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AND AXEL LEGAY

Abstract. We introduce a generalization of tropical polyhedra able to express both strict and
non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding
infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from
which we derive geometrical properties of these polyhedra. In particular, we show that they coincide
with the tropically convex union of (non-necessarily closed) cells that are convex both classically
and tropically. We also prove that the redundant inequalities produced when performing successive
elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a
complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive
at a simply exponential bound for the total execution time. These algorithms are illustrated by an
application to real-time systems (reachability analysis of timed automata).

1. Introduction

Tropical convexity. Tropical or max-plus algebra refers to the set Rmax := R ∪ {−∞} equipped
with x ⊕ y := max(x, y) as addition and x ⊗ y := x + y as multiplication (the latter will be also
denoted by concatenation xy). In this setting, an inequality constraint on variables x1, . . . ,xn is
said to be (tropically) affine if it is of the form:

(1) a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn ,

or equivalently, with usual notation,

(2) max(a0, a1 + x1, . . . , an + xn) 6 max(b0, b1 + x1, . . . , bn + xn) ,

where ai, bi ∈ Rmax for i = 0, 1, . . . , n. By analogy with the terminology of usual convex geometry,
a tropical (convex) polyhedron is defined as a set composed of all the vectors x ∈ Rnmax satisfying
finitely many such inequalities. An example is depicted on the left-hand side of Figure 1.

Tropical polyhedra and, more generally, tropically convex sets, have been introduced and studied
in various contexts, including optimization [Zim77], control theory [CGQ99], idempotent functional
analysis [LMS01], or combinatorics [DS04]. Several basic results of convex analysis and geometry
have been shown to have tropical analogues. These include Hahn-Banach [Zim77, LMS01, CGQS05,
DS04], Minkowski [GK07, BSS07, Jos05], and Carathéodory/Helly-type [BH04, GS08, GM10] the-
orems. Some algorithmic aspects have also been studied (e.g. [BH84, Jos09, AGG13]). We refer
the reader to [AGG13] for further references.
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Figure 1. Left: a tropical polyhedron (including the black border). Right: a (non-
closed) zone defined by the inequalities 1 6 x1 < 7, 1 < x2 6 5, −2 < x1 − x2 6 3.

Motivation. The present work is motivated by a specific application of tropical algebra to the
verification of real-time systems. Indeed, a remarkable property of tropical polyhedra is their ability
to concisely encode possibly non-convex sets expressed as disjunctions of closed zones. A closed
zone, also known in the literature as polytrope, is a set of vectors x ∈ Rn defined by inequalities
of the form xi > mi, xi 6 Mi, and xi 6 kij + xj , for certain constants mi,Mi, kij ∈ R. More
generally, zones are obtained by replacing some of the previous inequalities by strict ones. See the
right-hand side of Figure 1 for an illustration.

Zones are extensively used in the area of verification of real-time systems, where these systems
are modelled by formalisms such as e.g. timed automata [AD94] or timed Petri nets [Bow96]. More
precisely, zones are used by model checking tools as symbolic states, typically representing infinitely
many states of the system. They can be represented using difference-bound matrices (DBM), which
are essentially adjacency matrices of weighted graphs. This allows for efficient algorithms for the
manipulation of zones during the verification process.

An inherent drawback of zones is that they are convex sets, and consequently they are not closed
under set union. This means that during the analysis process, symbolic states cannot generally be
combined, which potentially leads to state-space explosion. Due to this, tropical polyhedra have
been proposed in [LMM+12] as a replacement for zones. However, an important drawback in this
approach is that the analysis of timed automata often requires to express strict constraints, for
instance in the analysis of communication protocols [DRLS10, Kot09], while tropical polyhedra
are by definition topologically closed. An example illustrating these drawbacks will be given in
Section 5.

Contributions. In this paper we first introduce (Section 2) a class of non-necessarily closed trop-
ically convex sets. This class is called tropical polyhedra with mixed constraints. It can express not
only inequalities of the form (2) in which the relation 6 has been replaced by <, but also finer
constraints exploiting the disjunctive character of tropical inequalities. For instance, the inequality

x1 6 max(1 + x2, 0
− + x3)

is going to represent the disjunction of the inequalities x1 6 1 + x2 and x1 < x3. These mixed
inequalities are defined using coefficients in a semiring of affine germs, which represent infinitesimal
perturbations of reals.

In the second place, we present a tropical counterpart of Fourier-Motzkin elimination (Section 3).
It provides a constructive method to show that the projection in Rn−1max of a tropical polyhedron with
mixed constraints P ⊂ Rnmax is a polyhedron with mixed constraints (Theorem 11). It computes a
representation by mixed inequalities of the projection by combining the defining inequalities of P.
Actually, this approach handles more generally systems of inequalities with coefficients in a totally
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ordered idempotent semiring, modulo some assumptions. Note that such an analogue of Fourier-
Motzkin algorithm has not been considered previously in the tropical setting, even in the case of
standard (closed) tropical polyhedra. Fourier-Motzkin elimination also appears as a useful tool to
show the polyhedral character of some non-closed tropically convex sets. As an application, we in-
deed prove that tropical polyhedra with mixed constraints are precisely the tropically convex union
of finitely many zones, and the intersection of finitely many tropical hemispaces (i.e. tropically con-
vex sets whose complements are also tropically convex, which were studied in e.g. [BH08, KNS13]),
see Theorem 13 and Corollary 17.

Superfluous inequalities may be produced by Fourier-Motzkin algorithm, so that the size of
the constraint systems can grow in a double exponential way during consecutive applications of
the method. In order to eliminate such redundant inequalities, in Section 4 we extend to mixed
inequalities a result of [AGG12] and its subsequent refinement in [AGK11b], building on techniques
of these two papers. The result of [AGG12] shows that deciding the feasibility of a system of
tropical linear inequalities is (Karp) polynomial-time equivalent to solving mean payoff games.
The result of [AGK11b] shows that deciding logical implications over tropical linear inequalities is
also equivalent to solving mean payoff games. Theorem 25 generalizes these two results to mixed
inequalities. We note that the present approach (through germs) also yields an alternative, simpler
derivation of the result of [AGK11b]. Indeed, deciding whether a given inequality of the form (2)
is logically implied by a system of other inequalities of the same kind amounts to checking if the
intersection of a tropical polyhedron with the complement of a closed half-space is empty or not.
Such an intersection is obviously a tropical polyhedron with mixed constraints.

Experimentally efficient algorithms have been developed to solve mean payoff games, but no
polynomial time algorithm is known. Hence we also provide a weak criterion which allows to
eliminate some of the superfluous inequalities in polynomial time (Section 4.2). We prove that, in
the case of non-strict inequalities, this weak elimination is sufficient to obtain a single-exponential
bound for Fourier-Motzkin elimination (Section 4.3).

Finally, Section 5 illustrates the application of tropical polyhedra with mixed constraints to
the verification (reachability analysis) of timed automata. We show that the operations necessary
for forward exploration of timed automata can be defined on tropical polyhedra with mixed con-
straints, using Fourier-Motzkin elimination and the algorithms developed to eliminate redundant
inequalities.

Related work. The algorithms developed so far for tropical polyhedra usually benefit from the
fact that these can be represented either externally, using inequalities (as in (1)), or internally, as
sets generated by finitely many points and rays (see [GK11] for details). In contrast, non-closed
tropically convex sets may not be finitely generated. Generating representations of (non-necessarily
closed) tropical convex cones have been studied in [BSS07], and in [KNS13] in the particular case
of tropical hemispaces. A certain class of possibly infinite generating representations was treated
in [GK04], however, the associated algorithms rely on the expensive Presburger arithmetic. Defining
non-closed polyhedra using infinitesimal perturbations of generators also presents some difficulties,
see Remark 6 below. Moreover, we should warn the reader that some geometric aspects of tropical
polyhedra, in particular the notion of faces, are still not yet understood [DY07]. Thus it does
not seem easy to manipulate non-closed polyhedra from closed ones by excluding some “facets” or
“edges”.

The present tropical Fourier-Motzkin algorithm may be thought of as a dual of the tropical double
description method [AGG13], in which one successively eliminates inequalities rather than variables.
In both algorithms, redundant intermediate data (inequalities or generators) are produced, and the
key to the efficiency of the algorithm lies in the dynamic elimination of such data. Redundant
generators can be eliminated in almost linear time using a combinatorial hypergraph algorithm,

3



however the hypergraph criterion appears to have no natural dual analogue which can detect
redundant inequalities.

As mentioned above, the equivalence between mean payoff games and the emptiness problem for
tropical polyhedra with mixed constraints generalizes a result of [AGG12]. Moreover, it generalizes
an earlier result [MSS04] concerning finite solutions of a class of non-strict disjunctive constraints
appearing in scheduling. The non-strict inequality satisfiability problem has also been studied under
the name of “max-atom problem” in [BNRC08], with motivations from SMT solving. Note here a
fundamental difference between strict and non-strict constraints: in the latter case, for inequalities
with integer coefficients, it is shown in [AGG12] that emptiness over the integers is equivalent to
emptiness over the reals. The same is not true for strict inequalities (consider for example the open
hypercube ]0, 1[n which is non-empty, but contains no integer points), so that the present result for
mixed inequalities cannot be deduced from earlier ones.

The infinitesimal perturbation of reals used in mixed inequalities is based on a semiring of affine
germs, which was used in [GG98, DG06] to provide policy iteration based methods to solve mean
payoff games. It also appeared in the context of tropical linear programming, see [GKS12, § 3.7].
The idea here is that germs allow one to determine algebraically the value of a perturbed game.
Related perturbation or parametric game ideas were used in [AGK11b, GS13].

2. Tropical polyhedra with mixed constraints

In the semiring (Rmax,⊕,⊗), addition and multiplication admit neutral elements, namely −∞
and 0. Addition does not generally admit inverses. In contrast, any non-zero (in the tropical sense)
element x admits a multiplicative inverse, which is given by −x and will be denoted x−1. The
semiring operations are extended to vectors and matrices in the usual way, i.e. (A⊕B)ij := Aij⊕Bij
and (A⊗B)ij := ⊕k(Aik⊗Bkj). We will work in the semimodule Rnmax, for n ∈ N. Its elements can
be seen as points or vectors and are denoted x, y, etc. The order 6 on Rmax is extended to vectors
entry-wise. We equip Rmax with the topology induced by the metric (x, y) 7→ |expx− exp y|,
and Rnmax with the product topology. In the sequel, we also use the completed max-plus semiring
Rmax := Rmax∪{+∞}, with the conventions x < +∞ for all x ∈ Rmax, x⊗(+∞) = +∞ if x 6= −∞,
and (−∞)⊗ (+∞) = −∞. Finally, given a positive integer n, we denote by [n] the set {1, . . . , n}.

The notion of convexity can be transposed to tropical algebra. A subset C of Rnmax is said to be
(tropically) convex if it contains the tropical segment

{λx⊕ µy | λ, µ ∈ Rmax, λ⊕ µ = 0}

joining any two points x and y of C. This is analogous to the usual definition of convexity, except
that in the tropical setting the non-negativity constraint on λ and µ is implicit (any scalar x ∈ Rmax

satisfies x > −∞).
We now introduce the algebraic structure which will allow us to handle possibly strict tropical

inequalities. We use a disjoint copy R− of R composed of elements denoted α− for α ∈ R, and we
set G := Rmax ∪ R−. The modulus |x| of an element x ∈ G is defined by:

|x| :=

{
x if x ∈ Rmax ;

α if x = α− ∈ R− .

The set G is totally ordered by the order relation 6G defined by:

x 6G y ⇐⇒

{
|x| < |y| if x ∈ Rmax and y ∈ R− ;

|x| 6 |y| otherwise.

We use the notation x <G y when x 6G y and x 6= y. As an illustration, the Hasse diagram of 6G
over the elements with modulus in Z ∪ {±∞} is given in Figure 2.
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Figure 2. Hasse diagram of the order 6G over the elements of G with modulus in
Z ∪ {±∞}.

The element α− can be interpreted as an infinitesimal perturbation of α of the form α− ε with
ε > 0. Formally, given x ∈ G and ε > 0, the valuation of x at ε, denoted by x(ε), is the element of
Rmax defined as follows:

x(ε) :=

{
x if x ∈ Rmax ;

|x| − ε if x ∈ R− .
The valuation is extended to vectors and matrices entry-wise.

The set G has a semiring structure when equipped with the sum of two elements x, y ∈ G defined
as the greatest element among them, and the multiplication given by:

x⊗ y if x, y ∈ R ;

(|x| ⊗ |y|)− if x ∈ R− or y ∈ R−, and x, y 6= ±∞ ;

−∞ if x = −∞ or y = −∞ ;

+∞ if x, y 6= −∞, and x = +∞ or y = +∞ .

By abuse of notation, the multiplication in G will be simply denoted by concatenation and the sum
by ⊕, as in the case of Rmax. Observe that in G the neutral elements are still −∞ and 0, and that
only the elements x ∈ R are invertible with respect to multiplication. Also note that the modulus
map is a semiring morphism.

We begin with a technical lemma on the arithmetic operations in the semiring G.

Lemma 1. The following properties hold:
(i) for any x, y ∈ G, x 6G y if, and only if, x(ε) 6 y(ε) for ε > 0 sufficiently small;

(ii) for any x, y ∈ G and ε > 0 sufficiently small, (x⊕ y)(ε) = x(ε)⊕ y(ε);
(iii) for any x ∈ Rmax, y ∈ G, and ε > 0, (xy)(ε) = xy(ε);
(iv) for any x, y, z ∈ G, x 6G y implies xz 6G yz, and the converse holds if z ∈ R;
(v) for any x, y ∈ Rmax, x < y is equivalent to x 6G 0−y when x ∈ R, and to 0 6G (+∞)y when

x = −∞.

Proof. (i) The only non-trivial case is when x ∈ R and y ∈ R−, so assume we are in this case. Then,
x 6G y amounts to x < |y|. This is equivalent to x(ε) = x 6 |y| − ε = y(ε) for ε > 0 sufficiently
small.
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(ii) Straightforward from Property (i).
(iii) This property readily follows from the definition of the multiplication.
(iv) If z = ±∞, the first property is straightforward, so assume |z| ∈ R. Let x <G y (the

implication is trivial when x = y). If |x| < |y|, we have |xz| < |yz| because z 6= ±∞. Moreover,
if |x| = |y| =: α, then α 6= ±∞ (as x and y are distinct), and thus necessarily x = α− and y = α
(because x <G y). Hence xz ∈ R− and |xz| = |yz|. In both cases, we conclude that xz 6G yz.

Conversely, assume that z ∈ R. Using the first part of the proof, xz 6G yz implies x 6G y by
multiplying both sides of the inequality xz 6G yz by z−1.

(v) In the first place, we suppose that x ∈ R. If x < y, then y ∈ R and 0−y = y−. Thus, x < y
implies x 6G y−, i.e. x 6G 0−y. Conversely, if the latter inequality holds, then y is distinct from
−∞. Thus, 0−y = y−, and x 6G y

− ensures that x < y.
Assume now that x = −∞. Note that (+∞)y is equal to +∞ if y 6= −∞, and to −∞ otherwise.

Thus, we have 0 6G (+∞)y if, and only if, y > −∞ = x. �

A mixed tropical affine inequality is defined as a constraint of the form

(3) a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6G b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn ,

where the coefficients ai on the left-hand side belong Rmax, while the coefficients bi on the right-
hand side are in G. When the set of x in Rnmax satisfying a mixed inequality is a non-empty proper
subset of Rnmax, it is called mixed half-space.

Lemma 2. A vector x ∈ Rnmax satisfies (3) if, and only if, there exists ε > 0 such that

(4) a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn .

Proof. If (3) is satisfied, then by Property (i) of Lemma 1 we have

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 (b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn)(ε)

for ε > 0 sufficiently small, since the left-hand side of (3) belongs to Rnmax. Besides, by Properties (ii)
and (iii) of Lemma 1, it follows that

(b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn)(ε) = b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn

for ε > 0 sufficiently small, which shows that (4) holds.
Conversely, suppose that (4) is satisfied for some ε > 0. Then

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε′)⊕ b1(ε′)x1 ⊕ · · · ⊕ bn(ε′)xn

for any ε′ < ε (the map ε′ 7→ b0(ε
′)⊕ b1(ε′)x1⊕· · ·⊕ bn(ε′)xn is non-increasing). It follows that (3)

holds, by Properties (i), (ii) and (iii) of Lemma 1 and the fact that the left-hand side of (3) belongs
to Rmax. �

A tropical polyhedron with mixed constraints is defined as a set composed of the vectors x ∈ Rnmax

which satisfy finitely many mixed tropical affine inequalities. To contrast with, we use the term
closed tropical polyhedron when the defining mixed inequalities only involve coefficients in Rmax,
i.e. they are of the form (1). The following proposition establishes that polyhedra with mixed
constraints are (possibly non-closed) tropically convex sets.

Proposition 3. Any tropical polyhedron with mixed constraints is a tropically convex set.

Proof. Let x,y be two solutions of (3), and λ, µ ∈ Rmax be such that λ ⊕ µ = 0. By Lemma 2,
there exist ε, ε′ > 0 such that:

a0 ⊕ a1x1 ⊕ · · · ⊕ anxn 6 b0(ε)⊕ b1(ε)x1 ⊕ · · · ⊕ bn(ε)xn ,

a0 ⊕ a1y1 ⊕ · · · ⊕ anyn 6 b0(ε′)⊕ b1(ε′)y1 ⊕ · · · ⊕ bn(ε′)yn .
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Figure 3. Tropical polyhedra with mixed constraints (the ends of the black seg-
ments marked by points are included in the polyhedra).

These inequalities are still valid if we replace ε and ε′ by min(ε, ε′). Hence, we can assume, without
loss of generality, that ε = ε′. Then, z = λx⊕ µy satisfies

a0 ⊕ a1z1 ⊕ · · · ⊕ anzn 6 b0(ε)⊕ b1(ε)z1 ⊕ · · · ⊕ bn(ε)zn ,

which proves that z is a solution of (3) by Lemma 2. Thus, any mixed half-space is tropically
convex. We conclude that every tropical polyhedron with mixed constraints is tropically convex,
as the intersection of finitely many tropically convex sets. �

Example 4. The vectors x ∈ R2 satisfying the strict inequality x1 < max(−1 + x2, 0), depicted
on the left-hand side of Figure 3, are obtained as the real solutions of the mixed affine inequality
x1 6G (−1)−x2 ⊕ 0−. Similarly, the solutions of x1 6G (−1)−x2 ⊕ 0 correspond to the previous
set in which the half-line {(0, λ) | λ 6 1} is added (middle of Figure 3).

The set depicted on the right-hand side of Figure 3 is the tropical polyhedron with mixed
constraints defined by the following mixed inequalities:

(5)

(−2)x2 6G 0− ⊕ 0−x1

−3 6G x1

0 6G 1x1 ⊕ 0−x2

−2 6G x2

x1 6G 3−x2

(−2)x1 6G 0− ⊕ (−1)x2

Observe that the inequalities in (5) have the property that no variable (or constant term) ever
appears on both the left- and right-hand sides. The following lemma ensures that this situation
is not restrictive, and that in any inequality of the form (3), we can always assume ai = −∞ or
bi = −∞ for all i ∈ {0, . . . , n}.

Lemma 5. Let a, b ∈ Rmax and c, d ∈ G. The set of solutions in Rmax of the mixed tropical
affine inequality ax ⊕ b 6G cx ⊕ d is given by {x ∈ Rmax | b 6G cx ⊕ d} if a 6G c, and by
{x ∈ Rmax | ax⊕ b 6G d} otherwise.

Proof. In the first place, suppose that a 6G c. Then, ax 6G cx for all x ∈ Rmax by Property (iv)
of Lemma 1. It follows that ax 6G cx⊕ d is always satisfied.

Suppose now that a >G c. If x ∈ R, we have ax⊕ b >G ax >G cx by Property (iv) of Lemma 1.
As a consequence, any x ∈ Rmax such that ax ⊕ b 6G cx ⊕ d also satisfies ax ⊕ b 6G d. This
completes the proof. �

Remark 6. Following the analogy with closed tropical polyhedra, we could also consider subsets
of Gn generated by finitely many points and rays (given by vectors with entries in G), having in
mind to encode non-closed subsets of Rnmax thanks to infinitesimal perturbation of generators. More
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Figure 4. Left: a tropical polyhedron with mixed constraints, together with an
open mixed half-space (in blue) defining it. Right: the closed polyhedron defined
by the corresponding non-strict inequalities.

precisely, we could consider that a subset C of Gn encodes the subset C̃ of Rnmax given by the points
y ∈ Rnmax such that for all ε > 0 there exist ε′ ∈ ]0, ε[ and x ∈ C verifying y = x(ε′). However,
this approach presents several difficulties. For example, consider the segment S of G2 joining the
points v = (0−, 1) and w = (1−, 1), i.e.

S = {λv ⊕ µw ∈ G2 | λ, µ ∈ G, λ⊕ µ = 0} .

Then, it can be checked that S̃ = {(α, 1) ∈ R2
max | α ∈ [0, 1[}. Now, observe that if we consider

the segment S ′ joining v′ = (1−, 0) and w′ = (0, 1), we have S̃ ′ = S̃. Noticing that v′ 6∈ S and
v 6∈ S ′, we see that different polyhedra of Gn can encode the same subset of Rnmax. Consequently,
it seems far from trivial to determine the equality of two subsets of Rnmax when they are encoded
as polyhedra of Gn.

Remark 7. As a complement of Remark 6, we point out that the closure of a polyhedron with mixed
constraints is apparently harder to compute than in the case of usual convex polyhedra. Indeed,
in the latter case, the closure can be simply obtained by substituting < by 6 in the defining
inequalities. In contrast, in the current setting, replacing the coefficients bi of the form β−i by βi
on the right-hand side of mixed inequalities provides a closed tropical polyhedron which may be
larger than the closure. For example, consider the polyhedron with mixed constraints defined by
the inequalities:

0 6G x1 x1 ⊕ x2 6G 1 0 6G (−1)−x1 ⊕ 0−x2 ,

which is depicted on the left-hand side of Figure 4. The mixed half-space defined by the last
inequality is represented in blue. The closure of the polyhedron the usual unit square. However,
the closed polyhedron defined by the inequalities:

0 6 x1 x1 ⊕ x2 6 1 0 6 (−1)x1 ⊕ x2 ,

contains additionally the half-line {(1, λ) | λ 6 0} (right-hand side of Figure 4).

3. Tropical Fourier-Motzkin elimination

In this section, we first present a tropical Fourier-Motzkin elimination method, which allows to
eliminate a variable in a finite system of mixed inequalities. Then we apply this method to establish
relationships between tropical polyhedra with mixed constraints, zones and tropical hemispaces.

3.1. The algorithm. We first illustrate the algorithm on an example.

Example 8. Consider the system given in (5), and assume we want to eliminate the variable x1.
From the last (rightmost) two inequalities of (5), we know that:

(6) x1 6G 3−x2 x1 6G 2− ⊕ 1x2
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In each inequality involving the variable x1 on the right-hand side (i.e. the leftmost three inequali-
ties of (5)), we propose to replace x1 by the two upper bounds provided by (6). This produces the
following six inequalities:

(7)
(−2)x2 6G 0− ⊕ 3−x2

(−2)x2 6G 2− ⊕ 1−x2

−3 6G 3−x2

−3 6G 2− ⊕ 1x2

0 6G 4−x2

0 6G 3− ⊕ 2x2

Besides, in each inequality not involving x1 on the right-hand side, we remove the term in x1 from
the left-hand side, if any. From the rightmost inequalities of (5), we obtain the following three
inequalities:

(8) − 2 6G x2 −∞ 6G 3−x2 −∞ 6G 0− ⊕ (−1)x2 .

We claim that the inequalities in (7) and (8) precisely describe the projection on the x2 axis of the
polyhedron with mixed constraints defined by (5). Note that the collection of inequalities obtained
in this way is redundant: one inequality, −2 6G x2, suffices.

We now formalize the approach sketched in Example 8. Under some assumptions (which are
specified in Theorem 10 below), it applies more generally to systems of constraints over a totally
ordered idempotent semiring.

Recall that a semiring (S,⊕,⊗, 0, 1) is said to be totally ordered if there exists a total order 6S
on S such that:

(i) 0 6S a for all a ∈ S,
(ii) for all a, b, c ∈ S, a 6S b implies a⊕ c 6S b⊕ c, a⊗ c 6S b⊗ c, and c⊗ a 6S c⊗ b.

The semiring S is said to be idempotent if a⊕a = a for all a ∈ S. The next lemma shows that such
a semiring is naturally ordered, meaning that a⊕ b is equal to the maximal element among a and b.

Lemma 9. Let (S,⊕,⊗, 0, 1,6S) be a totally ordered idempotent semiring. Then, for all a, b ∈ S,
a⊕ b = a if a >S b, and a⊕ b = b otherwise.

Proof. In the first place, observe that b >S 0 implies a⊕ b >S a. Analogously, we have a⊕ b >S b.
Now suppose that a >S b. Then, a = a⊕ b since a = a⊕ a >S a⊕ b. �

Now we explain how to eliminate xn in a linear system of inequalities over S in the variables
x1, . . . ,xn. For the sake of simplicity, we extend the operations of S to matrices and vectors in the
usual way and represent the multiplication ⊗ by concatenation.

Theorem 10 (Fourier-Motzkin elimination for systems over totally ordered idempotent semirings).
Let (S,⊕,⊗, 0, 1,6S) be a totally ordered idempotent semiring and P ⊂ Sn be the solution set of the
system Ax⊕ c 6S Bx⊕ d, where A,B ∈ Sp×n and c,d ∈ Sp satisfy the following conditions:

(i) Ain is (left-)invertible with respect to ⊗ if Ain 6= 0 (we denote its inverse by A−1in ),1

(ii) for any α ∈ S there exists β ∈ S such that α 6S Binβ if Bin 6= 0,
(iii) either Aij = 0 or Bij = 0 for i ∈ [p] and j ∈ [n].

Let Q ⊂ Sn−1 be the set defined by the following inequalities in the variables x1, . . . ,xn−1:

(9) (⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕ di ,

for all i ∈ [p] such that Bin = 0, and

(10) (⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=n(Bij ⊕BinA−1knBkj)xj)⊕ di ⊕BinA−1kndk ,

for all i, k ∈ [p] such that Bin 6= 0 and Akn 6= 0.
Then x ∈ Q if, and only if, there exists λ ∈ S such that (x, λ) ∈ P.

1Here and below, Min denotes the (i, n)-entry of matrix M , and should not be confused with any abbreviation.
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Proof. Assume that (x, λ) ∈ P for some λ ∈ S. Then for all i ∈ [p] such that Bin = 0, we have:

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕ di ,

which proves that x satisfies the inequalities of the form (9). Now consider i, k ∈ [p] such that
Bin 6= 0 and Akn 6= 0. Then, Ain = Bkn = 0 by Condition (iii), and Akn is left-invertible by
Condition (i). Since Aknλ 6S (⊕j 6=nBkjxj)⊕ dk, we know that

λ 6S A
−1
kn (⊕j 6=nBkjxj)⊕A−1kndk .

Replacing λ by the latter upper bound in the inequality

(⊕j 6=nAijxj)⊕ ci = (⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕Binλ⊕ di

precisely yields inequality (10), using distributivity of⊗ and commutativity of⊕. Thus, we conclude
that x ∈ Q.

Conversely, let x ∈ Q. In the first place, assume that Ain = 0 for all i ∈ [p]. Define

λ := ⊕i∈Iβi ,

where I := {i ∈ [p] | Bin 6= 0} and βi ∈ S is such that (⊕j 6=nAijxj) ⊕ ci 6S Binβi for i ∈ I (βi
exists thanks to Condition (ii)). Then, if Bin 6= 0, we have

(⊕j 6=nAijxj)⊕Ainλ⊕ ci = (⊕j 6=nAijxj)⊕ ci 6S Binλ 6S (⊕j 6=nBijxj)⊕Binλ⊕ di .

The same inequality is trivially satisfied if Bin = 0 due to (9). It follows that (x, λ) ∈ P.
Now assume that Akn 6= 0 for some k ∈ [p]. Define

(11) λ := min
k∈[p]
Akn 6=0

(
A−1kn (⊕j 6=nBkjxj)⊕A−1kndk

)
,

where the operator min is understood as providing the minimum of its operands with respect to
the order 6S. As a consequence, for all i such that Ain 6= 0, we have Ainλ 6S (⊕j 6=nBijxj) ⊕ di.
The fact that Bin = 0 (by Condition (iii)) and the conjunction with (9) yield:

(⊕j 6=nAijxj)⊕Ainλ⊕ ci 6S (⊕j 6=nBijxj)⊕ di = (⊕j 6=nBijxj)⊕Binλ⊕ di .

Note that the latter inequality also holds for all i ∈ [p] such that Ain and Bin are both equal to 0.
Now suppose that i ∈ [p] satisfies Bin 6= 0 and k ∈ [p] attains the minimum in (11). Since x

satisfies (10), i.e.

(⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕ di ⊕BinA−1kn (⊕j 6=nBkjxj ⊕ dk)

it follows that

(⊕j 6=nAijxj)⊕Ainλ⊕ ci = (⊕j 6=nAijxj)⊕ ci 6S (⊕j 6=nBijxj)⊕Binλ⊕ di ,

because Bin 6= 0 implies Ain = 0 by Condition (iii). This shows that (x, λ) belongs to P. �

The case of tropical polyhedra with mixed constraints is obtained by setting S = G. Note that
the conditions of Theorem 10 are satisfied when S = G, due in particular to Lemma 5 and the fact
that any non-zero coefficient on the left-hand side of a mixed inequality is invertible (as an element
of R). However, a tropical polyhedron with mixed constraints consists of the solutions belonging
to Rnmax, while Theorem 10 applies to the solutions in Gn. The following result shows that the
projection algorithm is still valid when restricted to Rnmax.

Theorem 11 (Fourier-Motzkin elimination for systems of mixed inequalities). Assume P and Q
are defined as in Theorem 10 with S = G. Then, for all x ∈ Rn−1max, x ∈ Q if, and only if, there
exists λ ∈ Rmax such that (x, λ) ∈ P.
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Proof. Observe that to prove the theorem, it is enough to show that if y := (x, λ) ∈ P for some
x ∈ Rn−1max and λ ∈ G, then there exists λ′ ∈ Rmax such that (x, λ′) ∈ P.

If λ ∈ Rmax, there is nothing to prove, so assume λ ∈ R− ∪ {+∞}. We will show that for a
certain choice of λ′ ∈ R verifying λ′ 6G λ, the vector y′ := (x, λ′) ∈ Rnmax belongs to P. Note that
for any such choice of λ′, the vector y′ satisfies the inequalities in Ax ⊕ c 6G Bx ⊕ d indexed by
i ∈ [p] such that Bin = ±∞. Indeed, in this case, we have

(12) (⊕jAijy′j)⊕ ci 6G (⊕jAijyj)⊕ ci 6G (⊕jBijyj)⊕ di = (⊕jBijy′j)⊕ di .

Thus, we next focus on the inequalities indexed by elements of the set I := {i ∈ [p] | Bin ∈ R∪R−}.
In consequence, Ain = −∞ for all i ∈ I. It is convenient to split the rest of the proof into two
cases.

In the first place, assume λ = +∞. Define λ′ := δε ∈ R, where ε > 0 and

δ =

{
⊕i∈I |Bin|−1(⊕j 6=nAijxj ⊕ ci) if I 6= ∅ ,
0 otherwise.

Obviously, λ′ 6G λ. Besides, for all i ∈ I we have

(⊕j 6=nAijxj)⊕Ainλ′ ⊕ ci 6G (⊕j 6=nBijxj)⊕Binλ′ ⊕ di ,

since ⊕j 6=nAijxj ⊕ ci < |Bin|λ′ and Ain = −∞.
Now assume λ ∈ R−. Let I ′ be the set of indices i ∈ I such that Binλ >G ⊕j 6=nBijxj⊕di. Then,

(⊕jAijyj)⊕ ci = (⊕j 6=nAijxj)⊕ ci 6G Binλ

for all i ∈ I ′. For i ∈ I ′, let νi = ⊕j 6=nAijxj ⊕ ci. Since νi belongs to Rmax (Aij , xj and ci belong
to Rmax) and Binλ belongs to R−, we necessarily have νi < |Binλ|. Define λ′ := κ|λ| ∈ R, where

κ =

{
maxi∈I′(νi − |Binλ|)/2 if {i ∈ I ′ | νi ∈ R} 6= ∅ ,
−1 otherwise.

As κ < 0, we have λ′ 6G λ. Moreover, if i ∈ I ′, then νi < κ|Binλ| and so

(⊕jAijy′j)⊕ ci 6G (⊕jAijyj)⊕ ci = (⊕j 6=nAijxj)⊕ ci =

= νi 6G κBinλ 6G κBin|λ| = Binλ
′ 6G (⊕jBijy′j)⊕ di .

Finally, note that for i ∈ I \ I ′ the relations in (12) are still valid because in that case we have
⊕j 6=nBijxj ⊕ di >G Binλ >G Binλ

′. This completes the proof. �

3.2. Characterization of tropical polyhedra with mixed constraints in terms of zones
and tropical hemispaces. In this subsection we discuss some consequences of tropical Fourier-
Motzkin elimination. In the first place, we establish that the tropical convex hull of the union
of two tropical polyhedra with mixed constraints is a tropical polyhedron with mixed constraints.
Recall that the tropical convex hull tconv(G) of a set G ⊂ Rnmax is defined as the set of the vectors
of the form

λ1x
1 ⊕ · · · ⊕ λmxm

where m is a positive integer, xi ∈ G, λi ∈ Rmax (i ∈ [m]), and ⊕i∈[m]λi = 0.

Proposition 12. Let P,P ′ ⊂ Rnmax be polyhedra with mixed constraints, respectively defined by the
systems Ax⊕ c 6G Bx⊕ d and A′x⊕ c′ 6G B

′x⊕ d′, and let Q be the polyhedron defined by the
inequalities which are obtained eliminating y1, . . . ,yn,y

′
1, . . . ,y

′
n, λ and µ in the following system:

x = y ⊕ y′ λ⊕ µ = 0

Ay ⊕ λc 6G By ⊕ λd y1 ⊕ · · · ⊕ yn 6G (+∞)λ(13)

A′y′ ⊕ µc′ 6G B
′y′ ⊕ µd′ y′1 ⊕ · · · ⊕ y′n 6G (+∞)µ

11



Then, we have tconv(P ∪ P ′) = Q.

Proof. In the first place, note that P ⊂ Q. Indeed, given x ∈ P, let λ = 0, µ = −∞, y = x and
y′i = −∞ for i ∈ [n]. Then, (13) is clearly satisfied, and so from Theorem 11 we deduce that x ∈ Q.
Similarly, P ′ ⊂ Q. Since Q is tropically convex, we deduce that tconv(P ∪ P ′) ⊂ Q.

Conversely, let x ∈ Q, and consider y,y′, λ, µ as in (13). If both λ, µ are distinct from −∞,
then λ−1y ∈ P, µ−1y′ ∈ P ′, and x = λ(λ−1y)⊕ µ(µ−1y′), which ensures that x ∈ tconv(P ∪ P ′).
Otherwise, if for instance µ = −∞, then we necessarily have λ = 0, and so y ∈ P. Moreover,
from y′1 ⊕ · · · ⊕ y′n 6G (+∞)µ we deduce that y′i = −∞ for all i ∈ [n], and in consequence
x = y. This completes the proof, because again we have x = y ∈ P ⊂ tconv(P ∪ P ′), and so
Q ⊂ tconv(P ∪ P ′) �

In order to characterize tropical polyhedra with mixed constraints in terms of zones, we first need
to extend the definition of zones to Rmax: a zone (of Rnmax) is a set of vectors x ∈ Rnmax defined by
inequalities of the form

(14) mi C xi xi CMi xi C kijxj

where C ∈ {6, <} and mi,Mi, kij ∈ Rmax.

Theorem 13. A subset P of Rnmax is a tropical polyhedron with mixed constraints if, and only if,
it is a tropically convex union of finitely many zones.

Proof. Observe that when C is equal to 6 in (14), these inequalities are equivalent to the ones
obtained replacing C by 6G. Moreover, we have

mi < xi ⇐⇒

{
mi 6G 0−xi if mi ∈ R
0 6G (+∞)xi if mi = −∞

xi < Mi ⇐⇒ xi 6G 0−Mi if Mi ∈ R

xi < kijxj ⇐⇒ (xi 6G (0−)kijxj and 0 6G (+∞)xj) if kij ∈ R

In consequence, any zone is a tropical polyhedron with mixed constraints. Then, by Proposition 12,
so is the tropical convex hull of the union of finitely many zones. The “if” part of the theorem
follows from the fact that if the union of finitely many zones is tropically convex, then it coincides
with its tropical convex hull.

Suppose now that Q is a polyhedron defined by mixed inequalities of the form (3), in which
only one of the coefficients bj is distinct from −∞. If this coefficient is b0, as we can assume that
b0 6= +∞, it follows that (3) can be rewritten as a system of inequalities of the form xi 6G βMi,
with β ∈ {0, 0−} and Mi ∈ R. If the considered coefficient is bj for j ∈ [n], then (3) can be rewritten
as a system of inequalities of the form mj 6G βxj and xi 6G βkijxj , with β ∈ {0, 0−,+∞} and
mj , kij ∈ R. Since

xi 6G βkijxj ⇐⇒


xi 6 kijxj if β = 0

xi < kijxj or (xi 6 −∞ and xj 6 −∞) if β = 0−

−∞ < xj or (xi 6 −∞ and xj 6 −∞) if β = +∞

xi 6G βMi ⇐⇒

{
xi 6Mi if β = 0

xi < Mi if β = 0−
and mj 6G βxj ⇐⇒


mj 6 xj if β = 0

mj < xj if β = 0−

−∞ < xj if β = +∞

it follows that Q is a finite union of zones.
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The “only if” part of the theorem follows from the fact that any polyhedron with mixed con-
straints can be written as a finite union of polyhedra of the form considered in the previous para-
graph (it suffices to choose, in each inequality, one term in the right-hand side to be the maximizing
one). �

Theorem 13 raises the problem, of independent interest, of determining whether a given union of
finitely many zones is tropically convex. To our knowledge, this problem has not been studied so far,
even in the case of closed zones. A naive solution consists in computing the tropical convex hull of
the union of zones (using Proposition 12), and checking whether it intersects the complement of the
union of zones (the latter can be expanded into a union of zones, and the intersection test requires
the techniques developed in Section 4, see Theorem 25). This approach would be particularly
expensive. Yet, it is similar to the technique implemented in the UPPAAL DBM library [Dav12]
to test if a union of zones is a zone. Whether there exists a more efficient method is left for future
work.

Now we study the relationship between tropical polyhedra with mixed constraints and tropical
hemispaces. Recall that a tropical hemispace is a tropically convex set whose complement is also
tropically convex. Tropical hemispaces and mixed half-spaces share the property that their closure
is a closed half-space (in the case of hemispaces, this is proved in [BH08]). In fact, Proposition 14
and Example 15 below show that mixed half-spaces are a proper subclass of hemispaces.

Proposition 14. Mixed half-spaces are tropical hemispaces.

Proof. We already proved in Proposition 3 that mixed half-spaces are tropically convex.
The complement of the mixed half-space defined by (3) consists of the vectors x ∈ Rnmax such

that

(15) a0 ⊕ a1x1 ⊕ · · · ⊕ anxn >G b0 ⊕ b1x1 ⊕ · · · ⊕ bnxn .
Let x,y ∈ Rnmax be in this complement, and λ, µ ∈ Rmax be such that λ⊕ µ = 0. Without loss of
generality, assume that λ = 0. If µ = −∞, then λx ⊕ µy = x trivially satisfies (15). Otherwise,
i.e. if µ ∈ R and µ 6 0, then by Property (iv) of Lemma 1 we have µ(a0 ⊕ a1y1 ⊕ · · · ⊕ anyn) >G
µ(b0 ⊕ b1y1 ⊕ · · · ⊕ bnyn). It readily follows that a0 ⊕ a1(λx1 ⊕ µy1) ⊕ · · · ⊕ an(λxn ⊕ µyn) >G
b0 ⊕ b1(λx1 ⊕ µy1)⊕ · · · ⊕ bn(λxn ⊕ µyn). This shows that the complement of a mixed half-space
is tropically convex. �

Example 15. Consider the tropical hemispace H defined as the set of vectors x ∈ R4
max such that

(x3 6 x1 and x4 6 x1) or (x3 6 x2 and x4 < x2) .

We claim that H is not a mixed half-space. Its closure is the tropical half-space defined by the
inequality

(16) x3 ⊕ x4 6 0x1 ⊕ 0x2 .

Any mixed half-space whose closure is given by (16) is defined by a mixed inequality obtained
from (16) by replacing some of the coefficients 0 on the right-hand side by 0−. However, it can be
easily verified that none of these mixed half-spaces is equal to H.

Similarly, it can be checked that the complement of H, which is given by the set of vectors
x ∈ R4

max such that
x1 < x3 ⊕ x4 and (x2 < x3 or x2 6 x4) ,

is not a mixed half-space either.

To prove the following proposition, we shall use the characterization of tropical hemispaces in
terms of (P,R)-decompositions established in [KNS13].

Proposition 16. Tropical hemispaces are tropical polyhedra with mixed constraints.
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Proof. In the first place, let us recall that the tropical conic hull of a subset G of Rnmax is defined as

tcone(G) := {µ1x1 ⊕ · · · ⊕ µmxm | m ∈ N, xi ∈ G, µi ∈ Rmax} .
Moreover, given two subsets G and G′ of Rnmax, their tropical Minkowski sum G⊕G′ is defined as
{x⊕x′ | x ∈ G, x′ ∈ G′}. In this proof, we denote by ui ∈ Rnmax, for i ∈ [n], the vector defined by
uij := 0 if j = i and uij := −∞ otherwise.

Let H1,H2 be two complementary hemispaces. Suppose that the vector all of whose entries are
equal to −∞ belongs to H1. Then, by [KNS13, Theorem 4.22] there exist a partition I, J of [n]
and interval sets Λ1

ij , Λ
2
ij ⊂ Rmax for i ∈ I ∪ {0} and j ∈ J such that

H1 = tconv({λuj | j ∈ J, λ ∈ Λ1
0j})⊕ tcone({ui ⊕ λuj | i ∈ I, j ∈ J, λ ∈ Λ1

ij})
H2 = tconv({λuj | j ∈ J, λ 6= +∞, λ ∈ Λ2

0j})⊕ tcone({λui ⊕ uj | i ∈ I, j ∈ J, λ ∈ −Λ2
ij})

where each couple of intervals Λ1
ij , Λ

2
ij has one of the following forms:

(17) (Λ1
ij , Λ

2
ij) =

{
([−∞, β], ]β,+∞]), β ∈ R ∪ {−∞}
([−∞, α[, [α,+∞]), α ∈ R ∪ {+∞}

Thus, note that x ∈ H1 if, and only if, there exist λij and µij in Rmax for i ∈ I ∪ {0} and j ∈ J
such that

xi = ⊕j∈Jµij for i ∈ I
xj = ⊕i∈I∪{0}λijµij for j ∈ J

⊕j∈Jµ0j = 0

λij ∈ Λ1
ij for i ∈ I ∪ {0} and j ∈ J

Equivalently, x ∈ H1 if, and only if, there exist µij and νij in Rmax for i ∈ I ∪ {0} and j ∈ J such
that

(18)

xi = ⊕j∈Jµij for i ∈ I
xj = ⊕i∈I∪{0}νij for j ∈ J

⊕j∈Jµ0j = 0

νij 6G


βµij if Λ1

ij = [−∞, β] with β ∈ R ∪ {−∞}
α−µij if Λ1

ij = [−∞, α[ with α ∈ R
(+∞)µij if Λ1

ij = [−∞, α[ with α = +∞
for i ∈ I ∪ {0} and j ∈ J

By Theorem 11, we conclude that H1 is a tropical polyhedron with mixed constraints, since it is
defined by the system of mixed inequalities obtained by eliminating µij and νij for i ∈ I ∪ {0} and
j ∈ J in (18).

Similarly, the same result can be obtained for H2 using a symmetric argument. �

The following result is a straightforward consequence of Propositions 14 and 16.

Corollary 17. Tropical polyhedra with mixed constraints are precisely the intersections of finitely
many tropical hemispaces.

Remark 18. We have previously defined a closed tropical polyhedron as the solution set of in-
equalities of the form (1), i.e. mixed inequalities with coefficients in Rmax. We point out that
this definition is consistent with the fact that such polyhedra are precisely the tropical polyhedra
with mixed constraints which are closed. Indeed, by Theorem 13 a tropical polyhedron with mixed
constraints P can be written as a finite union of zones. If P is closed, then it is equal to the union
of the closure of these zones (i.e. closed zones, which can be generated by finitely many points
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and rays by the tropical Minkowski-Weyl Theorem, see [GK11, Theorem 2]). Since P is tropically
convex, it is even equal to the tropical convex hull of this union. It follows that it is generated by
finitely many points and rays. By the tropical Minkowski-Weyl Theorem, we deduce that it is the
solution set of finitely many inequalities of the form (1).

4. Eliminating redundant mixed inequalities

Like in the classical setting, Fourier-Motzkin elimination generates a system of O(p2) inequalities

from an input with p constraints. Consequently, the number of inequalities may grow in O(p2
k
) after

k successive applications. To avoid the explosion of the size of the constraint system, superfluous
inequalities must be eliminated. With this aim, we present a decision procedure for implications of
the form:

(19) Ax⊕ c 6G Bx⊕ d =⇒ ex⊕ g 6G fx⊕ h for all x ∈ Rnmax ,

where A ∈ Rp×nmax, B ∈ Gp×n, c ∈ Rpmax, d ∈ Gp, g ∈ Rmax, h ∈ G, and e and f are n-dimensional
row vectors with entries in Rmax and G respectively. We assume that e and g are not identically
null (in the tropical sense) and that h 6= +∞, because otherwise deciding implication (19) is trivial.

4.1. Equivalence with mean payoff games. We first show that deciding an implication of the
form (19) is equivalent to an emptiness problem for tropical polyhedra with mixed constraints.

Proposition 19. Let Q be the tropical polyhedron with mixed constraints defined by the system
Ax⊕ c 6G Bx⊕ d and the following inequalities:

(20)


fixi 6G (0−e)x⊕ 0−g if fi ∈ Rmax

|fi|xi 6G ex⊕ g if fi ∈ R−

xi 6G −∞ if fi = +∞

for all i ∈ [n],

(21)

{
h 6G (0−e)x⊕ 0−g if h ∈ Rmax

|h| 6G ex⊕ g if h ∈ R−

and

0 6G ⊕ei 6=−∞(+∞)xi if g = −∞.
Then, implication (19) holds if, and only if, Q is empty.

Proof. Implication (19) is false if, and only if, there exists x ∈ Rnmax such that Ax⊕ c 6G Bx⊕ d
and ex ⊕ g >G fx ⊕ h. Observe that ex ⊕ g >G fx ⊕ h holds if, and only if, ex ⊕ g >G h and
ex ⊕ g >G fixi for all i ∈ [n]. This implies ex ⊕ g > −∞, i.e. 0 6G (+∞)(ex ⊕ g). The latter
inequality is trivially satisfied if g 6= −∞. When g = −∞, it is equivalent to 0 6G ⊕ei 6=−∞(+∞)xi.
Finally, assuming ex⊕ g > −∞, note that ex⊕ g >G fixi is equivalent to (20), and ex⊕ g >G h
is equivalent to (21). This completes the proof. �

In light of Proposition 19, it is enough to develop a decision procedure to determine whether
a tropical polyhedron with mixed constraints is empty. Our approach relies on parametric mean
payoff games, following the lines of [AGG12, AGK11b].

Let R be a tropical polyhedron with mixed constraints defined by the system

(22) Mx⊕ p 6G Nx⊕ q ,

where M ∈ Rr×nmax, N ∈ Gr×n, p ∈ Rrmax and q ∈ Gr. It is convenient to consider two different cases,
depending on whether +∞ coefficients appear or not in (22).

15



1 2 3 4

1 2 3

0

3

1

−ε

0

0
2 −ε−12

Figure 5. The digraph associated with a parametric mean payoff game (column
and row nodes are respectively represented by circles and squares).

4.1.1. Polyhedra defined by systems with no +∞ coefficients. In the first place, we restrict to the
following case:

Assumption A. No coefficient is equal to +∞ on the right-hand side of mixed inequalities.

In other words, in this subsection we assume N ∈ (G \ {+∞})r×n and q ∈ (G \ {+∞})r.
In this case, with each ε > 0 we associate a closed tropical polyhedron Rε, given by the system

Mx ⊕ p 6G N(ε)x ⊕ q(ε), and a mean payoff game involving two players, “Max” and “Min”,
playing on a weighted bipartite digraph Gε composed of two kinds of nodes: row nodes i ∈ [r],
and column nodes j ∈ [n + 1]. This digraph contains an arc from row node i to column node j
with weight Nij(ε) when Nij 6= −∞, and an arc from j to i with weight −Mij when Mij 6= −∞.
Similarly, it contains an arc from row node i to column node n+ 1 with weight qi(ε) if qi 6= −∞,
and an arc from column node n+ 1 to row node i with weight −pi when pi 6= −∞.

Example 20. Figure 5 provides an illustration of the digraph Gε corresponding to the tropical
polyhedron with mixed constraints defined by the system:

1 : −3 6G x1

2 : 0 6G 1x1 ⊕ 0−x2

3 : −2 6G x2

4 : (−2)x1 6G 0− ⊕ (−1)x2

The principle of the game is the following. Players Min and Max alternatively move a pawn over
the nodes of Gε. When it is placed on a column node, Player Min selects an outgoing arc, moves
the pawn to the corresponding row node, and pays to Player Max the weight of the selected arc.
Once the pawn is on a row node, Player Max similarly selects an outgoing arc, moves the pawn
along it, and receives from Player Min a payment equal to the weight of the selected arc.

In the sequel, we suppose that Players Max and Min always have at least one possible action in
each node:

Assumption B. Each node of Gε has at least one outgoing arc.

This technical property can be assumed without loss of generality, up to adding trivial inequalities
or removing non-relevant unknowns in the system. We refer to the discussion of Assumptions 2.1
and 2.2 in [AGG12] for further details.

We consider infinite runs of the game, in which case the payoff is defined as the mean of the
payments of Player Min to Player Max. Player Min wants to minimize this mean of payments
while Player Max wants to maximize it. We denote by v(ε) the value of the game associated with
Gε when it starts at column node n + 1. It is shown in [AGG12, Theorem 3.5] that the tropical
polyhedron Rε is non-empty if, and only if, v(ε) > 0, i.e. column node n + 1 is a winning initial
node (for Player Max). Then, the following result immediately follows from Lemma 2.

16



Proposition 21. The tropical polyhedron with mixed constraints R is non-empty if, and only if,
there exists ε > 0 such that v(ε) > 0.

Let M̃ (resp. Ñ) be the matrix of size r × (n + 1) obtained by concatenating matrix M and
column vector p (resp. N and q). The dynamic programming operator gε associated with the game
over Gε is the function from Rn+1

max to itself defined by

(23) (gε(x))j := min
i∈[r]

M̃ij 6=−∞

(
−M̃ij + max

k∈[n+1]

Ñik 6=−∞

(
Ñik(ε) + xk

))
,

for j ∈ [n+ 1]. This function satisfies the following properties:

(i) it is order preserving, i.e. x 6 y implies gε(x) 6 gε(y) for all x,y ∈ Rn+1
max,

(ii) it is additively homogeneous, i.e. gε(λx) = λgε(x) for all λ ∈ Rmax and x ∈ Rn+1
max,

(iii) it preserves Rn+1, thanks to Assumption B above.

Such a function can be shown to be non-expansive for the sup-norm. Since it is also piecewise
affine, a theorem due to Kohlberg [Koh80] implies the following vector χ(gε), referred to as the
cycle-time vector of gε, exists and has finite entries:

χ(gε) := lim
h→+∞

ghε (0)/h .

Kohlberg’s theorem also implies the j-th entry of χ(gε), which we denote by χj(gε), corresponds
to the value of the game when it starts at column node j. We refer to [AGG12] for further details.
Following the notation above, we consequently have

v(ε) = χn+1(gε)

for ε > 0.
The cycle-time vector χ(gε) can be expressed in terms of the cycle-time vectors of dynamic

programming operators associated with certain one-player games. More precisely, a (positional)
strategy for Player Min is a function σ : [n + 1] → [r] associating with each column node j a row

node σ(j) such that M̃σ(j)j 6= −∞. Such a strategy defines a one-player game (played by Player
Max) over the digraph Gσε obtained from Gε by deleting the arcs connecting column nodes j with
row nodes i such that i 6= σ(j). Its dynamic programming operator gσε is given by:

(gσε (x))j = −M̃σ(j)j + max
k∈[n+1]

Ñσ(j)k 6=−∞

(
Ñσ(j)k(ε) + xk

)
,

for j ∈ [n+ 1]. Observe that this operator is linear in the tropical semiring Rmax. If we denote by
Σ the (finite) set of strategies for Player Min, then as another consequence of Kohlberg’s theorem,
it can be shown that

(24) χ(gε) = min
σ∈Σ

χ(gσε ) .

A dual result based on strategies for Player Max can also be established.
Given σ ∈ Σ, the (n + 1)-th entry of the vector χ(gσε ) can be similarly interpreted as the value

of the one-player game associated with the digraph Gσε when it starts at column node n + 1. As
the function gσε is linear in the tropical semiring, it is known [CTGG99] that χn+1(g

σ
ε ) is equal to

the maximal weight-to-length ratio of the elementary circuits of Gσε reachable from column node
n + 1. A circuit in this digraph is referred to as a sequence of column nodes j0, . . . , jl−1, jl = j0,
where l > 1, and so l is considered to be its length. Note that the reachability relation in Gσε does
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not depend on ε. Let Cσ be the set of the elementary circuits of Gσ0 reachable from column node
n+ 1. By (24), we readily obtain

(25) v(ε) = χn+1(gε) = min
σ∈Σ

max
(j0 ,...,jl−1,jl)∈Cσ

1

l

( ∑
06s6l−1

−M̃σ(js)js + Ñσ(js)js+1
(ε)
)

for ε > 0. We deduce that:

Lemma 22. The function ε 7→ v(ε) is non-increasing and piecewise affine.

Proof. The fact that ε 7→ v(ε) is piecewise affine straightforwardly follows from (25).
We next prove by induction on h that the function ε 7→ (ghε (x))j is non-increasing for any x ∈ Rn

and j ∈ [n]. In the first place, observe that ε appears only negatively in the coefficients Ñik(ε)
of (23), so the function ε 7→ (gε(x))j is non-increasing. Now consider h ∈ N and ε 6 ε′. By

induction, we know that ghε′(x) 6 ghε (x) for any x ∈ Rn. Since the function x 7→ gε(x) is order

preserving, we have gε(g
h
ε′(x)) 6 gh+1

ε (x). Besides, gε(g
h
ε′(x)) > gε′(g

h
ε′(x))) = gh+1

ε′ (x). It follows

that (gh+1
ε′ (x))j 6 (gh+1

ε (x))j for all j ∈ [n].
We conclude that ε 7→ v(ε) is non-increasing as the limit of non-increasing functions. �

If we assume that the numerical parts of the non-zero entries of M , N , p and q are integers (this
assumption is obviously satisfied in the application to timed automata in Section 5), the criterion
of Proposition 21 can be determined by evaluating v(ε) at ε = 0 and at a small positive value.

Proposition 23. The tropical polyhedron with mixed constraints R is non-empty if, and only if,
v(0) > 1/(n+ 1) or v(1/(n+ 1)2) > 0.

Proof. Each linear piece of the function ε 7→ v(ε) corresponds to an affine map given by the weight-
to-length ratio of an elementary circuit of Gσε for some strategy σ for Player Min. In consequence,
this affine map is of the form λ−kε

l , where:

(i) l is the length of the circuit (l 6 n+ 1),
(ii) λ is the sum of 2l integers given by the modulus, or their opposite, of some entries of the

matrices M and N and of the vectors p and q,
(iii) k is the number of occurrences of −ε in the weight Nij(ε) or qi(ε) of some arcs of the circuit

(so k 6 l).

Therefore, any non-differentiability point ε̃ of the map ε 7→ v(ε) satisfies (λ− kε̃)/l = (λ′ − k′ε̃)/l′,
where l′, λ′, and k′ have the same properties as l, λ, and k above respectively. It follows that any
positive non-differentiability point (if any) is of the form:

ε̃ =
λ′l − λl′

k′l − l′k
.

Assume, without loss of generality, that k/l < k′/l′. Since ε̃ > 0, the numerator λ′l − λl′ is a
positive integer. This implies that ε̃ > ε∗, where ε∗ = 1/(n+ 1)2.

Consequently, the function ε 7→ v(ε) is affine on the interval [0, ε∗]. Since it is non-increasing by
Lemma 22, we have v(ε) < 0 for all ε > 0 if, and only if, v(0) 6 0 (by continuity) and v(ε∗) < 0.
The application of Proposition 21 shows that R is non-empty if, and only if, v(0) > 0 or v(ε∗) > 0.
Since v(0) is equal to the weight-to-length ratio of an elementary circuit of Gσ0 , for some σ ∈ Σ,
it can be written as λ′′/l′′, where λ′′ and l′′ have the same properties as λ and l above. It follows
that v(0) is positive if, and only if, it is greater than or equal to 1/(n + 1). This completes the
proof. �

Let G′0 be the digraph obtained from G0 by subtracting 1/(n + 1) from the weight of each arc
connecting a row node with a column node. Then, v(0)−(1/(n+1)) is the value of the mean payoff
game associated with G′0 when it starts from column node n + 1. It follows that the condition of
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Proposition 23 holds if, and only if, column node n + 1 is winning (for Player Max) in one of the
two games associated with G′0 and G1/(n+1)2 . Let G? be the digraph obtained as the disjoint union

of G′0 and G1/(n+1)2 , adding a special row node 0 and two arcs, with zero weight, connecting it with

column nodes n+ 1 of G′0 and G1/(n+1)2 . The criterion of Proposition 23 can be restated as follows:

Proposition 24. The tropical polyhedron with mixed constraints R is non-empty if, and only if,
row node 0 is a winning initial node (for Player Max) in the mean payoff game associated with G?.

As an immediate consequence, we obtain the following complexity result, in which the equivalence
(ii)⇔ (iii) extends Theorem 3.2 of [AGG12], whereas the equivalence (i)⇔ (iii) extends Theorem 18
of [AGK11b] (only non-strict constraints are considered there).

Theorem 25. Under Assumption A, the following problems are (Karp) polynomial-time equivalent:
(i) deciding whether a mixed tropical affine inequality is implied by a system of such inequalities;

(ii) deciding whether a tropical polyhedron with mixed constraints is empty;
(iii) determining whether a given initial node in a mean payoff game is winning.

Problem (iii) is known to be in NP ∩ coNP, see [ZP96]. We deduce from Theorem 25 that
Problems (i) and (ii) both belong to the same complexity class (NP and coNP are closed under Karp
reductions). Whether Problem (iii) can be solved in polynomial time has been an open question
since the first combinatorial algorithm [GKK88]. Value iteration leads to a pseudo-polynomial
algorithm [ZP96]. Several algorithms rely on the idea of strategy iteration [How60], applying various
strategy improvement rules, see in particular [BV07, CTGG99, DG06, JPZ06]. A remarkable
example has recently been constructed [Fri09] in which some common rules lead to an exponential
number of iterations. However, many algorithms, including the one of [CTGG99, DG06], are
known to have experimentally a small average case number of iterations (growing sublinearly with
the dimension), see the benchmarks in [Cha09].

The support of a tropically convex set C ⊂ Rnmax is defined as the set supp(C) of indices j ∈ [n]
such that there exists x ∈ C verifying xj 6= −∞. Note that supp(C) is the greatest subset J ⊂ [n]
such that J = {j ∈ [n] | xj 6= −∞} for a certain x ∈ C.

Mean payoff games can be used to compute the support of the tropical polyhedron with mixed
constraints R. Indeed, j belongs to the support of R if, and only if, j ∈ supp(Rε) for some ε > 0.
By [AGG12, Theorem 3.2], the fact that j ∈ supp(Rε) is equivalent to χj(gε) > 0 and χn+1(gε) > 0,
i.e. to the fact that column nodes j and n+ 1 are both winning initial nodes for Player Max in the
game associated with Gε. Using the same arguments as above, it can be shown that there exists
ε > 0 such that χj(gε) > 0 if, and only if, χj(g0) > 1/(n+ 1) or χj(g1/(n+1)2) > 0.

In consequence, the support of R can be computed by determining the winning initial nodes
in the games associated with G′0 and G1/(n+1)2 . We point out that some policy iteration based
algorithms, such as the one of [CTGG99, DG06], directly provide the cycle-time vector χ(g) of the
dynamic programming operator g of a mean payoff game (and so all the winning initial nodes).

Remark 26. Positional strategies for Player Max are defined symmetrically to the ones for Player
Min, i.e. as functions τ from row nodes to column nodes, such that for each row node i there is
an arc in Gε connecting it with column node τ(i). Such a strategy τ induces a one-player game
(now played by Player Min) whose associated digraph Gτε is obtained by removing from Gε the arcs
connecting row nodes i with columns nodes j such that j 6= τ(i).

Positional strategies can be used as certificates to ensure that a mean payoff game is winning for
one of the players, and these certificates can be checked in polynomial time. For instance, given a
column node j ∈ [n+ 1], a strategy σ for Player Min satisfying χj(g

σ
ε ) 6 0 ensures that χj(gε) 6 0

by (24). In other words, column node j is a winning initial node for Player Min in the game
associated with Gε. Since as explained above χj(g

σ
ε ) is given by the maximal weight-to-length ratio
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of the circuits reachable from column node j in Gσε , it can be checked that χj(g
σ
ε ) is less than or

equal to 0 in polynomial time using Karp’s algorithm.

4.1.2. Polyhedra defined by systems with +∞ coefficients. We now deal with the case in which
Assumption A is not satisfied. Suppose that the tropical polyhedron with mixed constraints R is
defined by (22), where now N ∈ Gr×n. Observe that we can still assume that q ∈ (G \ {+∞})r,
because any inequality in which qi is equal to +∞ is trivial.

Given I ⊂ [r], we denote by RI the polyhedron defined by the inequalities

Mi1x1 ⊕ · · · ⊕Minxn ⊕ pi 6G (⊕Nij 6=+∞Nijxj)⊕ qi for i ∈ I.

The algorithm in Figure 6 determines whether R is empty by evaluating the emptiness of polyhedra
of the form RI . To prove the correctness of this algorithm, we shall use the following lemma.

Lemma 27. At each iteration of the loop at Line 4, we have R ⊂ RI∪I′.

Proof. We prove the lemma by induction on the number of iterations of the loop. Before the first
iteration, we have J = [n] and so I ∪ I ′ = {i ∈ [r] | Nij 6= +∞ for all j ∈ [n]}. Thus, the
polyhedron RI∪I′ is defined by a subsystem of Mx⊕ p 6G Nx⊕ q, and the inclusion R ⊂ RI∪I′
is immediate.

Now suppose that at iteration k we have R ⊂ RIk∪I′k , and let x ∈ R. If the loop is iterated

again, then the sets J , I and I ′ are respectively given by

Jk+1 = supp(RIk∪I′k)

Ik+1 = Ik ∪ I ′k
I ′k+1 = {i 6∈ Ik+1 | Nij 6= +∞ for all j ∈ Jk+1}

In consequence, we have supp(R) ⊂ Jk+1, and so xj = −∞ for j ∈ [n] \ Jk+1. Then, we deduce
that x satisfies the inequality

Mi1x1 ⊕ · · · ⊕Minxn ⊕ pi 6G (⊕j∈Jk+1
Nijxj)⊕ qi 6G (⊕Nij 6=+∞Nijxj)⊕ qi

for any i ∈ I ′k+1. Thus, we have x ∈ RI′k+1
. Since x ∈ R ⊂ RIk∪I′k = RIk+1

, we readily obtain

x ∈ RIk+1∪I′k+1
, which completes the proof. �

Proposition 28. The algorithm of Figure 6 is correct, and the number of iterations of the loop at
Line 4 is bounded by min(n, r).

Proof. Suppose that the algorithm returns true. Then RI = ∅, and by Lemma 27 we have R = ∅.
Now assume that false is returned. Let x ∈ RI be such that {j ∈ [n] | xj 6= −∞} = supp(RI) =

J . We claim that x ∈ R. Indeed, since I ′ = ∅ (which is the condition to reach Line 13 and return
false), we know that for all i 6∈ I there exists j ∈ J such that Nij = +∞. As xj 6= −∞ for j ∈ J ,
this means that the i-th inequality of the system Mx ⊕ p 6G Nx ⊕ q is satisfied (the right-hand
side is equal to +∞). As x also satisfies the inequalities of the system indexed by i ∈ I, the claim
is proved.

Finally, observe that at each iteration of the loop, the set I is strictly increased at Line 5.
Similarly, if at Line 10 the set I ′ is not empty, then necessarily the set J has been strictly decreased
at Line 9. We deduce that the number of iterations is indeed bounded by min(n, r). �

The idea behind the algorithm of Figure 6 can be used to build certificates.

Proposition 29. The problem of determining whether a polyhedron with mixed constraints is empty
belongs to NP ∩ coNP.
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Input: polyhedron with mixed constraints R defined by the system Mx⊕ p 6G Nx⊕ q
Output: true if R is empty, false otherwise

1: J := [n]
2: I := ∅
3: I ′ := {i ∈ [r] | Nij 6= +∞ for all j ∈ J}
4: while I ′ 6= ∅ do
5: I := I ∪ I ′
6: if RI is empty then
7: return true
8: else
9: J := supp(RI)

10: I ′ := {i 6∈ I | Nij 6= +∞ for all j ∈ J}
11: end if
12: end while
13: return false

Figure 6. Determining whether a polyhedron with mixed constraints is empty in
the general case.

Proof. A certificate that R 6= ∅ can be provided by two sets J ⊂ [n] and I ⊂ [r] such that
{i 6∈ I | Nij 6= +∞ for all j ∈ J} = ∅, together with positional strategies ensuring that RI 6= ∅
and supp(RI) = J (see Remark 26 and the discussion on supports which precedes it). The first
property of the sets I and J can be checked in polynomial time, the same as the properties RI 6= ∅
and supp(RI) = J thanks to the positional strategies for the players. As shown in the proof of
Proposition 28, this ensures that R is not empty. In consequence, the problem is in coNP.

To certify that R = ∅, we use a decreasing sequence J1 = [n], J2, . . . , Jk of subsets of [n] and an
increasing sequence I1, . . . , Ik of subsets of [r] such that

Il = {i ∈ [r] | Nij 6= +∞ for all j ∈ Jl} ,

for all l ∈ [k], together with positional strategies ensuring that RIl 6= ∅ and Jl+1 = supp(RIl) for
l ∈ [k− 1], and that RIk = ∅. Since Il+1 = Il ∪ {i 6∈ Il | Nij 6= +∞ for all j ∈ Jl+1} for l ∈ [k− 1],
it can be shown by induction on l ∈ [k] that R ⊂ RIl , using the same technique as in the proof
of Lemma 27. Thus, these certificates allow to prove that R = ∅, and they can be checked in
polynomial time. This completes the proof. �

4.2. Polynomial-time weak redundancy elimination. Since no polynomial-time algorithm is
known to evaluate the criteria given in Section 4.1, we also develop a sufficient criterion for which
a potentially faster algorithm exists. It consists in checking whether ex⊕ g 6G fx⊕ h is a linear
combination of the inequalities in Ax ⊕ c 6G Bx ⊕ d. Note that in general, this condition is not
necessary for (19) to hold (the tropical analogue of Farkas’ lemma given in [AGK11b] shows that
taking tropical linear combinations does not suffice to deduce all valid inequalities).

Now we see the constraint ex ⊕ g 6G fx ⊕ h as the (2n + 2)-dimensional row vector v :=

(e, g,f , h). Similarly, we introduce the matrix R ∈ Gp×(2n+2), whose rows are given by the vectors
(Ai, ci, Bi,di), for i ∈ [p], where Ai and Bi denote the i-th rows of A and B respectively. We
are reduced to the problem of determining whether there exists a p-dimensional row vector w
(with entries in G) such that v = wR. Without loss of generality, we assume that no row of R is
identically zero. We propose a method based on residuation theory (see e.g. [GP97]). Given x ∈ G,
the self-map z 7→ zx on G can be shown to be residuated, meaning that for each y ∈ G there exists
a maximal element of the set {z ∈ G | zx 6G y}, denoted by y/x. Indeed, the later element is given
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by:

y 7→ y/x :=

{
(|y| − |x|)− if x ∈ R, y ∈ R− ,
|y| − |x| otherwise,

where it is used the conventions α − (−∞) = +∞ for α ∈ Rmax, α − (+∞) = −∞ for α ∈ Rmax,
and (+∞)− (+∞) = +∞.

Proposition 30. Define the p-dimensional row vector w∗ by

w∗i := min
j∈[2n+2]

(vj/Rij)

for i ∈ [p]. Then, the inequality ex⊕ g 6G fx⊕h is a linear combination of the inequalities in the
system Ax⊕ c 6G Bx⊕ d if, and only if, v = w∗R.

The principle of Proposition 30 is that w∗ can be shown to be the greatest solution of wR 6G v.
Thus, there exists a solution to v = wR if, and only if, the equality is satisfied for w = w∗. It
follows that the criterion of Proposition 30 can be checked efficiently, in time O(n× p).

4.3. Complexity of successive Fourier-Motzkin eliminations. As discussed in the beginning

of Section 4, propagating redundant inequalities may produce O(p2
k
) constraints after k calls to

Fourier-Motzkin elimination method (recall that p refers to the number of constraints defining
the initial polyhedron). We claim that, in the case of closed tropical polyhedra, the number
of constraints remains simply exponential at every Fourier-Motzkin elimination when the weak
redundancy criterion is used. To see this, let P0 = P, P1, . . . , Pk be the closed tropical polyhedra
arising during a sequence of k calls to Fourier-Motzkin elimination followed by the weak inequality
redundancy elimination of Proposition 30.

Proposition 31. There exists a constant K (independent from k, n, and p) such that for all l ∈ [k],
the number of inequalities describing Pl obtained using the weak inequality redundancy elimination
is bounded by

(26) K(n− l + 1)pbn/2cb(n−l)/2c .

Proof. By the tropical analogue of McMullen’s upper bound theorem [AGK11a], we know that the
number q of extreme generators (points and rays) of P is bounded by U(p+n+1, n), where U(p, n)
is the number of facets of (classical) cyclic polytopes with p extreme points in dimension n. In

particular, q is bounded by pbn/2c when n and p are sufficiently large (see Appendix A).
It is straightforward to see that the extreme generators of every polyhedron Pl (l ∈ [k]) arise

as the projection of some of the extreme generators of P. In consequence, the number of extreme
generators of each Pl is bounded by q.

Dually, the set of inequalities satisfied by all the points of a tropical polyhedron Q forms a
tropical polyhedral cone called the polar cone of Q, see [AGK11b]. As proved in [AGK11a], if Q is
generated by q points and rays in dimension n− l, the number of (non-trivial) extreme rays of its
polar is bounded by (n− l+1)(U(q+n− l+1, n− l)−n+ l+2). In particular, this also bounds the
size of any description of Q by linearly independent inequalities. It can be shown that there exists
a constant K ′ > 0 such that the latter quantity is bounded by K ′(n− l+ 1)qb(n−l)/2c for all values
of q and n − l (see Appendix A). It follows that the representation by inequalities obtained after
the application of the weak redundancy criterion is bounded by a quantity of the form (26). �

As a consequence, after the (l+1)-th call to Fourier-Moztkin elimination, the number of inequal-
ities (defining Pl+1) is bounded by the square of (26), and the weak redundancy criterion can be
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applied in time O((n− l)3pn(n−l)/2). It follows that the complexity of k successive calls to tropical
Fourier-Motzkin elimination using the weak redundancy criterion can be bounded by

O(kn3pn
2/2) .

Therefore, the time complexity is only exponential in the worst case.
Since the criterion provided by Theorem 25 may eliminate further inequalities, the number of

inequalities describing Pl obtained using this criterion instead of the weak one is also bounded
by (26). However, this has to be balanced with the potentially greater cost of the associated
algorithm for solving mean payoff games.

5. Tropical forward exploration for timed automata

Timed automata is one of the formalisms used for modelling and verification of real-time systems.
As an application of the methods developed in this paper, we show how the forward exploration
algorithm for timed automata [AD94] can be implemented using tropical polyhedra with mixed
constraints as symbolic states. This algorithm is used to solve the reachability problem, to which
most verification problems for timed automata can be reduced, see [HNSY94, ACD93].

We first recall some notions concerning timed automata, and illustrate with an example the
drawbacks (mentioned in the introduction) of using zones or closed tropical polyhedra as symbolic
states. Note that zones are also used as symbolic states in the verification of other real-time models
such as e.g. timed Petri nets [Bow96, LRST09], hence the corresponding algorithms can potentially
benefit from our results too.

We consider a timed automaton over the set of clocks C = {x1, . . . ,xn}. It is represented by a
directed graph whose nodes correspond to locations (l0, l1, . . . ). We denote by l0 the initial location

and by L the set of locations. An edge from location l to l′ is denoted by l
φ,r−→ l′, where φ

represents a clock constraint and r a set of reset operations. More precisely, φ is a (possibly empty)
conjunction of atomic clock constraints of the form xi ./ k and xi ./ k + xj , where xi,xj ∈ C,
k ∈ Z, and ./ ∈ {<,6,=,>, >}. Besides, r is defined as a partial function from C to N, meaning
that xi is mapped to k when the clock xi is reset to the value k. The set of edges is denoted by
E. Each location l can be additionally labeled by a clock constraint θ(l). Then, the states of the
automaton are of the form (l, v), where l ∈ L and v : C → R≥0 is such that (v(x1), . . . , v(xn))
satisfies the constraint θ(l). The evolution of the system (i.e. the semantics of the automaton) is
expressed as a transition relation on these states, denoted by  . Transitions can be of two kinds:

Delays: where clock values increase synchronously at a given location. More precisely, (l, v)  
(l, v′) if there exists t > 0 such that v′(xi) := v(xi)+t for all i ∈ [n], and (v(x1)+t′, . . . , v(xn)+t′)
satisfies θ(l) for all t′ ∈ [0, t].

Switches: which are governed by the edges l
φ,r−→ l′. In this case, we have (l, v)  (l′, v′) if

(v(x1), . . . , v(xn)) satisfies the constraints φ, and v′(xi) := r(xi) if r is defined on xi, v
′(xi) :=

v(xi) otherwise.

The basic problem in the verification of timed automata is (untimed) reachability: is a final
location lf of the automaton reachable? More precisely, the reachability problem consists in de-
termining whether there exist clock values vf : C → R≥0 and a finite path (l0, v0)  ∗ (lf , vf ) of
transitions in the automata, where v0 is the function which maps every xi to 0.

Example 32. Consider the timed-automaton fragment depicted in Figure 7, which involves two
clocks x1 and x2. Its edges are labeled by the reset operations (for instance, x1 := 0) and/or the
constraints on clocks (for instance, x2 > 1). As mentioned above, the initial location is l0, and the
two clocks are initialized to 0.

The diagrams on the right-hand side of Figure 7 depict the symbolic states of this automaton,
i.e. the sets of states (clock values) which can arise at each location. For instance, at location l0 we
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l0

l1 l2

l3

lf

x1 := 0 x2 := 0

x2 > 1 x1 > 1

x1 6 1 ∧ x2 6 1

l0 :

l1 : l2 :

l3 : = ∪

lf :

Figure 7. Left: Timed automaton. Right: Symbolic states accumulated during
forward exploration, shown after delays (black borders are included in the depicted
gray regions).

recover the initial state x1 = x2 = 0, and all the other states x1 = x2 = t > 0 arise as time goes
by while staying at the same location. Similarly, the states at location l1 are obtained from the
ones at location l0 by resetting clock x1, i.e. setting x1 = 0, while x2 > 0 is not affected. Then,
as time goes by, we get all the states satisfying 0 6 x1 6 x2. Note that the final location lf is not
reachable in this example.

The symbolic states at locations l0, l1 and l2 can be represented exactly by zones, but the one at
location l3 cannot. Hence, the symbolic state at l3 has to be split, potentially doubling the number
of symbolic states to be visited after. If several such timed-automaton fragments are concatenated,
it is easy to see that this splitting of symbolic states may lead to a situation where an exponential
number of zones have to be used to determine that the final location is not reachable. Alternatively,
the symbolic state at location l3 could be over-approximated by a single zone , but in this case

we cannot certify anymore that the final location lf is not reachable. On the other hand, the use
of closed tropical polyhedra to over-approximate the union of the sets of states arising from l1 and
l2 provides the closure of this union, which contains the point (1, 1). Then, the final location

lf becomes reachable, while it should not if strict constraints were correctly handled.

The reachability problem can be solved using a symbolic forward exploration algorithm, first
given in [HNSY94], which is still used in state-of-the-art tools. This algorithm, shown in Figure 8,
is usually implemented using zones (or DBMs). The algorithm explores sets of reachable states,
representing them as symbolic states using zones, and performing symbolic delay and switch opera-
tions on them. We do not discuss this algorithm further, but we point out that any class of symbolic
states can be used, provided that it supports the operations is empty, is included, intersect,
reset, and delay used in the above algorithm. We now detail the definition of these operations,
and show how to implement them over tropical polyhedra with mixed constraints.

The operation is empty(P) determines whether the polyhedron P is empty. It is implemented
using the methods described in Section 4.1, i.e. through a reduction to mean payoff games. The
operation is included(P1,P2) checks if P1 ⊂ P2. This can be performed using the procedure for
deciding implications of Section 4.1, by determining whether the system of inequalities defining P1
implies each defining inequality of the polyhedron P2. The operation intersectψ(P) computes the
intersection of P with the constraints in ψ. It is simply defined by appending the inequalities in ψ
to the system defining P, where any strict constraint in ψ is encoded as an inequality over G using
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Input: timed automaton (L, l0, C, θ, E), lf ∈ L
Output: true if ∃vf : C → R≥0 : (v0, l0) ∗ (lf , vf ), false otherwise

1: Waiting := {(l0, intersectθ(l0)(delay({v0})))}; Passed := ∅
2: while Waiting 6= ∅ do
3: Choose and remove (l, V ) from Waiting
4: if l = lf then
5: return true
6: end if
7: if (not is included(V, V ′)) for all (l, V ′) ∈ Passed then
8: Passed := Passed ∪ {(l, V )}
9: for all l

φ,r−→ l′ do
10: V ′ := intersectθ(l′)(delay(resetr(intersectφ(V ))
11: if not is empty(V ′) then
12: Waiting := Waiting ∪ {(l′, V ′)}
13: end if
14: end for
15: end if
16: end while
17: return false

Figure 8. The symbolic forward reachability algorithm for timed automata.

elements of the form λ−. The operation resetxi:=k(P) consists in computing the polyhedron

{y ∈ Rnmax | x ∈ P, yj = xj if j 6= i, yi = k} .

It can be obtained by eliminating xi in the system of constraints defining P using Fourier-Motzkin
elimination, and then intersecting the resulting polyhedron with the constraint xi = k (encoded
as two inequalities xi 6G k and k 6G xi). Finally, the operation delay(P) consists in converting
the polyhedron P into the set {λx | x ∈ P, λ > 0} (recall that λx corresponds to the vector with
entries λ + xi). Assuming that P is given by the system Ax ⊕ c 6G Bx ⊕ d, we first let Q be
the polyhedron defined by Ax ⊕ λc 6G Bx ⊕ λd and 0 6G λ, and then apply Fourier-Motzkin
elimination on λ to get delay(P). To prove this algorithm is correct, observe that:

delay(P) = {λx ∈ Rnmax | 0 6G λ, Ax⊕ c 6G Bx⊕ d}
= {x ∈ Rnmax | 0 6G λ, A(λ−1x)⊕ c 6G B(λ−1x)⊕ d}
= {x ∈ Rnmax | 0 6G λ, Ax⊕ λc 6G Bx⊕ λd} .

To combat state space explosion, symbolic states are also equipped with an over-approximating
union operator. In this way, symbolic states which are reached through different paths may be
recombined, leading to a significant reduction in the number of symbolic states the forward ex-
ploration algorithm has to consider. Given two polyhedra with mixed constraints P,P ′ ⊂ Rnmax,
the over-approximation union operator over approx(P,P ′) is defined as the tropical convex hull
of P ∪ P ′. Note that given systems of mixed inequalities describing P and P ′, a system describing
over approx(P,P ′) can be computed by means of Proposition 12. As this involves 2n+ 2 calls to
tropical Fourier-Motzkin elimination, it is crucial to implement some redundancy elimination.

Observe that the error introduced using the operation over approx over polyhedra with mixed
constraints is smaller than using zone-based over-approximation. Indeed, zones are tropically con-
vex, and thus any zone containing P ∪ P ′ also contains the tropical convex hull of P ∪ P ′. In the
example of Figure 7, the over-approximating union by polyhedra with mixed constraints of the
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two sets of states arising at l3 is exact, and given by the polyhedron defined by x1,x2 >G 0 and
1 6G 0−x1 ⊕ 0−x2, or equivalently, 1 < max(x1,x2).

We have implemented a prototype of the forward exploration algorithm based on tropical poly-
hedra with mixed constraints. The algorithms of Section 3 and the operations described above have
been implemented within the OCaml library TPLib [All12], whose purpose is to provide algorithms
for tropical polyhedra. It relies on the library MPGLib [AS11], which implements the algorithm
in [DG06] for solving mean payoff games by policy iteration. Our prototype successfully checks
that location lf is not reachable in the timed automaton of Figure 7. In future works, we plan to
apply our method on more representative examples taken from real case studies, and to compare
it in terms of performance/precision with state-of-the-art tools such as Uppaal [BDL+06].
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Appendix A. Additional details for the proof of Proposition 31

We first recall that:

U(p, n) =

{(p−bn/2c
bn/2c

)
+
(p−bn/2c−1
bn/2c−1

)
for n even,

2
(p−bn/2c−1
bn/2c

)
for n odd.

Thus, if n is even,

U(p+ n+ 1, n) =

(
p+ 1 + bn/2c
bn/2c

)
+

(
p+ bn/2c
bn/2c − 1

)
,

and if n is odd,

U(p+ n+ 1, n) = 2

(
p+ 1 + bn/2c
bn/2c

)
.

In both cases, it can be easily checked that

U(p+ n+ 1, n) 6 2

(
p+ 1 + bn/2c
bn/2c

)
.

We claim that for p and n sufficiently large,

(27) U(p+ n+ 1, n) 6 pbn/2c .

Let m := bn/2c. By Stirling approximation formulas, we know that for all positive integer h,
√

2πh(h/e)h 6 h! 6 e
√
h(h/e)h

As a result, (
p+ 1 +m

m

)
6

e

2π

√
p+ 1 +m

(p+ 1)m

(
1 +

p+ 1

m

)m(
1 +

m

p+ 1

)p+1

6
1

2

(
1 +

p+ 1

m

)m(
1 +

m

p+ 1

)p+1

when p > 1 and m > 2. We next show that
(
1+ p+1

m

)m(
1+ m

p+1

)p+1
is bounded by pm by considering

their logarithm:

m ln
(

1 +
p+ 1

m

)
+ (p+ 1) ln

(
1 +

m

p+ 1

)
6 m ln

(
1 +

p+ 1

m

)
+m = m ln

(e(p+ 1 +m)

m

)
6 m ln p

as soon as e(p + m + 1) 6 pm. The latter condition is satisfied if p > 6 and m > 6. This shows
that (27) holds when p > 6 and n > 12.

Using the same arguments, we obtain that:

U(q + n− l + 1, n− l) 6 qb(n−l)/2c

as soon as q > 6 and n− l > 12. In any case, we can find a constant K ′ > 0 such that for all values
of q and n− l,

U(q + n− l + 1, n− l) 6 K ′qb(n−l)/2c
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Assuming that q 6 U(p+ n+ 1, n), it follows that for a certain constant K ′′ > 0,

(n− l + 1)(U(q + n− l + 1, n− l)− n+ l + 2) 6 K ′′(n− l + 1)pbn/2cb(n−l)/2c

if p > 6 and n > 12. This allows to show that there exists K > 0 such that for all p, n, and
l ∈ [n− 1],

(n− l + 1)(U(q + n− l + 1, n− l)− n+ l + 2) 6 K(n− l + 1)pbn/2cb(n−l)/2c .
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