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We study the vacuum (i.e., zero-temperature) Casimir energy for a system of neutral conductors which
are isolated, as opposed to grounded. The former is meant to describe a situation where the total charge on
each conductor, as well as all of its fluctuations, vanishes, while the latter describes a situation where the
conductors are connected to a charge reservoir. We compute the difference between the vacuum energies for
a given system of conductors, but subjected to the two different conditions stated above. The results can be
written in terms of a generalized, frequency-dependent capacitance matrix of the system. Using a
multipolar expansion, we show that the grounded Casimir energy includes a monopole-monopole
interaction term that is absent in the isolated case in the large distance limit.
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I. INTRODUCTION

In this article we consider the Casimir energy for the
quantum electromagnetic (EM) field in the presence of a
system of perfect conductors [1], paying particular atten-
tion to the boundary conditions allowed by perfect con-
ductivity. At the classical level, perfect conductivity does
not specify the problem completely, unless one introduces
some extra “global” information regarding the state of
those conductors. For example, in the electrostatic case, it is
necessary to specify either the total charge or the value of
the electrostatic potential on each conductor. In time-
dependent situations one should specify the charge of each
conductor, or the values of the EM four-potentials, once the
gauge freedom is properly fixed. At the quantum level, that
extra information plays the role of “boundary conditions”
for the fluctuating fields. Among the possible choices for
the state of the conductors, we focus on two cases:
grounded and isolated (and globally neutral) conductors.
In the functional integral approach to the calculation of the

Casimir energy, the fluctuatingEM field is integrated out and
subjected to the proper gauge and boundary conditions,
which for perfect conductors imply that the tangential
component of the electric field and the normal component
of themagnetic field vanish on the surfaces of the conductors.
These conditions alone do not fix completely the total charge
of each conductor: although the mean value of the charges
vanishes, the fluctuations do not. Physically, this situation
corresponds to a case in which the conductors are connected
to a charge reservoir (we refer to this situation as grounded).
One could also consider the alternative case in which the
conductors are neutral and isolated. This means not only
that the mean value of the total charge should vanish, but

also that all correlations between total charges should.
Mathematically, it is necessary to introduce additional
constraints in the path integral, to ensure that the total
charges do not fluctuate. Therefore, the Casimir energy is
different for grounded and isolated conductors. The main
goal of this paper is to obtain an explicit expression for the
difference between grounded and isolated Casimir vacuum
energies at zero temperature. This problem has been partially
addressed in previous works [2,3]. In particular, in Ref. [3]
we considered the Casimir free energies in the high-temper-
ature limit. In that case, only the zeroMatsubara frequency of
the EM field is relevant and the problem can be described in
terms of an “electrostatic potential.” For grounded conduc-
tors, the potential vanishes on each surface, and the total
charge of each conductor is not fixed. On the other hand, for
isolated bodies, the total charges vanish and do not fluctuate,
while the values of the potential on each surface are not
specified. Moreover, the partition function for the isolated
case can be obtained from a partition function in which one
specifies the values of the potential on each conductor, and
then integrates out over all those possible values.
In order to obtain the partition function for grounded and

isolated conductors for the EM field at zero temperatures,
in Sec. II we first revisit the high-temperature limit, and
show that the partition function for the isolated case can be
obtained by imposing perfect conductor boundary con-
ditions on the surfaces along with the additional constraints
of vanishing total charges on each conductor. Indeed, in the
grounded case the conductors are connected to charge
reservoirs, and therefore one should include in the func-
tional integral field configurations with arbitrary values of
the total charges. On the contrary, in the isolated case, the
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functional integral is restricted only to those configurations
with vanishing total charge in each conductor. As we see,
this procedure can be implemented mutatis mutandis to the
EM field at zero temperature.
In Sec. III, we introduce the observable that we study in

the remainder of this article, namely, the difference between
the Casimir energies for grounded or isolated conductors at
T ¼ 0. We find an explicit expression for this difference in
terms of generalized, frequency-dependent capacitance
coefficients.
In Sec. IV we evaluate the difference of the Casimir

energies in the large distance limit, using a multipolar
expansion. As expected, the grounded Casimir energy
includes a monopole-monopole interaction that is absent
in the isolated case, and therefore it shows a slower decay
with distance.
We present our conclusions in Sec. V. In particular, we

discuss the relation between our results and those obtained
for perfect conductors as a limiting case of magnetodi-
electric materials.

II. GROUNDED VERSUS ISOLATED
CONDUCTORS: PARTITION FUNCTIONS

A. Electrostatics

In order to clarify the further developments, we begin by
considering a simplified version of the system that we
want to consider, namely, that of electrostatics in the
presence of a system of conductors. Fluctuations are
introduced into the system by regarding it as in thermal
equilibrium with a heat bath at a given temperature, and
working with the corresponding canonical ensemble. Note
that this classical system may also be approached by taking
the high-temperature limit for the finite-temperature quan-
tum EM field version. This is indeed the case we have
considered, from a different standpoint, in a previous
reference [3].
To introduce the canonical ensemble, we need its

classical energy E, which we write in terms of the
electrostatic potential. To define the geometry of the
system, we denote by Vα (α ¼ 1;…; N) the spatial region
occupied by each conductor and by Sα the boundary (a
closed surface) of each region, respectively. Besides, we
use U for the complement of the region occupied by the
conductors; namely, U ¼ R3 − ∪N

α¼1Vα. If S denotes the
boundary of U, then S ¼ ∪N

α¼1Sα.
For electrostatics the energy functional reads

E½ϕ# ¼
Z

U
d3x

1

2
j∇ϕðxÞj2; ð1Þ

in terms of the electrostatic potential ϕ.
The classical partition function for isolated and grounded

conductors can be written in terms of an intermediate
object, which is a partition function where the (constant)

value of ϕ on each surface Sα is fixed to a given but
otherwise arbitrary value ϕα,

Z½fϕαg# ¼
Z

Dϕe−βE½ϕ#
YN

α¼1

δ½ϕjSα − ϕα#; ð2Þ

where β ¼ 1
T (note that in Ref. [3] we used a different

normalization for the electrostatic potential). From now on,
we set β ¼ 1, since the global factor in the action is
irrelevant for our discussion.
Thus, we may obtain the partition functions correspond-

ing to grounded (ZðgÞ) and isolated (ZðiÞ) conductors as
follows [2,3]:

ZðgÞ ¼ Z½fϕαg#jϕα¼0 ð3Þ

and

ZðiÞ ¼
Z

∞

−∞

!YN

α¼1

dϕα

"
Z½fϕαg#: ð4Þ

The partition function ZðiÞ can be derived using an
alternative procedure that is useful for the generalization to
the case of electrodynamics. We impose, in addition to the
Dirichlet boundary conditions, the constraint of vanishing
total charge on each conductor,

ZðiÞ ¼
Z

Dϕe−E½ϕ#
YN

α¼1

δ½ϕjSα #δ½Qα#; ð5Þ

where

Qα ¼ −
I

Sα
dsα∇ϕ · nα; ð6Þ

and nα is the unit outer normal to the surface. Strictly
speaking, the integral in Eq. (6) should be performed on a
surface that is outside and infinitesimally close to the
conductor’s surface, since the normal component of the
electric field is discontinuous across the surface. This detail
is implicitly understood in what follows. The δ-function on
each surface can be written in terms ofN auxiliary variables
ϕα as

2πδ½Qα# ¼
Z

dϕαeiϕαQα ¼
Z

dϕαe
i
R

d3xραϕ; ð7Þ

where

ρα ¼ −ϕα

I

Sα
dsαnα ·∇δðx − xSαÞ: ð8Þ

Note that ρα corresponds to the surface charge density
of an electric dipole layer of strength ϕαnα which is
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infinitesimally close to the surface of the conductor. As
discussed previously when studying the effect of patch
potentials on the Casimir force [4], the combination of a
grounded conductor and such a layer is equivalent to a
single conductor at a potential ϕα. Therefore, the two
constraints in Eq. (5) are equivalent to imposing first
ϕjSα ¼ ϕα and then integrating over all possible values
of ϕα. Thus, Eqs. (4) and (5) are equivalent. One can check
this explicitly by performing the functional integral in
Eq. (5). The result is

ZðiÞ ¼
#YN

α¼1

Z
dϕαe

1
2

R
d3x

R
d3y

P
αβ
ραðxÞGðx;yÞρβðyÞ

$
ZðgÞ; ð9Þ

whereG is the Green’s function of the electrostatic problem
satisfying Dirichlet boundary conditions. Using the explicit
expression for ρα, and after integration by parts, we obtain

Z
d3x

Z
d3yραðxÞGðx; yÞρβðyÞ

¼ ϕαϕβ

I

Sα
dsα

I

Sβ
dsβ∂nα∂nβG ¼ −ϕαϕβCαβ; ð10Þ

where Cαβ are the coefficients of capacitance (written in
terms of the Green’s function). Therefore

ZðiÞ ¼
#YN

α¼1

Z
dϕαe

−1
2

P
γδ
Cγδϕγϕδ

$
ZðgÞ; ð11Þ

which is the same result we obtained in our previous paper
[3], starting from Eq. (4).

B. Electrodynamics

We deal now with the equivalent situation but in
electrodynamics at zero temperature. In our conventions,
the Euclidean Maxwell action S is given by

S ¼ −
1

4

Z
dx0

Z

U
d3xFμνFμν ð12Þ

with Fμν ≡ ∂μAν − ∂νAμ. The space-time indices μ; ν;…
run from 0 to 3; the Euclidean time coordinate is τ ¼ x0.
Due to gauge invariance, the generalization of Eq. (4) to

the EM field is not obvious. On the contrary, Eq. (5) admits
such generalization. Indeed, let us define the grounded
(Euclidean) partition function as

ZðgÞ ¼
Z

DAδG½A#e−S½A#; ð13Þ

where S is the Maxwell action and δG½A# is a shorthand
notation for the perfect-conductor boundary conditions
imposed on the conductors (gauge fixing is implicitly
understood in the integration measure).

For an isolated system, on the other hand, one has to
introduce a constraint on the total charge in each conductor.
This can be introduced on top of the previous case by
adding to the integration measure a product of δ-functions
of Qα,

ZðiÞ ¼
Z

DAδG½A#δQ½A#e−S½A#; ð14Þ

where

δQ½A# ¼
YN

α¼1

δ

!I
dsα ·EðαÞ

"
: ð15Þ

Note that we can write Eq. (14) as

ZðiÞ ¼ ZðgÞhδQ½A#iG ð16Þ

where the “G-average” symbol is defined by

h…iG ≡
R
½DA#δG½A#…e−S½A#R
½DA#δG½A#e−S½A#

: ð17Þ

Equation (16) is our starting point to analyze the difference
between the zero-temperature Casimir energies for
grounded and isolated conductors.

III. GROUNDED VERSUS ISOLATED
VACUUM ENERGIES

Let us begin by introducing EðgÞðEðiÞÞ, the vacuum
energy for the EM field in the presence of a system of
grounded (isolated) conductors. We may write that energy
in terms of the corresponding zero-temperature Euclidean
partition function ZðgÞðZðgÞÞ as follows:

Eðg;iÞ ¼ − lim
T→∞

#
1

T
logZðg;iÞ

$
; ð18Þ

where T is the extent of the Euclidean time coordinate.
Therefore, the observable we are interested in is

ΔE≡ EðgÞ − EðiÞ ¼ lim
T→∞

#
1

T
log hδQ½A#iG

$
: ð19Þ

To proceed, it is necessary to be more explicit about
the boundary conditions on each surface. In particular, we
need an explicit functional expression for δQ½A#. Let us
consider one of the surfaces, and introduce a parametriza-
tion for its points, in terms of two real parameters
ðσ1; σ2Þ≡ σ,

σ → yðσÞ; ð20Þ
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where y ∈ R3. Let us also introduce the notations yμ ¼
ðx0; yÞ and σa ¼ ðσ0 ≡ x0; σ1; σ2Þ. Latin indices a, b, c run
from 0 to 2.
Perfect-conductor boundary conditions can be written

in terms of the projection of the vector potential on the
surface as

ϵabc∂bAcjS ¼ 0; ð21Þ

where Ac ¼ ecμAμ and ecμ ¼ ∂yμ=∂σc. Then, the vanishing
of E∥, the components of the electric field which are
parallel to the surface, is written as

∂y
∂σi ·Eðτ; yðσÞÞ ¼ 0; i ¼ 1; 2; ð22Þ

(E≡ ∂0A −∇A0), while for the normal component of the
magnetic field B≡∇ ×A, the corresponding condition is

nðσÞ ·Bðτ; yðσÞÞ ¼ 0; ð23Þ

with nðσÞ being the unit normal to S at the point yðσÞ,

nðσÞ ¼ NðσÞ
jNðσÞj

; NðσÞ ¼ ∂y
∂σ1 ×

∂y
∂σ2 : ð24Þ

For the isolated partition function, we select, among the
field configurations with vanishing parallel components of
the electric field and normal components of the magnetic
field on the surfaces of the conductors, only those where the
total charge on each one of them vanishes. Contrary to what
happens for the perfect-conductor boundary conditions,
this condition is nonlocal, since it involves an integral over
each surface,

QαðτÞ ¼
Z

Sα
d2σNðσÞ · Eðτ; yðσÞÞ ¼ 0: ð25Þ

It is convenient to introduce N auxiliary time-dependent
fields λαðτÞ (α ¼ 1;…; N), so that

δQ½A# ¼
Z !YN

α¼1

Dλα

"
e−i

R
þ∞
−∞

dτ
P

N
α¼1

λαðτÞQαðτÞ: ð26Þ

By an integration by parts, we see that

δQ½A# ¼
Z !YN

α¼1

Dλα

"
ei
R

d4xJμðxÞAμðxÞ; ð27Þ

with

J0ðxÞ ¼
XN

α¼1

λαðτÞ
X

i

Nα
i ðσÞ

∂
∂xi δðx − yαðσÞÞ;

JiðxÞ ¼ −
XN

α¼1

_λαðτÞNα
i ðσÞδðx − yαðσÞÞ; ð28Þ

where we have added an α index to distinguish objects
belonging to different surfaces.
Now, recalling that the integral over the gauge field in the

h…iG averages is a Gaussian, we see that ΔE may be
represented as follows:

ΔE ¼ lim
T→∞

log
!
1

T
ΔZ

"
; ð29Þ

where

ΔZ ¼
Z !YN

α¼1

Dλα

"
e−

1
2

R
d4x

R
d4x0JμðxÞGμνðx;x0ÞJνðx0Þ; ð30Þ

where Jμ is as defined in (28) and we have introduced Gμν,
the hAμðxÞAνðx0ÞiG correlation function for the gauge field
in the presence of the grounded conductors.
Taking into account the specific form of Jμ, we see that

ΔE ¼ −
1

2

Z
dω
2π

log½det ~CðωÞ#; ð31Þ

where we have introduced a frequency-dependent matrix
CðωÞ ¼ ½CαβðωÞ#N×N , which generalize the capacitance
coefficients,

~CαβðωÞ ¼
Z

dτeiωτCαβðτÞ; ð32Þ

with

CαβðτÞ ¼
X

i;j

I
dsαi

I
dsβj hEiðτ; yαÞEjð0; yβÞiG: ð33Þ

Here dsαi denotes the i-component of the outer normal
area element for the conductor surface labeled by α.
Equation (31) is our main result.
Recalling the relation between the normal component of

the electric field and the surface density in a conductor, we
may also write

CαβðτÞ ¼
I

dsα
I

dsβhσðτ; yαÞσð0; yβÞiG: ð34Þ

Note that the time-dependent capacitance coefficients intro-
duced here reduce to the usual ones in the electrostatic case
[see Eq. (10)]. Therefore, the formulas above reproduce the
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high-temperature ones in the case of periodic time evolution,
if one just keeps the zero mode.

IV. MULTIPOLAR EXPANSION OF THE
GROUNDED VACUUM ENERGY

In order to illustrate the main difference between the
grounded and isolated vacuum energies, in this section we
compute EðgÞ using a multipolar expansion, which is
adequate to describe the interaction between conductors
separated at distances much larger than their characteristic
sizes. The main contribution in this expansion is the
monopole-monopole interaction, which is absent for iso-
lated conductors due to the condition of neutrality. All the
other contributions, coming from higher multipoles, are
equal for grounded or isolated conductors, since they
are independent of the total charge (we assume multipoles
are defined with the center of charge as the origin).
To perform the calculation, it is necessary to obtain an

explicit form for the constraint δG½A#. Taking into account
Eq. (21), and introducing an auxiliary field ξðαÞa ðx0; σÞ on
each surface we have

δG½A# ¼
Z #YN

α¼1

DξðαÞa

$
ei
P

α

H
Sα

ξðαÞa ϵabc∂bAðαÞ
c

≡
Z #YN

α¼1

DξðαÞa

$
ei
R

d4xJμAμ ; ð35Þ

where

JμðxÞ ¼
X

α

JðαÞμ ðxÞ ð36Þ

and

JðαÞμ ðxÞ ¼
Z

d2σδðx − yðαÞðσÞÞeaðαÞμ ðσÞϵabc∂bξ
ðαÞ
c ðx0; σÞ:

ð37Þ

Working in the Feynman gauge, the grounded partition
function reads

ZðgÞ ¼
Z #YN

α¼1

DξðαÞa

$
e−

1
2

R
x;x0

JμðxÞGðx−x0ÞJμðx0Þ; ð38Þ

with Gðx − x0Þ being the free Green’s function of the four-
dimensional Laplacian. In terms of its temporal Fourier
transform

~Gðω;x − x0Þ ¼ 1

4π
e−jωjjx−x0j

jx − x0j
≡ Vωðx − x0Þ; ð39Þ

we have

Z

x;x0
JμðxÞGðx − x0ÞJμðx0Þ

¼
Z

x;x0

Z
dω
2π

~J'μðω;xÞVωðx − x0Þ~Jμðω;x0Þ

≡ TðgÞ: ð40Þ

Now we implement the multipolar expansion.
Generalizing the approach of Ref. [2], we write Eq. (40) in
terms of the multipoles associated to the currents JðαÞμ that are
linear functions of the auxiliary fields ξðαÞa , and then perform
the functional integration in Eq. (38) using as integration
variables the multipoles instead of the auxiliary fields.
Combining Eqs. (36) and (40) we see that TðgÞ can be

written as a sum over all pairs of conductors,

TðgÞ ¼
X

αβ

TðgÞ
αβ ; ð41Þ

including self-pairings.
In the lowest order approximation, and when α ≠ β,

we set

Vωðx − x0Þ≃ Vωðxα − x0
βÞ≡ VωðRαβÞ; ð42Þ

where xα denotes the position of the αth conductor and Rαβ

the distance between the pair of conductors. Therefore,

TðgÞ
αβ ≃

Z
dω
2π

~QðαÞ'ðωÞVωðRαβÞ ~QðβÞðωÞ ðα ≠ βÞ; ð43Þ

with

~QðαÞðωÞ ¼
Z

d3x ~JðαÞ0 ðω;xÞ: ð44Þ

Regarding the diagonal terms TðgÞ
αα , on general grounds,

and neglecting higher order multipoles, we expect to be
proportional to the square of the charge that is

TðgÞ
αα ≃

Z
dω
2π

γαðωÞjQðαÞðωÞj2 ð45Þ

for some frequency-dependent form factor γα. We can
obtain a crude estimation of γα along the lines of Ref. [2].
We have

TðgÞ
αα ¼

Z

x;x0

Z
dω
2π

~J'ðαÞ0 ðω;xÞVωðx − x0Þ~JðαÞ0 ðω;x0Þ

¼
Z

dω
2π

Z
d3k
ð2πÞ3

j ~~J
ðαÞ
0 ðω;kÞj2

k2 þ ω2
; ð46Þ

where ~~J0 denotes the spatial Fourier transform of ~J0. Let us
assume that the characteristic size of the conductor is Lα.
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The main contribution to the self-interaction comes from
values of k such that jkj ≤ 1=Lα. Therefore, keeping only
the monopole contribution in Eq. (46) we obtain Eq. (45)
with

γαðωÞ ¼
Z

jkjLα≤1

d3k
ð2πÞ3

1

k2 þ ω2
: ð47Þ

We now insert the results for TðgÞ
αβ given in Eqs. (43) and

(45) into Eq. (38) and change the integration variables from
the auxiliary fields ξðαÞa to the multipole moments. As the
relation is linear the Jacobian is irrelevant for our purposes.
In the monopole-monopole approximation we keep only
the total charges and therefore

ZðgÞ ≃
Z #YN

α¼1

d ~QðαÞðωÞ
$
e−

1
2T

ðgÞ : ð48Þ

Performing the Gaussian integrals and introducing the
frequency-dependent matrix,

½VðωÞ#αβ ¼ δαβγαðωÞ þ ð1 − δαβÞVωðRαβÞ; ð49Þ

we obtain

EðgÞ ≃ 1

2

Z
dω
2π

tr log½VðωÞ#: ð50Þ

After standard manipulations we get, in the large distance
limit,

EðgÞ ≃ −
1

128π2

Z
dω

X

α≠β

1

γαðωÞγβðωÞ
e−2jωjRαβ

R2
αβ

¼ −
1

128π2
X

α≠β

1

R3
αβ

Z
dν

e−2jνj

γαðν=RαβÞγβðν=RαβÞ
; ð51Þ

where we discarded the self-energies of the conductors. The
last equation shows that, for grounded conductors, the
vacuum energy decays as 1=R3

αβ at large distances, as long
as the form factors γα have a well-defined zero-frequency
limit. This is indeed the case in the radial cutoff model used
above, since the explicit form for γα becomes

γαðωÞ ¼
1

2π2Lα

#
1 − ωLα arctan

!
1

ωLα

"$
; ð52Þ

which tends to 1
2π2Lα

when ωLα → 0.
It is interesting to remark that higher order multipoles

would contribute to both the grounded and isolated vacuum
energies. However, the monopole terms are present only in
the grounded case, because of the constraints on the total
charges of the conductors. The leading contribution for
isolated conductors would be the retarded dipole-dipole

interaction that produces a vacuum energy that decays as
1=R7

αβ, as illustrated by the case of two spheres in the large
separation limit [5].

V. CONCLUSIONS

The main result of this paper is the observation that,
when a system of conductors is connected to a charge
reservoir, the vacuum forces receive additional contribu-
tions coming from charge fluctuations in each conductor.
The difference between the vacuum energy for a system of
isolated conductors and that corresponding to the same
geometry but with grounded conductors depends on a
frequency-dependent capacitance matrix.
In a multipolar expansion, the monopole terms are

responsible for the difference between the forces for
isolated and grounded conductors. In particular, at large
distances the vacuum energy decays as 1=R3 for grounded
conductors, which corresponds to a retarded Coulombian
interaction between fluctuating charges, while it decays as
1=R7 in the isolated case, corresponding to the retarded
dipole-dipole interaction (in the grounded case there is also
a term that decays as 1=R5, due to the retarded monopole-
dipole interaction).
We conclude our paper with a discussion of the relation

of our results with previous works on the subject. As
already mentioned, a similar difference between grounded
and isolated conductors appears in the high-temperature
limit [2,3,6], in which the problem reduces to an electro-
static one. The nonretarded Casimir-Polder force on an
atom in front of a perfectly conducting sphere also depends
on the grounding: the force decays as 1=R4 for a grounded
sphere, and as 1=R6 for an isolated sphere [7].
Charge induced fluctuation forces in graphitic nano-

structures, similar to those considered here, have been
described in Ref. [8]: in that case, instead of the presence of
a charge reservoir, charge fluctuations are allowed by
connecting the conductors among them (the particular case
considered there is that of a parallel plate capacitor with the
plates connected by a wire). The charge density correlation
is evaluated using the fluctuation-dissipation theorem.
In the usual calculations of the Casimir effect it is

assumed (implicitly or explicitly) that the conductors are
isolated. On the one hand, many works consider the case of
perfect conductors as a particular limit of magneto-
dielectric materials [9], which do not contain free charges.
The perfect conductor limit then corresponds to isolated
conductors. When considering perfect conductors in the
canonical approach, a typical route is to choose the
Coulomb gauge ∇ ·A and assume that, in addition,
A0 ¼ 0 [1]. Note, however, that in the Coulomb gauge
A0 satisfies the Gauss law ∇2A0 ¼ −ρ. Although there are
no charges in the volume between conductors, where A0

satisfies the Laplace equation, fluctuating charges could be
taken into account using nonvanishing boundary conditions
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(that should be properly averaged, as in Ref. [8]).
Therefore, the usual assumption A0 ¼ 0 imposes the
neutrality condition. The energies and forces computed
in this approach are produced by the dipole and higher
multipole fluctuations.
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