,s,(x) =A, n+ s = 2k,

lim
|x|→∞

x−1ψn,s(x) =B, n+ s = 2k − 1,

k=1, 2, . . . (21)

We conclude that the RPM approaches both the convergent and divergent

solutions for this problem when E = 0. This is the reason why the whole set

of critical parameters v0,n appears for both the even and odd solutions: half of

them are convergent and the other half divergent. It is clear, as already argued

above, that the RPM does not yield the exact result because the exact f(x)

is not a rational function of x for any of the functions (20).

It is not clear to us why the RPM with s = 0 (s = 1) yields the critical

parameters with odd (even) n more accurately. We will discuss this point

with somewhat more detail below by means of a solvable model with a rational

potential.
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4.2 Gaussian well

The Gaussian well

V (x) = −v0e−x2

, (22)

is another suitable choice because the potential is extremely simple but the

Schrödinger equation is not exactly solvable. In this case the behaviour of

the sequences of roots of Hd
D(E, v0) = 0 appears to be similar except that

the starting point Dk of a given sequence increases more pronouncedly as

v0 approaches v0,n and we could not find converging sequences of roots of

Hd
D(E = 0, v0) = 0. It is not clear to us which is the feature of this well that

makes such a difference. Since the present form of the RPM appears to be

unsuitable for obtaining the critical parameters for this problem in section 5

we will discuss an improved version of the approach.

4.3 Rational potential

The third example in this section is the potential well

V (x) = − v0

(1 + x2)2
, (23)

that satisfies the condition (14). Joseph [20] studied the family of central-field

potentials V (r) = −λrα−2(r20 + r2)−α in his discussion of local degeneracy.

Clearly, the potential (23) is the one-dimensional version of the case α = 2.

Besides, present results for the odd states should agree with those obtained

by Joseph for α = 2 and l = 0.

The roots of the Hankel determinants H0
D(E = 0, v0) yield exact critical pa-

rameters v0,n = n(n + 2)/2, n = 1, 2, . . .. These results correspond to exact
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rational solutions to the Riccati equation (13). In order to understand their

meaning we construct the corresponding wavefunctions as

ψn,s = xs exp
[

−
∫

f(x) dx
]

. (24)

The first even and odd ones are

ψ1,0(x) =
1− x2√
x2 + 1

,

ψ2,0(x) =
1− 3x2

x2 + 1
,

ψ3,0(x) =
(x2 + 2x− 1) (x2 − 2x− 1)

(1 + x2)3/2
,

ψ4,0(x) =
5x4 − 10x2 + 1

(1 + x2)2
, (25)

and

ψ1,1(x) =
x√

1 + x2
,

ψ2,1(x) =
x (x2 − 3)

1 + x2
,

ψ3,1(x) =
x (x2 − 1)

(1 + x2)3/2
,

ψ4,1(x) =
x (x4 − 10x2 + 5)

(1 + x2)2
, (26)

respectively. As in the case of the modified Pöschl-Teller potential the solutions

ψn,s are convergent or divergent provided that n+s is even or odd, respectively;

more precisely, they satisfy equations (21). According to the discussion of

section 3 ψ2k,0(x) are the even solutions to the Schrödinger equation for E = 0

and v0 = 2k(k + 1) (satisfy the condition B(v0) = 0). On the other hand,

ψ2k−1,1(x) are the odd solutions for E = 0 and v0 = (4k2 − 1)/2 , k =

1, 2, . . .. The latter agree with Joseph’s ones when λ = 2v0 [20]. The remaining

solutions ψ2k,1(x) and ψ2k−1,0(x) are the unphysical divergent solutions to the

Schrödinger equation. We see that the RPM yields the exact convergent and

divergent solutions to the Schrödinger equation with the potential (23) when
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E = 0. It is worth noting that the RPM does not distinguish between physical

an unphysical results unless one manages to obtain the wavefunction from its

logarithmic derivative as we did it in this example. In other cases, like the

potential (18), it may be easier to resort to another approach to obtain the

wavefunction from the parameters given by the RPM.

In the appendix we solve the Schrödinger equation for this potential and derive

the exact convergent and divergent solutions for E = 0.

Although the RPM yields the exact critical parameters it is not suitable for

the calculation of the energies close to threshold. The sequence of roots of

Hd
D(E, v0) = 0 converge rather too slowly when v0 is close (slightly greater

than) a critical parameter. When E < 0 the function f(x) is not an exact

rational function and the RPM yields approximately those eigenvalues that

are not too close to threshold. We calculated the ground state for v0 = 3/2

(E1 = 0) and the first two bound states for v0 = 4 (E2 = 0). In the three cases

we found that the sequences E[D,0] converge from above and the sequences

E[D,1] from below. We assume that the former provides upper bounds and

the latter lower ones as in an earlier treatment of the quartic anharmonic

oscillator [15, 16]. Thus, from sequences of roots with D ≤ 80 we conjecture

that

− 0.6985262171667534202327>E0 > −0.6985262171667534202332, v0 =
3

2
,

−2.4713450252412636948012742>E0 > −2.4713450252412636948012743, v0 = 4,

−0.42640598980647065078>E1 > −0.42640598980647065113, v0 = 4. (27)

We are not aware of any calculation of the eigenvalues and eigenfunctions for

this rational potential.
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5 Modified RPM for critical parameters

According to the results of section 3 the appropriate boundary condition at

threshold is given by equation (17). Therefore, it seems reasonable to look for

an ansatz with poles at the zeros of ψ′(x). One suitable choice is the function

g(x) =
1− s

x
− ψ′′(x)

ψ′(x)
. (28)

We thus have

1− s

x
f(x)− f(x)g(x) +

s

x
g(x) = Q(E, x), (29)

and

g(x) = x
∞
∑

j=0

gjx
2j . (30)

The first coefficients are

g0=
Q0

3
− 2Q1

3Q0
,

g1=
Q2

0

45
− 4Q2

5Q0

+
2Q2

1

9Q2
0

+
11Q1

45
, (31)

for s = 0 and

g0=Q0,

g1=Q1 +
1

3
Q2

0,

g2=Q2 +
8

15
Q0Q1 +

2

15
Q3

0, (32)

for s = 1. We apply the RPM exactly in the same way and construct the Han-

kel determinants with the coefficients gj: H
d
D(E, v0) = |gi+j+d−1(E, v0)|Di,j=1 =

0.
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We obtain convergent sequences of roots of Hd
D(E = 0, v0) = 0 for all the mod-

els discussed above. In particular, Table 1 shows the first critical parameters

for the Gaussian well estimated from the roots of the Hankel determinants

with D ≤ 80, d = 0 and d = 1. For comparison we add the results of Liverts

and Barnea [14] for the s-states of the central-field model. The critical param-

eters for the central-field model with angular momentum quantum number

l = 0 are exactly those for the odd states of the one-dimensional case.

In closing this section we mention that we also tried the alternative ansatz

ψ(x)/ψ′(x) for odd eigenfunctions but in this case the rate of convergence

proved to be considerably lower.

6 Central-field models

The results of section 5 suggest that the present approach may also be suit-

able for the s-states of other central-field models. Although the present paper

is focused on one-dimensional parity-invariant models we can outline a strat-

egy for the treatment of central-field models. We write the radial part of the

dimensionless Schrödinger equation as

ψ′′(r) +

[

Q(r)− l(l + 1)

r2

]

ψ(r) = 0,

Q(r) = 2 [E − V (r)] , ψ(0) = 0, (33)

and assume that

Q(r) =
∞
∑

j=−1

Qjr
j. (34)

As in earlier papers we define [15]

f(r) =
l + 1

r
− ψ′(r)

ψ(r)
, (35)
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and in order to apply the modified RPM to the calculation of critical param-

eters we resort to the auxiliary function

g(r) =
l

r
− ψ′′(r)

ψ′(r)
. (36)

They are related by

l + 1

r
g(r)− f(r)g(r) +

l

r
f(r)−Q(r) = 0, (37)

and can be expanded in a Taylor series about the origin as

f(r)=
∞
∑

j=0

fjr
j,

g(r)=
∞
∑

j=0

gjr
j. (38)

As an illustrative example we choose the Yukawa potential

V (r) = −v0e
−r

r
, (39)

and show the results in Table 2 for the first s-states estimated from roots of

the g-Hankel determinants with D ≤ 80, d = 0 and d = 1. Present results

agree with those of Liverts and Barnea [14] and Singh and Varshni [21] up to

the last digit reported by them.

The asymptotic behaviour of the solutions to the central-field models when

E = 0 is given by

ψ(r) ∼ Ar−l +Brl+1. (40)

Therefore, we expect that the original RPM yields reasonable critical param-

eters for l > 0. In other words, the roots of the f -Hankel determinants are

expected to approach the roots of B(v0,n,l) = 0 as the determinant dimension
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increases. Tables 3 and 4 clearly show that the rate of convergence of the RPM

increases with l and decreases with n.

Since the accuracy of the RPM increases with l we can test the WKB large-

l asymptotics βn,l ∼ el(l + 1) derived by Liverts and Barnea [14] for both

the Yukawa and Gaussian potentials (note that βn,l = 2v0,n,l). We can also

compare these results with the variational estimates

vY0,1,l =
22l (l + 1)2l+3

(2l + 1)2l+1 , (41)

and

vG0,1,l =
(2l + 3)

2l+5
2

8 (2l + 1)
2l+1
2

, (42)

derived by means of the trial functions ϕ(r) = Nrl+1e−ar and ϕ(r) = Nrl+1e−ar2

for the Yukawa and Gaussian potentials, respectively [25].

Tables 5 and 6 show the RPM, WKB and variational results, as well as the

logarithmic errors of the two latter ones. We appreciate that the variational

estimates are somewhat more accurate but the WKB expression shows the

striking fact that the large-l asymptotic behaviour for the critical parameters

for both potentials is exactly the same. Although the two variational results

are different for small and moderate l they agree with the WKB ones for

sufficiently large l:

lim
l→∞

vY0,1,l
l(l + 1)

= lim
l→∞

vG0,1,l
l(l + 1)

=
e

2
. (43)

The RPM results in tables 5 and 6 are accurate to the last digit and were

obtained by means of Hankel determinants of dimension as small as D = 10.

The rate of convergence of the modified RPM based on g-Hankel determinants

also increases with l but we do not deem necessary to show those results.
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Although present results are more accurate than those of Liverts and Barnea

[14] and Singh and Varshni [21] one should not conclude that the RPM is

superior to the approaches developed by those authors. Those other methods

are more general because present local approximation is based on the Taylor

expansion of the solution about some chosen point which limits the class of

potentials that can be treated successfully. However, the RPM is a straight-

forward simple approach that applies to a wide variety of problems. In many

cases it yields quite accurate results and may be suitable for testing other

approaches and even for setting benchmark data.

7 Perturbation theory about the threshold

We can expand the exact energy (19) for the modified Pöschl-Teller potential

in a Taylor series about v0,n and obtain the perturbation series about the

threshold

En =− 2ξ2

(2n+ 1)2
+

8ξ3

(2n+ 1)4
− 40ξ4

(2n+ 1)6
+

224ξ5

(2n+ 1)8
+O(ξ6),

ξ= v0 − v0,n, (44)

that converges for all |ξ| < (2n+1)2/8. Note that the perturbation correction

of first order is zero for all states and that we obtain a negative energy for

both v0 > v0,n and v0 < v0,n if ξ is sufficiently small, in spite of the fact that

the n-th state moves into the continuum in the latter case. We can carry out

a similar calculation for models that are not exactly solvable by means of the

RPM. In what follows we illustrate the strategy by means of the apparently

most favourable case of the rational potential (23) for which the RPM yields

the exact solution at threshold.

The roots of a Hankel determinant Hd
D(E, v0) = 0 give us approximations to

17



either E(v0) or v0(E). If we substitute

E = E(1)ξ + E(2)ξ2 + . . .+ E(k)ξk, (45)

and v0 = v0,n + ξ into the Hankel determinant, then we can obtain the coef-

ficients E(j), j = 1, 2, . . . k of the perturbation series, the accuracy increasing

with D. Based on the Hellmann-Feynman theorem [22] (see also [23] for a

discussion about degenerate states)

dE

dv0
= −

〈

1

(1 + x2)2

〉

, (46)

we expect that

E(1) = lim
ξ→0+

dE

dξ
≤ 0, (47)

for a physically acceptable solution. Since the solutions are not square inte-

grable when ξ = 0 then the expectation value in equation (46) is meaningless

at threshold; however the limit (47) may hopefully be finite. In fact, E(1) = 0

for the Pöschl-Teller potential.

It follows from the discussion in the subsection 4.3 that E1 = 0 when v0 = 3/2.

However, if we substitute v0 = 3/2 + ξ and the series (45) into the Hankel

determinants for s = 1 we obtain the unphysical result

E =
1

8
ξ − 7

64
ξ2 +

29

768
ξ3 − 1847

184320
ξ4 +

275357

77414400
ξ5 +O(ξ6). (48)

According to this expansion the energy increases as v0 increases beyond v0,1 =

3/2 in contradiction with (46) and (47). This result reflects the fact mentioned

above that the RPM does not yield the energy E1 for v0 close to threshold.

If we repeat the calculation for the even states we obtain a perturbation ex-
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pansion with the expected slope at threshold:

E = −1

8
ξ +

17

192
ξ2 − 23

11520
ξ3 − 271933

19353600
ξ4 +

29363423

8128512000
ξ5 +O(ξ6).(49)

At first sight, this result is surprising because no new even state should appear

when 3/2 < v0 < 4 (the ground state remains bound for all v0 > 0). The

explanation is that the RPM yields a spurious even-state energy associated

to the divergent solution ψ1,0. For example, when v0 = 1.51 the RPM with

D = 10 and d = 0 yields the actual ground-state energy E0 ≈ −0.70483 and

the spurious root W ≈ −0.00124114797000675832 . The considerably greater

accuracy of the latter is due to the fact that the RPM yields the exact result

when v0 = 3/2. The question remains why the RPM does not yield the energy

E1 of the odd state in view of the fact that the calculation of the critical

parameter is also exact in this case. The perturbation expansion (48) with the

wrong slope at threshold also describes a spurious root. For example, when

v0 = 1.49 the roots of the Hankel determinants with D = 10 and d = 0

yields W ≈ −0.0012609753609799139195 (s = 1) and E0 ≈ −0.692231 (s =

0). It is clear that the RPM favours the unphysical solutions; in fact, it is

also interesting that the spurious roots of the Hankel determinants follow the

unphysical expansions (49) and (48) for both ξ < 0 and ξ > 0 and in either

case the rate of convergence of the corresponding sequences is remarkably

large. For example, the expansion (49) predicts a positive root for a negative

value of ξ and the RPM already yields it quite accurately. When v0 = 1.49 we

obtain W = 0.0012588560223263235359 in agreement with that perturbation

series.

The second excited state vanishes when v0 = 4. The RPM perturbation expan-

sions obtained by substitution of v0 = 4 + ξ are also unphysical. For example

when s = 0 we obtain a series with the wrong slope at threshold:

E =
1

32
ξ − 23

2304
ξ2 − 919

331776
ξ3 +

100843

59719680
ξ4 − 418250431

1203948748800
ξ5 +O(ξ6).(50)
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This results is not surprising if we take into account that the RPM fails to

give us the second excited state when v0 is slightly larger than 4. When s = 1

we obtain the exact power series for another unphysical root of the Hankel

determinants

E = − 1

32
ξ +

7

768
ξ2 +

1921

552960
ξ3 − 1186027

696729600
ξ4 +

2551967839

14046068736000
ξ5 +O(ξ6).(51)

From the roots of the Hankel determinants for v0 = 4.01 we obtain E1 ≈
−0.429395 (the actual energy for the first-excited state) and the spurious

eigenvalue W ≈ −0.00031158508464057747545 which is associated to the di-

vergent function ψ2,1 when ξ → 0 (E → 0−).

For some unknown reason the RPM yields the unphysical roots associated to

the divergent states more accurately than the physical ones stemming from

the convergent states. However, the approach is still a useful tool for obtaining

the eigenvalues and critical parameters of one-dimensional wells as already

shown above. The modified RPM discussed in section 5 also yields the same

spurious roots; therefore, we may conclude that such an unexpected behaviour

is inherent in the Hankel determinants constructed from either the coefficients

fj or gj .

In an attempt to understand the baffling results discussed above we analyzed

the zeroes of the denominators of the Padé approximants for energies in the

neighborhoods of the actual eigenvalues and the spurious ones. However, we

could not derive any reasonable rule from such study.

Although the RPM yields the whole set of critical values with either the even

or odd functions for the modified Pöschl-Teller potential, the Hankel determi-

nants do not exhibit spurious roots in this case.
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8 Conclusions

Despite of being a local approximation the RPM may be a useful tool for the

calculation of critical parameters of one-dimensional and central-field quantum

wells. In some cases, like the modified Pöschl-Teller and rational potentials,

the original version of the approach yields accurate results. In other cases,

like the Gaussian potential, it is necessary to resort to a modified algorithm

that applies to one-dimensional models as well as to the s-states of central-

field ones. The accuracy of the estimated critical parameters is satisfactory for

the Gaussian and Yukawa potentials. The original RPM proves to be suitable

for states with l > 0 and its accuracy increases with this quantum number.

For this reason the RPM appears to be a powerful tool for the calculation

of critical parameters for extremely large values of the angular-momentum

quantum number.

In the case of the modified Pöschl-Teller and rational potentials the RPM

yields the whole set of critical parameters for both the even and odd solutions

to the Schrödinger equation. Half of them are associated to the divergent

solutions. The occurrence of unphysical results is due to the fact that the RPM

does not take into account the asymptotic behaviour of the eigenfunctions

explicitly. For some unknown reason the RPM seems to favour the divergent

solutions in the case of the rational potential. This undesirable behaviour is not

a serious limitation because there is no doubt about which roots are spurious.

We have not been able to give a sound answer to this anomalous behavior

from the roots of the denominator of the Padé approximants.

The Pöschl-Teller and rational potentials are different in the sense that the

RPM yields accurate energies close to the threshold in the former case but not

in the latter one. Therefore, the three one-dimensional potentials discussed in

section 4 reveal three different behaviour patterns in the application of the

RPM to simple one-dimensional parity-invariant quantum wells.
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The RPM yields the exact solutions for the rational potential (23) when E = 0.

This particularly fortunate situation enables one to try perturbation theory

about the threshold. Surprisingly, the RPM yields exact perturbation series

only for the unphysical case of divergent functions. The reason may be that

the physically meaningful solutions do not exhibit power-series expansions

about threshold. However, we know that such expansions exist in the case

of the Pöschl-Teller potential as shown in Eq. (44). In this case the Hankel

determinants do not exhibit spurious roots.

We have also carried out calculations for potentials of the form V (x) =

−v0/(1 + x2)m, where m = 5/2, 3, 4. In these cases the RPM fails to pro-

vide the critical parameters and the modified RPM exhibits convergent roots.

The even and odd critical parameters appear separately as in the case of the

Gaussian potential discussed in subsection 4.2.

9 Appendix

If we change the independent and dependent variables in the Schrödinger

equation with the rational potential (23) according to

x= iz,

ϕ(z) =ψ(iz) =
√
1− z2w(z), (52)

then we obtain

d

dz

(

1− z2
) d

dz
w +

[

−2E
(

1− z2
)

− 2v0 + 1

1− z2

]

w = 0. (53)

This equation is a particular case of the spheroidal differential equation

d

dz

(

1− z2
) d

dz
w +

[

λ+ γ2
(

1− z2
)

− µ2

1− z2

]

w = 0, (54)

22



with λ = 0, γ2 = −2E and µ2 = 2v0 + 1. We can also relate equation (53)

with the associated Legendre equation

d

dz

(

1− z2
) d

dz
w +

[

ν(ν + 1)− µ2

1− z2

]

w = 0, (55)

when E = 0 and ν = 0.

However, for the present discussion we prefer to proceed in a different way.

The rational potential (23) exhibits singularities at x = ±i. If we substitute

ψ(x) =
(

1 + x2
)α
u(x), (56)

into the Schrödinger equation we obtain an eigenvalue equation for the new

dependent variable u(x):

(

1 + x2
)

u′′ + 4αxu′ − 2 (2α2 − 2α− v0)

1 + x2
u

+
[

2Ex2 + 2
(

2α2 − α + E
)]

u=0. (57)

We remove the third term by choosing α to be any one of the roots of

2α2 − 2α− v0 = 0. (58)

Then, we expand u in a Taylor series about the origin

u(x) =
∞
∑

j=0

cjx
2j+s, (59)

and derive a three-term recurrence relation for the coefficients

(2j + s+ 1)(2j + s+ 2)cj+1+ [(2j + s+ 2α)(2j + s+ 2α− 1) + 2E] cj
+2Ecj−1 = 0. (60)

The radius of convergence of this series is unity
(

limj→∞

∣

∣

∣

cj+1

cj

∣

∣

∣ = 1
)

because

of the singularities at x = ±i. When E = 0 the recurrence relation becomes a
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two-term one and we can obtain polynomial solutions for particular values of

α. Note that if

α =



























α1(k, s) = −k − s
2

α2(k, s) = −k − s
2
+ 1

, (61)

then cj = 0 for all j > k.We thus have two sets of critical potential parameters:

v0 =
(2α− 1)2 − 1

2
=



























v
(1)
0 (k, s) = (2k+s−1)2−1

2

v
(2)
0 (k, s) = (2k+s)2−1

2

, (62)

where v
(1,2)
0 = v0(α1,2). It is interesting to note that the critical parameters

exhibit a kind of degeneracy:

v
(1)
0 (k, 1)= v

(2)
0 (k, 0) =

4k2 − 1

2
, k = 1, 2, . . . ,

v
(1)
0 (k + 1, 0)= v

(2)
0 (k, 1) =

(2k + 1)2 − 1

2
, k = 1, 2, . . . , (63)

similar to the one found by Joseph [20, 24] for the central-field version of this

model. In the present case one of the degenerate solutions is convergent (∼ 1)

and the other one is divergent (∼ x). The connection between both models

becomes apparent if we take into account that the states of the central-field

model with angular-momentum quantum numbers l = −1 and l = 0 become

the even and odd states of the one-dimensional one.

In order to understand the results derived in the subsection 4.3 by means of

the RPM simply note that

f(x) =
s

x
− ψ′(x)

ψ(x)
=
s

x
− 2αx

1 + x2
− u′(x)

u(x)
, (64)

is a rational function of x.
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[19] S. Flügge, Practical Quantum Mechanics. Springer-Verlag, Berlin, 1999.

[20] A. Joseph, On the determination of the exact number of bound states of a given

potential I. General method, Int. J. Quantum Chem. 1:615-629 (1967).

[21] D. Singh and Y. P. Varshni, Comparative study of the bound states of static

screened Coulomb and cut-off potentials, Phys. Rev. A 29:2895-2898 (1984).

[22] R. P. Feynman, Forces in Molecules, Phys. Rev. 56:340-343 (1939).

[23] F. M. Fernández, Comment on ”Breakdown of the Hellmann-Feynman theorem:

Degeneracy is the key”, Phys. Rev. B 69:037101 (2004)

[24] A. Joseph, The theory of local degeneracy, Int. J. Quantum Chem. 1:535-559

(1967).

[25] F. M. Fernández and J. Garcia, Comment on ’A simple analytical expression

for bound state energies for an attractive Gaussian confining potential’, Phys.

Scr. 87:027001 (2013).

26

http://arxiv.org/abs/0705.3862


Table 1

Critical parameters for the Gaussian Well

n v0,n (present) β/2 [14]

1 1.34200232546204576914 1.3420023

2 4.32454875170105636793

3 8.89784977356695359410 8.89785

4 15.05314025436583553157

5 22.78673996005213242180 22.78674

6 32.09666656038554309293

7 42.98170019005867752947 42.9817

8 55.44102390556364979485

9 69.47405735384177416019 69.47406

10 85.08036985819273906133

11 102.2596308675957148370 102.25963

12 121.0115797852355989558

13 141.3360066230547124163 141.33601

14 163.2327390694287387382

15 186.7016335410971417677 186.70163

16 211.7425688100812690936

17 238.3554413511863843581 238.35544

18 266.5401618724453436776

19 296.2966526792028587502 296.29665

20 327.6248456385162999270

21 360.5246805841777739108 360.52468
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Table 2

Critical parameters for the Yukawa potential: s states

State v0,n (present) β/2 [14] 1/δ [21]

1s 0.83990388669822801527775556 0.83990390 0.839903886698226

2s 3.2236301610682666483973 3.2236302 3.22363017

3s 7.17101392084392858317 7.1710140 7.17101392

4s 12.68582992202390726756 12.685830 12.685830

5s 19.76942118485633321537 19.769421 19.769421

6s 28.42243219866087345719 28.42243 28.422432

7s 38.64522743052775121132 38.645227 38.645227
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Table 3

Critical parameters for the Yukawa potential: states with l > 0

l n RPM βn,l/2 [14] 1/δ [21]

1 1 4.540979480 4.5409795 4.540979547

1 2 8.872287943 8.872288 8.87228793

1 3 14.7307131 14.730713 14.730713

1 4 22.1306205 22.130627 22.130627

2 1 10.947492231128 10.947492 10.947492

2 2 17.21020724698 17.210207 17.210207

2 3 24.98478805031 24.984788 24.984788

2 4 34.285733608 34.2857335 34.285734

3 1 20.06777597598021672 20.067776 20.067776

3 2 28.257056865147125 28.257057 28.257057

3 3 37.949696830060 37.949697 37.949696

3 4 49.1589622686 49.1589625 49.158964

4 1 31.904488236447390251 31.904488 31.904488

4 2 42.01838864622171175 42.0183885 42.018390

4 3 53.6301861108720125 53.630185 53.630187

4 4 66.7518302698487 66.75183 66.751829

5 1 46.458582142052657720625 46.458582 46.458583

5 2 58.4961723904053473472 58.49617 58.496171

5 3 72.02784452443215966 72.027845 72.027848

5 4 87.0643772674642755 87.064375
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Table 4

Critical parameters for the gaussian well: states with l > 0

l n RPM βn,l/2 [14]

1 1 6.049654263 6.0496545

1 2 17.544888 17.544888

1 3 35.241431 35.241428

1 4 59.17581 59.175825

2 1 13.4505387996 13.450539

2 2 28.83788607 28.837886

2 3 50.35752508 50.357525

2 4 78.063746 78.063745

3 1 23.553930851605 23.553931

3 2 42.81369669354 42.813696

3 3 68.162501708 68.162500

3 4 99.65923348 99.659230

4 1 36.366501836074 36.366502

4 2 59.48855740034 59.488555

4 3 88.6698082860 88.669810

4 4 123.9690574563 123.96905
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Table 5

Critical parameters for the Yukawa potential with n = 1 and large l calculated by

means of the RPM, WKB and variational approaches. LE is the logarithmic error:

log | (exact − approximate) /exact|

l RPM WKB [14] LE Variational LE

50 3514.7478136194717430 3466 −1.9 3518 −3.1

100 13824.314996806666238 13727 −2.2 13830 −3.4

150 30929.586489910790437 30785 −2.3 30938 −3.5

200 54830.562488458876745 54637 −2.5 54842 −3.7

250 85527.243031809696017 85286 −2.5 85542 −3.8

300 123019.62813311806352 122730 −2.6 123037 −3.8

350 167307.71779803038796 166970 −2.7 167328 −3.9

400 218391.51202937270652 218006 −2.8 218415 −4.0

450 276271.01082871615922 275838 −2.8 276297 −4.0

500 340946.21419700393386 340465 −2.9 340975 −4.1
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Table 6

Critical parameters for the Gaussian potential with n = 1 and large l calculated by

means of the RPM, WKB and variational approaches. LE is the logarithmic error:

log | (exact − approximate) /exact|

l RPM WKB [14] LE Variational LE

50 3563.4739040116520856 3466 −1.6 3570 −2.8

100 13921.096733881441676 13727 −1.9 13933 −3.1

150 31074.422038210807820 30785 −2.0 31092 −3.2

200 55023.451386983337338 54637 −2.2 55047 −3.4

250 85768.185095826709503 85286 −2.3 85798 −3.5

300 123308.62327017069510 122730 −2.3 123344 −3.5

350 167644.76595525290586 166970 −2.4 167686 −3.6

400 218776.61317370956855 218006 −2.5 218824 −3.7

450 276704.16493812321886 275838 −2.5 276757 −3.7

500 341427.42125604645356 340465 −2.5 341486 −3.8
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