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Opinion formation and disease spreading are among the most studied dynamical processes on complex
networks. In real societies, it is expected that these two processes depend on and affect each other. However, little
is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat
them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that
of the contact process for disease spreading, in a population of agents that interact via two types of connections,
social and contact. These two interacting dynamics take place on two layers of networks, coupled through a
fraction q of links present in both networks. The probability that an agent updates its state depends on both the
opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences
on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition
from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond
a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of
social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading.
Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value.
Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that
varies nonmonotonically with q in a large range of the model’s parameters. A mean-field approach reveals that
the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model
decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.
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I. INTRODUCTION

The formation of opinions and the propagation of an
epidemic disease on a population of individuals are among the
most studied dynamical processes on complex networks [1,2].
The behavior of each of these two processes has been explored
independently of one another for the last decades, and many
of their propagation properties on diverse complex topologies
are well established already (see [2] and [3] for recent reviews
on opinion formation and epidemic spreading, respectively).
However, less attention has been paid to a possible case
scenario where the dynamics of opinions interact with that of
the disease spreading. In fact, it is hardly expected that these
two dynamics are isolated in real societies but rather depend on
and affect each other, since they both run at the same time on
the same population: an individual can transmit a disease to a
colleague while having a conversation and exchanging ideas or
opinions on a given topic. Then, the following questions arise:
Does the dynamics of opinion formation have an impact on
the extent and prevalence of the epidemic? Does the disease
spread facilitate the ultimate dominance of one opinion, or
does it rather hinder the consensus of opinions?

In an attempt to explore these questions, we study in this
article how opinion formation and disease spreading processes
affect each other, using two simple models as a proxy of each
process: the voter model (VM) and the contact process (CP).
The VM was originally introduced as the simplest system
of interacting particles that can be exactly solvable in any
dimension [4–6], and is one of the most studied models for
opinion consensus. In this model, individuals can take one of
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two possible positions or opinions on a given issue, and are
allowed to update them by adopting the opinion of a randomly
chosen neighbor. The CP, on its part, has been extensively
studied to explore the spread of an infection in a system of
interacting agents [7], where infected agents can transmit the
infection to susceptible neighbors in a lattice [8] or a complex
network [9], and they can also recover at a given rate. The CP
exhibits a continuous transition from a healthy to an endemic
phase when the infection rate exceeds a threshold value. To
model the interaction between the two dynamics we implement
the framework of multilayer complex networks [10–12] that
consists of a set of complex networks interrelated with one
another, which allows us to study systems composed by many
interdependent processes. In the present study we consider
that the opinion dynamics takes place on a network of social
relations—formed by individuals that influence each other
on a social issue, while the disease spreads on a network of
physical contacts—formed by people having daily face-to-face
contacts. All individuals are in both layers of networks, but the
pattern of connections between them may be different in each
layer. The overlap of connections is taken as a measure of the
coupling between the two networks.

The bilayer network system described above may represent
a simple case scenario where the social network supports a
process that involves peer pressure, like the adoption of new
behaviors or opinions, while the contact network supports the
spreading of a contagious viral infection like flu, which is
transmitted by proximity or direct contact between individuals.
The different combinations of connections may correspond to
different types of relationships between two individuals. For
instance, two close friends can have both a contact and social
tie, as they can see each other at work every day and also
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interchange ideas on a political issue. But it can also happen
that individuals are connected by only one type of tie, e.g., two
colleagues having a contact or proximity relation because they
work in the same place but never talk about politics, or two
friends that never meet but discuss political ideas by electronic
means (phone, Facebook, Twitter, email, etc).

Some related works on multilayer networks [13–19] have
also explored the interrelation between two information
spreading processes. For instance, in Refs. [13,14] the authors
analyzed how the awareness of a disease affects the epidemic
spreading on a multiplex network, by using the unaware-
aware-unaware and the susceptible-infected-susceptible cyclic
models, respectively. The interplay between opinion formation
and decision making processes was studied in [15] using
two interconnected networks. Another work considered two
political parties (two interacting networks) that compete
for votes in a political election [16]. In a recent article
[17], the authors studied the dynamics of the voter model
on bilayer networks with coevolving connections, while in
[18] the same authors explored whether it is appropriate to
reduce the dynamics of the voter model from a two-layer
multiplex network to a single layer. A recent work [20]
considers a complex threshold dynamics that competes with
a simple susceptible-infected-susceptible dynamics on two
interconnected networks. All the works listed above explore
the interplay between two social or two epidemiological
processes that are alike. However, there is a lack of spe-
cific studies on the interplay between opinion and disease
dynamics.

In this article we show that the dynamics of opinions has
striking consequences on the disease spreading and vice versa.
The nature of the healthy-endemic transition observed in the
CP, as the infection probability increases, is largely modified
by the dynamics of the VM. The transition changes from
continuous to discontinuous when the disease and opinions
are coupled, showing a jump in the disease prevalence at the
transition point, where the magnitude of the jump increases
with the coupling. Also, a discontinuous transition from an en-
demic to a healthy phase is found when the coupling overtakes
a threshold value. In addition, we find that the dynamics of the
CP has important consequences on the dynamical properties
of the VM. The diffusion of opinions is slowed down by
the disease in a nontrivial manner as the coupling increases.
This leads to consensus times that vary either monotonically
or nonmonotonically with the coupling, for a large range of
the model’s parameters. We develop a mean-field approach
to study the time evolution of macroscopic quantities, which
takes into account state correlations between neighbors in the
same network (pair approximation). This approach reveals
that the interdependent system of opinions and disease can
be thought of as two independent systems, with external
parameters that depend on the coupling. Specifically, the
opinion dynamics can be approximated as the dynamics of
the VM on an isolated network, with an effective probability
of opinion transmission that decreases with the coupling
and the prevalence. Analogously, the disease spreading is
approximately described by the CP dynamics on an isolated
network, with an effective infection probability that decreases
with the coupling and the fraction of neighbors with different
opinions.

The article is organized as follows. In Sec. II, we introduce
the multiplex framework and the dynamics of the model on
each layer. We present simulations results in Sec. III and
develop an analytical approach in Sec. IV. Finally, in Sec. V
we give a summary and conclusions.

II. THE MODEL

We consider a bilayer system composed by a contact and
a social network layer of mean degree 〈k〉 = μ and N nodes
each. These two layers are interrelated through their nodes,
which are the same in both networks, while links connecting
nodes may not necessarily be the same. That is, both layers
have the same number of nodes N and links μN/2, but the
configuration of connections can be different in each layer.
The overlap of links is measured by the fraction q (0 � q � 1)
of links shared by both networks. In our model, the extreme
values q = 0 and q = 1 correspond to totally uncoupled and
totally coupled networks, respectively. To build this particular
topology, we start by connecting the same pairs of nodes at
random in both networks until the number of links reaches
the overlap value q μN/2. Then, the rest of the links (1 −
q)μN/2 are randomly placed between nodes in each network
separately, making sure that the chosen pair of nodes in one
network is not already linked in the other network.

Social links in this system connect individuals that influence
each other on a given issue, while the infection is transmitted
through contact links. In Fig. 1 we illustrate the bilayer system
composed of a social and a contact network (top and middle
layers), and its representation as a single layer with two types
of links (bottom layer). We observe in Fig. 1 that nodes i and j

are connected by both a social and a contact link, representing
individuals that have a daily face-to-face conversation, where
they interchange opinions and also one can infect its partner.
Nodes j and k are only connected by a social link: they
do not have face-to-face contacts but still exchange ideas
electronically or by phone. Nodes i and k are only connected
by a contact link: they have face-to-face or proximity contacts

FIG. 1. Schematic diagram showing a small part of a two-
layer multiplex network. The top layer represents a social network
supporting the propagation of opinions, while the middle layer
describes a network of physical contacts on which a disease spreads.
The bottom layer is the collapse of both layers, showing nodes
connected by social (solid lines) and contact (dashed lines) links.
Node states are susceptible (1) and infected (0) in the contact network,
and follow the contact process dynamics, while + and − states in the
social network are updated according to the voter model dynamics.
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but they do not discuss and interchange opinions about the
given issue.

To mimic the spreading of opinions and the disease we
use the voter model (VM) and the contact process (CP)
on each layer, respectively. Each node is endowed with an
opinion state O that can take two possible values O = +,−
(see top layer of Fig. 1), and a disease state D = 0,1 that
represents the susceptible and infected states of an individual,
respectively (middle layer of Fig. 1). These two dynamics are
coupled through the opinion and disease states of nodes, which
affect each other by reducing the flow of information between
neighbors, as we describe below with a simple example.

Let us consider a situation in which two individuals have a
daily social and physical contact because they see each other at
work and talk about politics. On the one hand, we assume that
each individual is less influenced by its partner when she/he
is sick, because the sick partner normally stays at home or
at hospitals, reducing physical contacts between them. This
makes social relations (and the interchange of opinions) less
likely when at least one of the two individuals is sick. Thus,
we consider that a social relation takes place with probability
1.0 if both social neighbors are healthy, and with a reduced
probability po � 1.0 when one or both are sick. In case they
have a social contact but not a physical contact (they do not
see each other but discuss ideas by electronic means), the
disease state is not supposed to affect the probability of social
interactions between them. Therefore, the social interaction
probability is not reduced by the disease and, for simplicity, is
set to 1.0 as in the case of healthy neighbors.

On the other hand, we consider that physical contacts
(and therefore infections) between the two social and contact
neighbors are more likely to happen when they share the same
opinion. This is a consequence of a sociological mechanism
called homophily [21–23], i.e., the tendency for individuals
to interact with similar others. The effects of homophily
in the propagation of cultural attributes in a society were
studied by Alxerod using an agent-based model [21], in
which the probability that two neighboring agents interact
is proportional to their cultural similarity (the number of
shared attributes). Following this idea, we assume that the
contact probability between the neighbors when they have the
same opinion is higher than that when they have different
opinions. Therefore, we set to 1.0 the contact probability of
same-opinion neighbors and denote by pd � 1.0 the contact
probability between opposite-opinion neighbors. Once they
have a physical contact the infection is transmitted with
probability β, leading to effective infection probabilities β

and β pd � β in each respective case. In a situation where
there is a contact but not a social connection between two
neighbors (they see each other but they do not talk about
politics), opinions are not expected to affect (neither increase
or decrease) the contact probability. Therefore, this can be
considered as an intermediate situation respect to the two
cases mentioned above, where the contact probability should
be smaller than 1.0 but larger than pd , leading to an infection
probability between β and β pd . However, for simplicity we
assume that the contact probability in the absence of a social
relation is the same as that in homophilic relations (1.0),
and thus the infection probability takes the value β. This
approximation and the one mentioned above for the social

FIG. 2. Update rules in the coupled opinion-disease system. (a)
Opinion update. Node i adopts the opinion of its neighbor j with
probability 1.0 when they are connected only by a social link (solid
line). When they are also connected by a contact link (dashed line),
adoption happens with probability 1.0 if both nodes are susceptible,
and with probability po � 1.0 if at least one node is infected. (b)
Disease update. An infected node i recovers with probability 1 − β

or transmits the disease to a susceptible neighbor j with probability β

when both nodes are only connected by a contact link, or when they
are connected by both types of links and they share the same opinion.
In the case in which they hold opposite opinions the transmission
happens with probability β pd � β.

interaction probability have the advantage of reducing the
number of free parameters, allowing for a deeper analysis of
the model which already exhibits a very rich behavior as we
shall see.

We now define the dynamics of the model according to the
interaction properties discussed above. In a single time step
�t = 1/N an opinion and a disease update attempt take place
in each network, as we describe below (see Fig. 2).

Opinion update [Fig. 2(a)]. A node i with opinion Oi and
one of its neighbors j with opinion Oj are randomly chosen
from the social network. If Oi = Oj nothing happens. If Oi �=
Oj , then i copies the opinion of j (Oi → Oi = Oj ) with
probability po if there is a contact link between i and j , and
at least one of the two nodes is infected (Di = 1 or Dj = 1).
Otherwise, i.e., if there is no contact link or Di = Dj = 0,
then i copies j ’s opinion with probability 1.0.

Disease update [Fig. 2(b)]. A node i with disease stateDi is
chosen at random from the contact network. If Di = 0 nothing
happens. If Di = 1, then i recovers with probability 1 − β or,
with the complementary probability β node i tries to infect a
randomly chosen neighbor j , as long as it is in the susceptible
state (Dj = 0). The infection happens (Dj = 0 → Dj = 1)
with probability pd if there is a social link between i and
j , and Oi �= Oj . Otherwise, i.e., if there is no social link or
Oi = Oj , then node j is infected with probability 1.0.

In other words, individuals on the social layer adopt the
opinion of their neighbors with probability 1.0 except when
they are connected by a contact link and one of them is
infected, where in this case the opinion is adopted with a
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reduced probability po � 1 [see Fig. 2(a)]. The CP dynamics
happens on the disease layer with an infection probability β

between two neighbors, which is reduced to β pd � β only in
the case in which they are attached by a social link and they
share different opinions [see Fig. 2(b)].

III. NUMERICAL RESULTS

The CP and the VM are two of the most studied dynamical
processes [6]. A relevant feature of the CP is the existence
of a transition from a healthy phase to an endemic phase as
the infection probability overcomes a threshold value βc. The
healthy phase is static, as all nodes are susceptible and infection
events cannot occur. The endemic phase is active, where each
node undergoes an infected-susceptible-infected cycle and the
total number of infected nodes fluctuates around a stationary
value. The healthy-endemic transition is continuous, and the
critical value βc depends on the topological properties of the
network [9]. For its part, the VM has been extensively used
to explore opinion consensus on different network topologies
[24–29]. It was found that the diffusion properties of opinions
depend on the heterogeneity of the network. This is reflected
in the mean consensus time, which is proportional to the
ratio μ2/μ2 [28,29], where μ and μ2 are the first and second
moments of the network’s degree distribution.

The behavior described above is particular of each model on
single isolated networks. In order to explore how the properties
of these two processes are affected when they are coupled
through a multiplex network, we run extensive Monte Carlo
(MC) simulations of the model described in Sec. II, using two
Erdös-Rényi (ER) networks of mean degree 〈k〉 = μ = 10
each. Initially, each node in the system is infected with
probability 1/2, and adopts either opinion state + or −
with equal probability 1/2. That is, the system starts from
a symmetric initial condition with roughly 1/4 of nodes in
each of the four possible opinion-infection states: [+

0 ], [+
1 ],

[−
0 ], and [−

1 ].
In the next two subsections we study separately the effects

of one dynamics over the other.

A. Effects of opinion formation on disease prevalence

We start the analysis of the model by describing the results
related to the effects of opinion formation on the properties
of disease spreading. In Fig. 3 we show the stationary
fraction of infected nodes averaged over many independent
realizations of the dynamics, 〈ρstat

1 〉, as a function of the
infection probability β. For this first set of simulations we
used po = pd = 0, which corresponds to the extreme case
scenario where opinions cannot be transmitted across contact
neighbors (nodes connected by a contact link) that are infected,
and infections are not allowed between social neighbors (nodes
connected by a social link) with different opinions. Different
curves correspond to different values of the coupling parameter
q and network size N , as indicated in the legend. We observe
that, for q = 0.4 (diamonds) and q = 0.7 (triangles), 〈ρstat

1 〉
decreases smoothly with β until a point βc

q that depends on
q, where it suddenly decays to a value close to zero. The
sudden decrease in 〈ρstat

1 〉 becomes more abrupt as N increases,
leading to a discontinuous change of 〈ρstat

1 〉 at βc
q in the
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FIG. 3. Average stationary fraction of infected nodes 〈ρstat
1 〉 vs.

infection probability β on two coupled ER networks of mean degree
μ = 10 and N nodes each, for po = pd = 0 and coupling param-
eters q = 0 (circles), q = 0.4 (diamonds), and q = 0.7 (triangles).
Different symbol fillings correspond to three different sizes N =
103,3 × 103, and 3 × 104, as indicated in the legend. The average was
done over 5000 independent realizations starting from configurations
consisting of a fraction close to 50% of the infected nodes uniformly
distributed over the contact network and 50% of the + opinions
uniformly distributed over the social network.

thermodynamic limit (N → ∞). This behavior is reminiscent
of a discontinuous transition. We also see that the jump in
〈ρstat

1 〉 decreases with q and vanishes for the uncoupled case
q = 0, where the transition becomes continuous, in agreement
with the known behavior of the CP on isolated networks. The
critical point βc

0 � 0.53 for q = 0 agrees very well with the
one found in previous numerical and analytical works [9].

These results show that the dynamics of opinions has
a profound effect on the statistical properties of disease
spreading, changing the type of phase transition in the CP from
a continuous transition in the absence of coupling (when the
two dynamics are independent) to a discontinuous transition
when the dynamics are coupled.

In order to achieve a deeper understanding of the nature of
this transition we studied the time evolution of the fraction
of infected nodes ρ1(t) for the case q = 0.4, where the
transition point is βc

0.4 � 0.58 (see Fig. 3). Solid lines in Fig. 4
correspond to results for networks of size N = 104. As we
can see, for β > βc

0.4 � 0.58 the average value of ρ1(t) over
many realizations, 〈ρ1(t)〉, varies nonmonotonically with time
and asymptotically approaches a stationary value 〈ρstat

1 〉 that
depends on β, while 〈ρ1(t)〉 decays to zero for β < βc

0.4. That
is, this nonmonotonicity in 〈ρ1(t)〉 makes 〈ρstat

1 〉 jump from
a value close to zero for β < βc

0.4 (〈ρstat
1 〉 � 0.0014 for β =

0.57) to a much larger value for β > βc
0.4 (〈ρstat

1 〉 � 0.22 for
β = 0.59). We note that this peculiar nonmonotonic temporal
behavior is known to induce discontinuous transitions in social
models with multiple states and constraints, like the Axelrod
model (see for instance [23,30]).

As we explain below, the origin of the nonmonotonic
behavior of 〈ρstat

1 〉 is in the dynamic nature of the infection
probability during each single realization, which can take two
possible values: either the value β pd = 0 across a contact
link that overlaps with a +− social link, or the value β
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FIG. 4. (a) Time evolution of the average fraction of infected nodes 〈ρ1〉 on a bilayer system with coupling q = 0.4. Solid lines correspond
to networks of size N = 104, while open circles are for networks with N = 106 nodes. Curves correspond to infection probabilities β =
0.60, 0.59, 0.58, and 0.57 (from top to bottom). Horizontal dashed lines indicate the stationary values for β = 0.60 and the two network sizes.
(b) and (c) Evolution of the fraction of infected nodes, ρ1, and the fraction of +− social links, ρ+−, in two distinct realizations for q = 0.4 and
β = 0.6 (b) and β = 0.57 (c). The evolution of ρ1 is also shown for q = 0 in both panels.

otherwise (simulations correspond to pd = po = 0). In other
words, the infectivity across a given link i − j may switch
between 0 and β over time, depending on the opinion states
of nodes i and j . This gives an average infection rate over
the entire system that fluctuates according to the evolution
of the fraction of +− links, ρ+−(t), in one realization.
We shall exploit this observation in Sec. IV to develop a
mean-field (MF) approach for the evolution of the system.
In panels (b) and (c) of Fig. 4 we plot ρ1 and ρ+− in a single
realization of the dynamics, for q = 0.4 and two values of β.
For β = 0.60 > βc

0.4 [panel (b)] we observe that ρ1 displays
large variations up to a time T � 4570 (vertical dashed line)
where ρ+− becomes 0, after which ρ1 fluctuates around a
stationary value ρstat

1 � 0.255 (horizontal dash-dotted line),
while for β = 0.57 < βc

0.4 [panel (c)] ρ1 rapidly decays to
zero, before ρ+− reaches zero. When ρ+− becomes zero [panel
(b)] only ++ or −− links remain and, therefore, the disease
dynamics behaves as the one of the standard CP with infection
probability β = 0.6 across all links, reaching the stationary
value ρstat

1 (q = 0,β = 0.6) � 0.255. We can say that after time
T the disease dynamics uncouples from the opinion dynamics.
Indeed, panel (b) also shows ρ1 in a single realization on an
isolated network (q = 0) with β = 0.6, where we observe a
very quick decay to a stationary value that overlaps with the
one for the coupled case q = 0.4. Therefore, as we can see in
Fig. 3, the value of ρstat

1 in the endemic phase of the coupled
system (β > βc

0.4) is the same as in the uncoupled case. Then,
at the transition point βc

0.4 � 0.58 > βc
0 � 0.53, ρstat

1 jumps
from the value ρstat

1 (q = 0,βc
0.4) � 0.22 corresponding to the

uncoupled system, to the small value ρstat
1 � 0.027, showing

a discontinuous change. This particular behavior of ρstat
1 is

the origin of the discontinuous transitions for q > 0 shown in
Fig. 3.

In Sec. IV we develop a MF approach that allows us to
estimate the stationary fraction of infected nodes ρ1 [see
Eq. (11)]. The theoretical approximation from Eq. (11), shown
as a dashed curve in each panel of Fig. 5, describes a continuous
transition with β, in contrast with the discontinuity found in
numerical simulations (solid symbols). This is because the
MF approach assumes an infinitely large system (N = ∞)

where finite-size fluctuations are neglected, while simulations
correspond to the limit of very large (but still finite) systems
(N � 1). Fluctuations in finite networks ultimately drive the
system to an absorbing state in which all nodes are susceptible
(ρ1 = 0) and have either opinion + or − (ρ+− = 0), i.e.,
an opinion consensus on a completely healthy population.
Therefore, fluctuations play a fundamental role in the dis-
continuous nature of the transition because, as previously
discussed, the stationary value of ρ1 in a single realization
depends on whether ρ+− becomes zero before ρ1 does. To
gain a better understanding of the results obtained from the
MF theory we run simulations on very large networks. Open
circles in Fig. 4 correspond to single realizations on a network
of N = 106 nodes, for the same values of β as for networks
with N = 104 nodes (solid lines). We observe that curves for
N = 106 decay monotonically with time to a stationary value
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FIG. 5. Stationary fraction of infected nodes vs. β, for couplings
q = 0 (a), q = 0.4 (b), and q = 0.7 (c). Open symbols correspond
to a single realization on a network of size N = 106, while filled
symbols correspond to an average over 5000 realizations on networks
of N = 104 nodes. In panel (a), open symbols overlap with filled
symbols. Dashed curves represent the theoretical approximation from
Eq. (11).
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values of ρstat

1 in a single realization are shown by dots, for q =
0.2, 0.5, and 0.8. Open squares represent results of ρstat

1 in a single
realization on a network of size N = 106. The dashed curve is the
theoretical approximation from Eq. (11). (b) Time evolution of 〈ρ1〉
for couplings q = 0,0.2,0.4,0.475,0.5,0.525,0.6, and 0.7 (from top
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denoted by ρstat
1,∞ (only shown for β = 0.6), which agrees with

the minimum of the nonmonotonic curves for N = 104. We
need to note that these states are not truly stationary, in the
sense that ρ1 exhibits a very long plateau (outside the shown
scale) but eventually increases and reaches the same stationary
value 〈ρstat

1 〉 of the curves for N = 104. We have checked that
the length of the plateau diverges with N , and thus is infinitely
large when N = ∞. Therefore, we take ρstat

1,∞ as the stationary
value when N = ∞. In Fig. 5 we observe that the numerical
values ρstat

1,∞ (open symbols) agree reasonably well with the
theoretical approximation from Eq. (11) (dashed curves) for
the three values of q, even though the agreement worsens
as q gets larger. We also see that ρstat

1,∞ decays continuously
as β decreases and becomes zero at the same value βc

q of
the transition in the thermodynamic limit corresponding to
ρstat

1 (filled symbols). That is, the healthy-endemic transition
is continuous in an infinite system.

Up to here we have studied the response of the system when
the infection probability is varied, for a fixed coupling. We now
explore the effects of having a varying coupling on disease
prevalence. In Fig. 6(a) we plot 〈ρstat

1 〉 on two coupled networks
of N = 104 nodes (circles), and ρstat

1 in a single realization
on networks of size N = 106 (squares), as a function of the
coupling q, for β = 0.6. The upper curve for N = 104 shows
an abrupt transition from an endemic to a healthy phase as the
coupling overcomes a threshold value qc

0.6 � 0.5. To explore
this behavior in more detail, we show with dots the value
of ρstat

1 in every single realization for three values of q. For
q = 0.2, all dots fall around its mean value 〈ρstat

1 〉 � 0.26,
while for q = 0.8 they are at ρstat

1 = 0. At the transition
point qc

0.6 the distribution of dots is bimodal, i.e., dots are
around ρstat

1 � 0.26 and at ρstat
1 = 0, giving an average value

〈ρstat
1 〉 � 0.165. This is evidence of a discontinuous transition.

The reason for this discontinuity is the nonmonotonic time
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FIG. 7. Phase diagram of the contact process coupled to the
voter model, showing the healthy and endemic phases in the β-q
space, with po = pd = 0. The dashed curve represents the analytical
approximation of the transition line from Eq. (13). The inset shows the
transition lines for the set of values (po,pd ) indicated in the legend.
For pd = 1.0 (squares), the transition is given by the vertical line
β � 0.53 for all values of po (only po = 0.0 shown).

evolution of 〈ρ1〉 [see Fig. 6(b)], similarly to what happens
when β is varied, as shown before. The only difference
with this previous studied case is that, as β is fixed, the
stationary value of ρ1 in single realizations does not change
with q, but is either ρstat

1 = 0 or ρstat
1 � 0.26, in agreement

with the binomial distribution. The former situation happens
in realizations where ρ1 hits zero before ρ+− does, while the
later corresponds to realizations where ρ+− becomes zero and
thus the two dynamics get uncoupled, after which ρ1 reaches
a stationary value similar to 0.26 corresponding to q = 0.
Figure 6(a) shows that the transition with q is continuous in
an infinitely large system (squares). One can also check that
the stationary value ρstat

1 for a given q in an infinite system
agrees with the minimum of the corresponding 〈ρ1〉 vs. time
curve of Fig. 6(b). This behavior is akin to the one shown in
Fig. 4(a).

The β-q phase diagram of Fig. 7 summarizes the results
obtained in this section, on how the coupling between the
contact and social networks affects the prevalence of the
disease. By increasing the coupling q it is possible to bring
an initially uncoupled system from the endemic to the healthy
phase (vertical arrow). Also, as the coupling increases, a larger
infection probability β is needed to pass from the healthy to
the endemic phase (horizontal arrow).

Finally, we reproduced the phase diagram for various
values of the probability pd of having a successful infection
across +− links, and the probability po of opinion imitation
between infected neighbors (inset of Fig. 7). We see that the
orientation of the transition line that separates the healthy from
the endemic phase becomes more vertical as pd increases,
enlarging the endemic phase, as we might expect. And when
pd = 1.0, the transition becomes independent of the coupling
q and po (the curve is the same for all values of po). We
also observe a slight decrease of the healthy phase when po
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FIG. 8. Mean time τ to reach opinion consensus on the social network as a function of the coupling q with the contact network, normalized
by the mean consensus time in the absence of coupling τ0. The infection probability in the contact network is β = 0.6. Each network has
N = 104 nodes and mean degree μ = 10. The average was done over 5000 independent realizations. Different symbols correspond to numerical
results for the set of values (po,pd ) indicated in the legends [(a) for po = 0.0 and (b) for po = 0.5], while solid lines are the corresponding
analytical approximations from Eq. (17). For comparison, we also show in both panels numerical data and the analytical curve for the uncoupled
case (po,pd ) = (1.0,1.0). Inset of panel (a): ρstat

1 vs. q from Eq. (10) for pd = 1.0, 0.5 and 0.0 (from top to bottom).

increases while keeping β fixed. As the fraction of +− links
decreases faster when opinions are copied at a higher rate,
one expects an increase of the effective infection rate and,
consequently, an enlargement of the endemic phase.

B. Effects of disease spreading on opinion consensus

In this section we explore how the spreading of the disease
affects the dynamics of opinions. As the transmission of
opinions between neighboring nodes is more difficult when
at least one of them is sick, we are particularly interested
in studying to what extent the disease slows down opinion
diffusion over the social network, and how that depends on
q, β, po, and pd . A way to quantify this is by looking at the
time to reach opinion consensus. In Fig. 8 we show how the
mean consensus time τ varies with the coupling q, for infection
probability β = 0.6 and various values of po and pd . For a
better comparison with the voter model on an isolated network,
τ is normalized by the mean consensus time τ0 when the
networks are uncoupled (q = 0). Symbols correspond to MC
simulations, while solid lines are the analytical approximations
from Eq. (17) obtained in Sec. IV. Here we present results for
β above the critical point of an isolated network βc

0 � 0.53
because for β < βc

0 the effects of disease on consensus times
are negligible. This happens because for β < βc

0 and any value
of q the disease quickly disappears on the contact network
and, as all nodes are susceptible, the dynamics of opinions is
decoupled from the disease dynamics, reaching consensus in
a time very similar to the one in the uncoupled case (τ � τ0).

We observe in Fig. 8 that the q dependence of τ is quite di-
verse, showing monotonic as well as nonmonotonic behaviors.
This is a consequence of the competition between two different
mechanisms that directly affect opinion transmission. One is
the link overlap between the two networks that is proportional
to q, and the other is the disease prevalence that decreases with
q, as we explain below. The opinion transmission through a
social link that overlaps with a contact link is slowed down
when at least one of the two nodes is infected and po < 1.
Therefore, the overall delay in opinion transmission caused
by the total overlap tends to increase with q, and so does τ .
This effect explains the initial monotonic increase of τ as q

increases from 0, in all curves. However, as q becomes larger
a second effect becomes important: the fraction of infected
nodes decreases with q [see inset of Fig. 8(a)], due to the
coupling with the opinion dynamics that reduces the effective
infection probability as discussed in Sec. III A. Then, lower
disease prevalence translates into fewer social links affected
by the disease and, therefore, into a smaller opinion delay. This
effect tends to reduce τ with q.

With these two mechanisms in play, the shapes of curves
in Fig. 8 for different values of po and pd can be qualitatively
explained in terms of the combined effects of overlap and
prevalence. For instance, in Fig. 8(a) we observe that the
three curves for po = 0.0 have a quite different behavior.
For pd = 1.0 the effect of prevalence does not vary with q,
given that ρstat

1 is independent of q [inset of Fig. 8(a)]. Then,
τ increases monotonically with q as the overlap increases.
For pd = 0.5 the prevalence effect increases with q (ρstat

1
decreases), becoming dominant for q above 0.8 when τ decays,
and leading to a nonmonotonic behavior of τ (q). Finally, for
p0 = 0.0 we observe a nonmonotonicity similar than that of
the pd = 0.5 curve, but with the addition that τ becomes very
similar to τ0 for all values of q > 0.6. This is because ρstat

1
becomes zero above q � 0.583 and thus the disease has no
effect on opinions, leading to consensus times similar to the
ones measured in isolated networks. These behaviors for the
po = 0.0 case are also observed for other values of po, as
we show in Fig. 8(b) for po = 0.5. We see that the shape of
the curves for pd = 0.0, 0.5, and 1.0 are analogous to the
ones of Fig. 8(a) for the corresponding values of pd . However,
consensus times are smaller for the po = 0.5 case because the
delay in opinion transmission is reduced as po increases.

In Fig. 9 we plot the normalized mean consensus time τ/τ0

as a function of the infection probability β obtained from
Eq. (17). Panels (a) and (b) correspond to couplings q = 0.5
and q = 1.0, respectively. To analyze these plots we recall
that, as explained above, consensus times increase with the
level of disease prevalence in the contact network, given that
a larger disease prevalence translates into a larger delay in
opinion propagation and in the subsequent consensus. A first
simple observation is that τ increases with β and also with
pd , as we expect from the fact that a larger value of β and pd
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FIG. 9. Normalized mean consensus time τ/τ0 on the social network as a function of the infection probability β on the contact network
for the same network parameters as in Fig. 8, coupling q = 0.5 (a) and q = 1.0 (b). Curves correspond to Eq. (17) for different values of the
set (po,pd ) with the same color code as in Fig. 8, and indicated in the legend of panel (a). Curves for the sets (1.0,0.0) and (1.0,0.5) overlap
with the curve for (1.0,1.0) shown as the horizontal line τ/τ0 = 1. The inset of panel (b) shows the divergence of τ as β approaches 1.0, when
q = 1.0, po = 0.0, and pd = 1.0 (circles) and pd = 0.0 (diamonds). Solid lines are the approximations from Eq. (17).

implies a larger disease prevalence. A second observation is
that τ decreases with the likelihood of opinion transmission
po, as explained before when we compared τ in Fig. 8(a) with
Fig. 8(b). A third observation is that τ approaches a value
independent of pd when β goes to 1.0. This is because for
β = 1.0 (recovery probability equals zero) and a fixed value
of q and po, all nodes are infected at the stationary state,
independently of the value of pd , and thus consensus times
are the same for all pd . As we see in Fig. 9(b), the case q = 1
and po = 0 is special because τ diverges as β approaches
1.0. This happens because in this situation the transmission
of opinions is only possible between connected nodes that are
both susceptible, which vanish in the β → 1.0 limit, leading to
divergent consensus times. A rough estimation of how τ scales
with β can be obtained by assuming that τ is proportional
to the time scale associated with the opinion transmission
across two given neighboring nodes in the social network,
i and j , with opinions + and −, respectively. As q = 1, i and
j are also neighbors in the contact network. Starting from a
situation where i and j are infected for high β, the opinion
transmission happens after both nodes recover. Therefore, τ is
determined by the time it takes the 1-1 contact link to become
a 0-0 link, which scales as (1 − β)−2. In Sec. IV we derived
a more accurate expression for τ that exhibits this quadratic
divergence in the β → 1 limit, shown in the inset of Fig. 9(b)
by solid lines.

IV. ANALYTICAL APPROACH

In order to gain an insight into the behavior of the two-layer
system described in Sec. III, we develop here a MF approach
that allows to study the time evolution of the system in terms
of the global densities of nodes and links in different states.
We denote by ρ+ and ρ− the fractions of nodes with + and −
opinion in the social network, respectively, and by ρ1 and ρ0

the fractions of infected and susceptible nodes in the contact
network, respectively. The fractions of social links between +
and − opinion nodes are denoted by ρ+−, while ρ10 represents
the fraction of contact links between infected and susceptible
nodes. An analogous notation is used for ++ and −− social
links and for 1-1 and 0-0 contact links. The fractions of nodes

ρ+ and ρ1 are normalized with respect to the number of nodes
N in each network, while the fractions of links ρ+− and ρ10

are normalized by the number of links μN/2 in each network,
with mean degree μ = 〈k〉. Given that the number of nodes and
links are conserved in each layer, the following conservation
relations hold at any time for the social layer:

1 = ρ+ + ρ−, (1a)

1 = ρ++ + ρ−− + ρ+−, (1b)

ρ+ = ρ++ + 1
2ρ+−, (1c)

ρ− = ρ−− + 1
2ρ+−, (1d)

and analogously for the contact layer:

1 = ρ1 + ρ0, (2a)

1 = ρ11 + ρ00 + ρ10, (2b)

ρ1 = ρ11 + 1
2ρ10, (2c)

ρ0 = ρ00 + 1
2ρ10. (2d)

In Appendices A, B, C, and D we develop a mean-field
approach that allows us to obtain the following system
of coupled differential equations for ρ+, ρ+−, ρ1, and ρ10,
respectively:

dρ+

dt
= 0, (3a)

dρ+−

dt
= 2 ωρ+−

μ

[
(μ − 1)

(
1 − ρ+−

2ρ+(1 − ρ+)

)
− 1

]
, (3b)

with

ω ≡ 1 − q(1 − po)

(
ρ1 + ρ10

2

)
, (4)

and

dρ1

dt
= γβρ10

2
− (1 − β)ρ1, (5a)

dρ10

dt
= γβρ10

μ

[
(μ − 1)

(
1 − ρ10

1 − ρ1

)
− 1

]

+ 2(1 − β)(ρ1 − ρ10), (5b)
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with

γ ≡ 1 − q(1 − pd )ρ+−. (6)

These equations represent an approximate mathematical de-
scription of the time evolution of the model on infinitely large
networks, where finite-size fluctuations are neglected. We note
that Eqs. (3) and Eqs. (5) are coupled through the prefactors
ω and γ , which depend on the coupling q and describe the
opinion and disease dynamics, respectively. The interested
reader can find in the appendices the details of the derivation
of these equations. For the sake of simplicity, we assumed
in the derivation that all nodes have the same number of
neighbors k = μ chosen at random, which is equivalent to
assuming that networks are degree-regular random graphs.
However, we expect this approximation to work well in
networks with homogeneous degree distributions like the ER
networks we used in the MC simulations. We also implemented
a homogeneous pair approximation [29] that takes into account
correlations between the state of neighboring nodes within
the same layer (intralayer pair approximation), but neglects
correlations between opinion and disease states of both layers
(interlayer annealing approximation). That is, we considered
that the opinion state of each node is uncorrelated with its
own disease state and with its neighbors’ disease states and,

conversely, that its disease state is uncorrelated with its own
and its neighbors’ opinion states.

It is instructive to analyze the structure of Eqs. (3) and
(5). Equations (3) describe the evolution of opinions on the
social layer. From Eq. (3a) we see that the fraction of +
nodes is conserved over time: ρ+(t) = ρ+(t = 0) for all t � 0.
This behavior is reminiscent of that of the VM on isolated
topologies, where opinion densities are conserved at each
time step. It seems that the disease dynamics is not able to
break the intrinsic symmetry of opinion states induced by the
voter dynamics. Equation (3b) for the evolution of ρ+− has
an extra prefactor ω compared to the corresponding equation
for the VM on isolated networks [29], which reveals that the
disease affects the dynamics of opinions through its prevalence
level, expressed by ρ1 and ρ10 [see Eq. (4)]. As discussed in
Appendix A, ω can be interpreted as the “effective probability”
that a node i adopts the opinion of a chosen social neighbor j

with opposite opinion, which depends on the disease state of
both i and j . Within a MF approach, we can assume that the
probability that i copies j ’s opinion depends on the disease
state of an “average pair” of contact neighbors, and that this
probability is the same for all social neighbors. In these terms,
ω becomes the average copying probability over the entire
social network. Indeed, we can check that the average value
of ω over the three possible connection and disease state
configurations of a contact pair,

copying probability =
⎧⎨
⎩

1, with prob. 1 − q (no contact link),
1, with prob. q ρ00 (00 contact link),
po, with prob. q(1 − ρ00) (10, 01, or 11 contact link),

gives ω = 1 − q + q[ρ00 + (1 − ρ00)po], which is reduced to Eq. (4) by using the relation 1 − ρ00 = ρ1 + ρ10/2 that follows
from Eqs. (2b) and (2c). As we see, the overall effect of the disease on the opinion dynamics at the MF level is to reduce by a
factor ω the rate at which opinions change in each node. This effect slows down the propagation of opinions through the social
network, but it does not seem to alter the properties of the voter dynamics.

Equations (5) describe the evolution of the disease on the contact layer. These equations have the same form as the corresponding
equations for the CP on an isolated network within the homogeneous pair approximation [9], but with a probability of infection
given by γβ � β. In analogy to the case of ω described above, γβ can be interpreted as the “effective probability” that a given
infected node i transmits the disease to a susceptible neighbor j on the contact layer, which depends on the opinions of both i and
j . Indeed, the expression γβ = [1 − q(1 − pd )ρ+−]β from Eq. (6) is the average infection probability on the contact network,
calculated over the three possible connection and opinion state configurations of a social pair:

infection probability =
⎧⎨
⎩

β, with prob. 1 − q (no social link),
β, with prob. q(1 − ρ+−) (either ++ or −− social link),
β pd, with prob. q ρ+− (+− social link).

Thus, our MF approach assumes that this “effective infection
probability” from i to j depends on the opinion states of an
“average pair” of neighbors on the social layer, and that is
the same for all contact neighbors. We can say that at the MF
level, the disease dynamics follows the standard CP on a single
isolated network with homogeneous infection probability γβ

and recovery probability 1 − β in each node. Therefore, the
dynamics of opinions has an effect on the disease dynamics
equivalent to that of an external homogeneous field acting on
each node of the contact network, reducing the probability of
infection between neighbors by a factor γ , while keeping the
same recovery probability.

In the next two subsections we derive analytical expressions
for the disease prevalence ρstat

1 and the mean consensus time
τ , from the system of Eqs. (3)–(6).

A. Disease prevalence

In order to study how the opinion dynamics affects the
disease prevalence, we find the fraction of infected nodes at
the stationary state ρstat

1 from Eqs. (3) and (5). We start by
setting the four time derivatives to zero, substituting ρ10 by
2(1 − β)ρ1/γβ from Eq. (5a) into Eq. (5b), and solving for
ρ1. After doing some algebra we obtain two solutions, but only

052315-9



FÁTIMA VELÁSQUEZ-ROJAS AND FEDERICO VAZQUEZ PHYSICAL REVIEW E 95, 052315 (2017)

one is stable depending on the values of the parameters. The
nontrivial solution

ρstat
1 = [(μ − 1)γ + μ]β − μ

[(μ − 1)γ + 1]β − 1
(7)

corresponds to the endemic phase, where a fraction of
nodes is infected, and is stable only when the numerator
λ ≡ [(μ − 1)γ + μ]β − μ is larger than zero. For λ < 0 the
stable solution is ρstat

1 = 0, corresponding to the healthy phase
where all nodes are susceptible, while λ = 0 indicates the
transition point between the endemic and the healthy phase.
The expression for ρstat

1 from Eq. (7) is still not closed because
it depends on ρ+−, through the prefactor γ . From Eq. (3b) we
see that the fraction of +− social links reaches a stationary
value given by the expression

ρ+−
stat = 2(μ − 2)

(μ − 1)
ρ+(0)[1 − ρ+(0)], (8)

where we used ρ+ = ρ+(0) given that ρ+ remains constant
over time, as mentioned before. We notice that ω does not
affect the stationary value of ρ+−, which remains the same as
in the original VM [29]. For a symmetric initial condition
on the social layer (ρ+(0) = 1/2), as the one used in the
simulations, we have ρ+−

stat = (μ − 2)/[2(μ − 1)]. Replacing
this last expression for ρ+−

stat in Eq. (6) we obtain the following
expression for γ :

γ = 1 − q(1 − pd )(μ − 2)

2(μ − 1)
. (9)

Finally, plugging Eq. (9) into Eq. (7) we arrive at the following
approximate expression for the stationary fraction of infected
nodes in the endemic phase:

ρstat
1 = [2(2μ − 1) − q(1 − pd )(μ − 2)]β − 2μ

[2μ − q(1 − pd )(μ − 2)]β − 2
. (10)

For a network of mean degree μ = 10 and pd = 0, Eq. (10) is
reduced to the simple expression

ρstat
1 = (19 − 4q)β − 10

(10 − 4q)β − 1
, (11)

which is plotted in Figs. 5 and 6 (dashed curves). As the
MF theory is meant to work for infinitely large systems,
we also plot for comparison the numerical results obtained
from simulations for very large networks (open symbols). We
observe that, in all cases, the estimated theoretical value of
the fraction of infected nodes from Eq. (11) is larger than
that from simulations. As we explain below, this due to the
fact that correlations between opinion and disease states are
neglected by the MF approach. We first notice that an infection
event 0 → 1 between two neighbors connected by a social
and a contact link is only possible when the states of nodes
are [+

1 ] and [+
0 ] (a [++

1 0 ] pair) or [−
1 ] and [−

0 ] (a [−−
1 0 ] pair),

because pd = 0 in Figs. 5 and 6. Then, it is expected that
++ social links are negatively correlated with 10 contact
links and positively correlated with 11 and 00 contact links,
given that same-opinion neighbors tend to infect each other
and thus, at a given time, they are more likely to be either
both infected or both susceptible. However, the theoretical
approximation assumes that ++ social links are uncorrelated
with 10 contact links (see Appendix A) and, therefore, the

estimated probability of finding a [++
1 0 ] pair is larger than that

obtained when negative correlations are considered. The same
conclusion also holds for [−−

1 0 ] pairs. This leads to a theoretical
overestimation of the number of [ ++

1 0 ] and [−−
1 0 ] pairs and,

consequently, to a larger rate of infections which increases the
disease prevalence respect to numerical results, as we see in
Figs. 5 and 6.

Figure 5 shows that ρstat
1 form Eq. (11) continuously

decreases and vanishes as β decreases beyond a threshold
value, as it happens in the standard CP. This shows that the
transition to the healthy state is continuous within the MF
approach, which assumes that the system is infinitely large.
In Fig. 6 we see that ρstat

1 decreases with q, reducing the
prevalence and inducing a transition to the healthy phase. That
is, Eq. (10) predicts a healthy-endemic continuous transition
as β and q are varied, which happens at the point where ρstat

1
vanishes, leading to the relation

[2(2μ − 1) − qc(1 − pd )(μ − 2)]βc − 2μ = 0. (12)

The transition line

qc = 19βc − 10

4(1 − pd )βc

(13)

obtained from Eq. (12) for μ = 10 is plotted in Fig. 7 for
pd = 0 (dashed curve). We can see that the agreement with
simulations is good for small values of the coupling q,
but discrepancies arise as q increases, where the theoretical
prediction from Eq. (13) overestimates numerical values.
Another simple observation that follows from Eq. (13) is that
for β > 10/[19 − 4(1 − pd )] we obtain the nonphysical value
qc > 1. This means that, in the network model, it is possible
to induce a transition by increasing the coupling only when β

is lower than a given value, as we see in Fig. 7 for β < 0.68.
As a final remark we stress that the transitions within this

MF approach are continuous, in agreement with simulations
in very large networks. This is so because Eqs. (3) and (5)
correspond to an infinite system where finite-size fluctuations
are neglected.

B. Opinion consensus times

In this section we study the quantitative effects of the
disease on the time to reach opinion consensus. For that, we
find an analytical estimation of the mean consensus time τ as
a function of the model parameters.

As mentioned in Sec. IV, in infinitely large systems ρ+
remains constant over time [see Eq. (3a)]. However, in finite
systems ρ+ fluctuates until it reaches either value ρ+ = 1 (+
consensus) or ρ+ = 0 (− consensus), with both configurations
characterized by the absence of +− social links (ρ+− = 0).
A typical evolution of ρ+− towards the absorbing state can be
seen in Fig. 4(b) for q = 0.4 on networks with N = 104 nodes.
That is, consensus is eventually achieved in finite systems
due to the stochastic nature of the opinion dynamics, which
leads the social network to a state where all nodes share the
same opinion. In a single opinion update ρ+ may increase or
decrease by 1/N with the same probability ωρ+−/2, calculated
as the probability ρ+−/2 that a node and an opposite-opinion
neighbor are selected at random, times the probability ω of
opinion adoption. Therefore, the stochastic dynamics of the
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VM can be studied by mapping ρ+ into the position of a
symmetric one-dimensional random walker on the interval
[0,1], with a jumping probability proportional to ωρ+−

stat /2 and
a step length of 1/N . Starting from a symmetric configuration
with N/2 nodes with + opinion [ρ+(0) = 1/2], the walker
reaches either absorbing point ρ+ = 1 or ρ+ = 0 in an average
number of steps that scales as N2. Then, given that the walker
makes a single step in an average number of attempts that
scales as 1/ωρ+−

stat , and that the time increases by 1/N in each
attempt, we find that the mean consensus time scales as

τ ∼ N

ωρ+−
stat

. (14)

As we see in Eq. (8), ρ+−
stat is independent of the disease

prevalence ρ1 and, therefore, the prevalence affects τ only
through the effective copying probability ω, which sets the
time scale associated to opinion updates. From Eq. (4) we see
that ω equals 1.0 when the layers are uncoupled (q = 0) or
when po = 1.0, and thus the dynamics of opinions is exactly
the same as that of the original VM. However, ω is smaller
than 1.0 in the presence of coupling (q > 0) and po < 1.0,
and thus the evolution of the dynamics is “slowed down”—on
average—by a factor 1/ω > 1.0, given that opinions are copied
at a rate that is ω times smaller than in the uncoupled case. As
a consequence, τ increases by a factor 1/ω with respect to the

mean consensus time in the uncoupled case τ0 = τ (q = 0) ∼
N/ρ+−

stat , that is,

τ

τ0
� 1

ω
. (15)

To obtain a complete expression for the ratio τ/τ0 as a function
of the model’s parameters we express ω in terms of ρstat

1 , by
substituting into Eq. (4) the stationary value of ρ10 that follows
from Eq. (5a), ρstat

10 = 2(1 − β)ρstat
1 /γβ. This leads to

ω = 1 − q(1 − po)

(
1 + 1 − β

γβ

)
ρstat

1 . (16)

In the healthy phase ρstat
1 = 0, thus ω = 1.0 and τ = τ0. In

this case, the theory predicts that the disease has no effect
on the time to consensus because there are no infected nodes
that can affect the opinion dynamics. However, having a value
ρstat

1 > 0 of infected nodes in the endemic phase has the effect
of reducing ω or, equivalently, increasing τ with respect to τ0.
Plugging into Eq. (16) the expressions for γ and ρstat

1 from
Eqs. (9) and (10), respectively, and reordering some terms, we
obtain the following expression that relates τ and τ0 in the
endemic phase:

τ

τ0
�
[

1 − q(1 − po){2(μ − 1) − q(1 − pd )(μ − 2)β}{[2(2μ − 1) − q(1 − pd )(μ − 2)]β − 2μ}
β{2(μ − 1) − q(1 − pd )(μ − 2)}{[2μ − q(1 − pd )(μ − 2)]β − 2}

]−1

. (17)

In Fig. 8 we plot in solid lines the ratio τ/τ0 vs. q from Eq. (17)
for μ = 10.

We observe that the theoretical values of τ/τ0 are smaller
than those obtained from numerical simulations (symbols) for
all combinations of po and pd shown. A possible explanation of
these discrepancies can be given by analyzing how correlations
affect the estimated number of different types of connected
nodes, as we have done in Sec. IV A for disease prevalence. If
we take the p0 = 0 case, we see that an opinion change due
to an interaction between two social and contact neighbors
happens only if both nodes are susceptible, that is, when
they have states [+

0 ] and [−
0 ]. Then, as the theory assumes

that +− social links and 00 contact links are uncorrelated
(Appendix A), the estimated probability of finding a [+−

0 0 ] pair
is larger than that in simulations, given that +− social links
are expected to be negatively correlated with 00 contact links.
This negative correlation is due to the fact that susceptible
neighbors tend to align their opinions and, therefore, they are
more likely to be in the same opinion state at a given time.
This leads to an overestimation of the number of [ +−

0 0 ] pairs
and, therefore, to a larger rate of opinion transmission. This
has the overall effect of speeding up consensus, decreasing
the theoretically estimated mean time to reach consensus with
respect to the mean consensus time measured in simulations,
as we see in Fig. 8.

Even though discrepancies with numerical results increase
with the coupling q, the analytic expression (17) is able to
capture the different qualitative behavior of the consensus

time for several combinations of po and pd , as we describe
below. For low values of pd , there is a transition to the healthy
phase when q overcomes a value qc < 1 given by Eq. (12)
and, therefore, τ = τ0 for all q > qc [see pd = 0 curves in the
main plot and the inset of Fig. 8(a)]. As a consequence, τ/τ0

exhibits a nonmonotonic behavior with q, as we described in
Sec. III B. For higher values of pd , the transition to the healthy
phase does not happen for the physical values q � 1 used
in the model’s simulations, given that qc > 1 from Eq. (12).
In this case, τ may either increase monotonically with q for
large pd values (see pd = 1.0 curves), or have a maximum at
some intermediate value for medium pd values (see pd = 0.5
curves). As explained in Sec. III B, the nonmonotonicity
is a consequence of the competition between the level of
link overlap among the two layers—which increases with
q—and the disease prevalence—which decreases with q. This
competition can be seen quantitatively in Eq. (16) for ω, which
has three factors that depend on q and affect τ . Besides the
factor proportional to q, the factor 1/γ also increases with q,
as seen from Eq. (9). But these two factors are balanced by
ρstat

1 , which decreases with q.
An interesting case is the one for full coupling q = 1.0 and

po = 0, because τ from Eq. (17) diverges as β approaches
1.0. This happens in the model because when β = 1.0, once
a node becomes infected it remains infected forever. Then,
once all nodes become infected the opinion dynamics stops,
as infected neighboring nodes cannot interchange opinions,
and thus the social layer freezes in a mixed state of + and −

052315-11



FÁTIMA VELÁSQUEZ-ROJAS AND FEDERICO VAZQUEZ PHYSICAL REVIEW E 95, 052315 (2017)

opinions and consensus is never achieved. By doing a Taylor
series expansion of expression (17) up to to second order in the
small parameter ε = 1 − β � 1 we obtain, after some algebra,

τ

τ0
� [9 − 4(1 − pd )]2

90(1 − β)2
, (18)

where we used μ = 10. Equation (18) shows that τ diverges
as (1 − β)−2 in the β → 1.0 limit, as shown in the inset of
Fig. 9(b). For β = 1.0 and po = 0, we can check from Eq. (17)
that τ/τ0 � 1/(1 − q), which shows the divergence of τ as the
system approaches the fully coupled state q = 1.0.

V. SUMMARY AND CONCLUSIONS

We proposed a bilayer network model to explore the
interplay between the dynamics of opinion formation and
disease spreading in a population of individuals. We used the
voter model and the contact process to simulate the opinion
and the disease dynamics running on a social and contact
network, respectively. These two networks share the same
nodes and they are coupled by a fraction q of links in common.
We showed that, when the networks are coupled, the opinion
dynamics can dramatically change the statistical properties of
the disease spreading, which in turn modifies the properties
of the propagation of opinions, as compared to the case of
isolated networks.

The VM dynamics is able to change the order of the healthy-
endemic phase transition observed in the CP as the infection
probability β exceeds a threshold value βc, from a continuous
transition for the uncoupled case to a discontinuous transition
when the coupling q is larger than zero. The magnitude of
the change in the disease prevalence at the transition point
βc increases with q. The discontinuity is associated with the
nonmonotonic time evolution of the fraction of infected nodes.
This nonmonotonicity is as a consequence of the time-varying
nature of the effective infection probability, which varies over
time according to the stochastic evolution of the fraction of
+− social links. The system also exhibits a discontinuous
transition from an endemic to a healthy phase when the
coupling overcomes a value qc, for a fixed value of β.
The origin of this discontinuity is the same as that of the
discontinuous transition with β, that is, the nonmonotonicity
in the time evolution of the fraction of infected nodes. We also
obtained a phase diagram in the β-q space showing the healthy
and endemic phases for different values of the probabilities pd

and po. In all cases, we observed that the transition point βc

increases with q.
We need to mention that changes in the order of topological

and dynamical transitions were already observed in multilayer
networks [31–37]. In real populations, the implications of
having continuous in contrast to discontinuous transitions are
very different. Indeed, starting from a hypothetical situation
that consists on a population of individuals with an infection
rate just below the critical value (in the healthy phase),
a small increment in β would lead to a small number of
infected individuals in the former case, but a large number of
infections in the later case. Therefore, disregarding the effects
of social dynamics on epidemics propagation could lead to an
underestimation of the real magnitude of the spreading.

We developed a mean-field approach that allowed us
to estimate with reasonable precision the healthy-endemic
transition line (βc,qc) as a function of the model’s parameters.
This approach reveals that the disease dynamics is equivalent
to that of the standard CP on an isolated network, with an
effective infection probability that is constant over time and
that decreases with the coupling and the stationary fraction of
+− social links, for a fixed value of β. This means that, at
the mean-field level, the overall effect of the VM on the CP is
to decrease the effective infection probability as the coupling
increases. Therefore, as q increases, a larger value of β is
needed to bring the system to the endemic phase, leading to
an increase of the transition point βc with q.

On its part, the CP dynamics has the overall effect of
slowing down the propagation of opinions, delaying the
process of opinion consensus compared to the one observed
in an isolated network. The MF approach reveals that the
opinion dynamics corresponds to that of the standard VM
model on an isolated network, with a probability of opinion
transmission that decreases with q and the disease prevalence.
Depending on the parameter values, the mean consensus
time τ can show a monotonic increase with q, as well as
a nonmonotonic behavior. An insight on these results was
given by the MF approach, which allowed us to obtain an
approximate mathematical expression that relates τ with the
parameters. This approach shows that the behavior of τ with q

is the result of two different mechanisms in play: the overlap of
social and contact links that tends to increase τ with q, which
is counterbalanced by the fraction of infected nodes that tends
to decrease τ with q. Therefore, the nontrivial dependence of
τ with q is a consequence of the competition between these
two mechanisms.

It is interesting to note that, despite the nontrivial interplay
between the CP and the VM, the coupled interdependent
system of opinions and disease can be roughly seen as two
systems that evolve independently of one another, where
each system has an effective parameter that depends on the
other dynamics and the coupling. Specifically, the opinion
dynamics corresponds to that of the VM with an effective
opinion transmission probability that decreases with the dis-
ease prevalence and the coupling, while the disease spreading
is well described by the dynamics of the CP with an effective
infection probability that decreases with the fraction of +−
social neighbors and the coupling. However, this is only
an approximation that comes from the MF analysis, which
neglects correlations between opinion and disease states.

The results presented in this article correspond to a
particular initial state that consists on even fractions of + and
− opinion states and even fractions of infected and susceptible
states, uniformly distributed over the networks. As a future
work, it might be worth studying the behavior of the system
under different initial conditions, and with uneven fractions of
opinion and disease states. For example, one can simulate a
population with initial polarized opinions based on the disease,
by correlating the opinion of each node with its disease state
(for instance by infecting all nodes with − opinion and leaving
all + opinion nodes in the healthy state). Finally, it would
be interesting to study the behavior of the present model
under different update rules. For instance, we have checked
a simple rule in which the connection condition—connected
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or disconnected—between two nodes in one layer is not taken
into account for the update in the other layer. This is an ongoing
work with some preliminary results that suggest that the critical
behavior of this new model is quite different from that of the
original model.
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APPENDIX A: DERIVATION OF THE
RATE EQUATION FOR ρ+

We denote by [OD ] the state of a given node, whereO = +,−
and D = 1,0 are its opinion and disease states, respectively.
Thus, there are four possible node states: [+

0 ], [+
1 ], [−

0 ], and
[−

1 ]. In a single time step of the dynamics, the transitions from
state [ −

D ] to state [ +
D ] when a node switches opinion from − to

+ lead to a gain of 1/N in ρ+, while the transitions [ +
D ] → [ −

D ]
when there is a − → + opinion change lead to a loss of 1/N

in ρ+. Considering these four possible transitions, the average
change of ρ+ in a single time step of time interval �t = 1/N

is described by the rate equation

dρ+

dt
= dρ+

dt

∣∣∣
−→+

+ dρ+

dt

∣∣∣
+→−

= 1

1/N
[�ρ+|−

0 → +
0

+ �ρ+|−
1 → +

1

+�ρ+|+
0 → −

0
+ �ρ+|+

1 → −
1
], (A1)

where for instance the term �ρ+|−
0 → +

0
represents the average

change of ρ+ in a time step due to [−
0 ] → [+

0 ] transitions.
In turn, �ρ+|−

0 → +
0

has four contributions corresponding to

the different social interactions that lead to the [−
0 ] → [+

0 ]
transition. Thus, we can write

�ρ+|−
0 → +

0
= �ρ+|−+

0 0 → ++
0 0

+ �ρ+|−+
0 0 → ++

0 0
+ �ρ+|−+

0 1 → ++
0 1

+�ρ+|−+
0 1 → ++

0 1
, (A2)

and similarly for the [ −
1 ] → [+

1 ] transition corresponding to
the second term in Eq. (A1)

�ρ+|−
1 → +

1
= �ρ+|−+

1 0 → ++
1 0

+ �ρ+|−+
1 0 → ++

1 0

+�ρ+|−+
1 1 → ++

1 1
+ �ρ+|−+

1 1 → ++
1 1

. (A3)

Third and fourth terms in Eq. (A1) are obtained by interchang-
ing symbols + and − in Eqs. (A2) and (A3), respectively, due
to the symmetry between + and − opinion states. We notice
that disease states remain the same after the interactions, as
only a change in the social layer can lead to a change in ρ+.
The first term in Eq. (A2) represents the average change in ρ+
due to interactions in which a node i in state [−

0 ] copies the
opinion of one its social neighbors j in state [+

0 ], changing the
state of i to [+

0 ]. This interaction is schematically represented

by the symbol [−+
0 0 ], where the horizontal line over the opinion

symbols describes a social link between i and j . In the same

way, the symbol [−+
0 0 ] represents an interaction between a [ −

0 ]
node and a neighboring [+

0 ] node connected by both a social
and a contact link that are indicated by horizontal lines on top
of the respective symbols. The second, third and fourth terms
in Eq. (A2) describe, respectively, the transitions due to an
interaction of node i with a [+

0 ] social/contact neighbor, a [ +
1 ]

social neighbor, and a [+
1 ] social/contact neighbor.

We now illustrate how to build an approximate expression
for each term of Eq. (A2) for �ρ+|−

0 → +
0
. For the sake of

simplicity, we assume that all nodes have the same number
of neighbors k = μ chosen at random, which is equivalent to
assuming that networks are degree-regular random graphs.
However, we expect this approximation to work well in
networks with homogeneous degree distributions like ER
networks. The first term in Eq. (A2) can be written as

�ρ+|− +
00 → + +

00
= P (−0 )

μ∑
{N−

0 }
M({N−

0 },μ)
N [−+

00 ]

μ

1

N
, (A4)

which can be understood as the product of the different
probabilities associated with each of the consecutive events
that lead to the [ −+

0 0 ] → [++
0 0 ] transition in a time step, as we

describe below. A node i with state [−
0 ] is chosen at random

with probability P (−0 ). If node i has N [−+
00 ] social neighbors

in state [+
0 ], then one of these social neighbors j is randomly

chosen with probability N [−+
00 ]/μ, after which i copies j ’s

opinion with probability 1.0 because there is no contact link
between i and j . Finally, ρ+ increases by 1/N when i switches
opinion.

In order to consider all possible scenarios of having
N [−+

00 ] = 0,1, . . . ,μ social neighbors we sum over all pos-
sible neighborhood configurations represented by {N−

0 } ≡
{N [−+

00 ],N [−+
00 ], N [−−

00 ], N [−−
00 ], N [−+

01 ], N [−+
01 ], N [−−

01 ],

N [−−
01 ]}, weighted by the probability of each configuration

M({N−
0 },μ). Here we denote by N [−O

0D ] the number of

+ −μ
+ −N     + − social links

−N     + − social links

prob = μ
N + −

0
+

+
1

0
+

0
−

0
−

1
−

+
1

0
−

0
−

0
−

1
−

0
+

0
+

− − social links
+ − social links

+ −μ−N     − − social links

+ −N     + − social links

0 1
− +N[   ]++ −N    =

1
+

1
−

0
+

1
+

1
−

− +
0 0N[   ]+ 0 0

− +N[   ]+ 0 1
− +N[   ]

ii

+ −+ −Δρ    = 2(μ−2Ν    )/μΝ
0 0 contact links
1 0 contact links

FIG. 10. Schematic illustration of an opinion update in which a
node i in state [ −

0 ] changes to state [ +
0 ] by copying the opinion + of

a randomly chosen neighbor (green dashed links). The change in the
density of +− links is denoted by �ρ+−.
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[OD ] social neighbors and by N [−O
0D ] the number of [OD ]

social/contact neighbors [see Fig. (10)]. The number of each
type of neighbor is between 0 and μ, and thus the sum in
Eq. (A4) include eight summations

μ∑
{N−

0 }
≡
∑
O=+,−
D=0,1

⎛
⎜⎜⎜⎝

μ∑
N
[−O

0D

]
=0

+
μ∑

N
[−O

0D

]
=0

⎞
⎟⎟⎟⎠

over all combinations subject to the constraint∑
O=+,−
D=0,1

(
N
[−O

0D
]+ N

[−O
0D
]) = μ.

In order to carry out the summation in Eq. (A4) we only take
into account correlations between first neighbors, and neglect
second and higher neighbor correlations (pair approximation).

Thus, we define the probability P [−O
0D ] ≡ P ( O

D |−
0 ) that a

given neighbor of node i is a social neighbor with state [OD ],

and consider P [−O
0D ] to be conditioned to the state [−

0 ] of i

only, and not on the other neighbors of i. Similarly, we denote

by P [−O
0D ] = P ( O

D |−
0 ) the conditional probability that a node

connected to i is a social/contact neighbor with state [OD ], given
that i has state [−

0 ]. Therefore, M becomes the multinomial
probability distribution defined as

M({N−
0 },μ) ≡

⎧⎪⎨
⎪⎩

μ!∏
O = +,−
D=0,1

N
[O
D
]

! N
[O
D
]

!

∏
O = +,−

D=0,1

P
[O
D
] N[OD ]P [OD ] N

[O
D
]
, when

∑
O = +,−

D=0,1

(
N
[O
D
]+ N

[O
D
]) = μ,

0, otherwise,

where we have used the symbols [OD ] and [OD ] as short

notations for [−O
0 D ] and [−O

0 D ], respectively. Then, performing
the summation in Eq. (A4) we arrive at

�ρ+
∣∣∣∣ − +

00 → + +
00

= P (−0 )〈N [−+
00 ]〉

μN
= P (−0 )P [−+

00 ]

N
, (A5)

where we have used the identity 〈N [−+
00 ]〉 = μP [−+

0 0 ] for the

mean value of N [−+
00 ]. The other three terms in Eq. (A2) can

be obtained following an approach similar to the one above for
�ρ+|− +

00 → + +
00

, leading to the expression

�ρ+∣∣ −
0 → +

0
= P (−0 )

N

(
P [−+

0 0 ] + P [−+
0 0 ]

+P [−+
0 1 ] + po P [−+

0 1 ]
)
, (A6)

where the prefactor po in the last term accounts for the
probability of copying the opinion of an infected contact
neighbor. Keeping in mind that we aim to obtain a closed
system of rate equations for ρ+, ρ1, ρ

+−, and ρ10, we now
find approximate expressions for the different probabilities of
Eq. (A6) in terms of the fractions of nodes and links in each
layer. We start by assuming that correlations between opinion
and disease states of a given node are negligible, and thus we
can write

P (−0 ) � ρ−ρ0. (A7)

Then, to estimate the conditional probabilities P [−+
0D ] and

P [−+
0D ] it proves convenient to split each of them into two

conditional probabilities

P [−+
0D ] = P ( +

D |−
0 ) = P ( |−

0 )P ( +
D | −

0 ),

P [−+
0D ] = P ( +

D |−
0 ) = P ( |−

0 )P ( +
D | −

0 ),

using the relation P (a,b|c) = P (a|c)P (b|a,c) and interpreting
the entire event of connecting a given type of link to a [ +

D ]

node as two separate events. Assuming that the type of link
connected to node i is uncorrelated with the state of i, we have

P ( |−
0 ) � P ( ) = 1 − q and

P ( |−
0 ) � P ( ) = q,

and that opinion and disease states are uncorrelated, we have

P ( +
D | −

0 ) � P (+| −)P (D| 0) and

P ( +
D | −

0 ) � P (+| −)P (D| 0).

Within a homogeneous pair approximation [29], the proba-
bility P (+| −) that a social neighbor j of a node i with
opinion Oi = − has opinion Oj = + can be estimated as the
ratio between the total number μNρ+−/2 of links from − to
+ nodes and the total number μNρ− of links connected to −
nodes, that is P (+| −) � ρ+−/2ρ−. Similarly, we estimate
the probability that a contact neighbor j of a susceptible node
has disease state Dj = 0 as P (0| 0) � ρ00/ρ0, and disease
stateDj = 1 as P (1| 0) � ρ10/2ρ0. And if j is not a neighbor
of i on the contact layer then P (D| 0) � ρD. Assembling all
these factors we obtain

P [−+
0 0 ] � (1 − q) ρ+− ρ0

2ρ− , P [−+
0 0 ] � q ρ+− ρ00

2ρ−ρ0
,

(A8)
P [−+

0 1 ] � (1 − q) ρ+− ρ1

2ρ− , P [−+
0 1 ] � q ρ+− ρ10

4ρ−ρ0
.

Finally, plugging into Eq. (A6) the approximate expressions
for the conditional probabilities from Eqs. (A8) and for P (−0 )
from Eq. (A7) we arrive at

�ρ+
∣∣∣∣ −

0 → +
0

= ρ+−

2N

[
ρ0 − q(1 − po)

ρ10

2

]
, (A9)

where we have used the conservation relations Eqs. (2a) and
(2d).

We now calculate the second gain term in Eq. (A1),
�ρ+|−

1 → +
1
, which represents the average change in ρ+ due

to [−
1 ] → [+

1 ] transitions, following the same steps as above
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for the term �ρ+|−
0 → +

0
. From Eq. (A3) we obtain

�ρ+|−
1 → +

1

= P (−1 )
μ∑

{N−
1 }

M({N−
1 },μ)

1

μ
{N [−+

10 ] + po N [−+
10 ]

+N [−+
11 ] + po N [−+

11 ]} 1

N

= P (−1 )

μN
{〈N [−+

10 ]〉 + 〈N [−+
11 ]〉

+po(〈N [−+
10 ]〉 + 〈N [−+

11 ]〉)}

= P (−1 )

N
{P [−+

10 ] + P [−+
11 ] + po(P [−+

10 ] + P [−+
11 ])},

and using the approximations

P [−+
1 0 ] � (1 − q) ρ+− ρ0

2ρ− , P [−+
1 0 ] � q ρ+− ρ10

4ρ−ρ1
,

(A10)
P [−+

1 1 ] � (1 − q) ρ+− ρ1

2ρ− , P [−+
1 1 ] � q ρ+− ρ11

2ρ−ρ1
,

for the conditional probabilities we arrive at

�ρ+∣∣ −
1 → +

1
= ρ+−ρ1

2N
[1 − q(1 − po)], (A11)

where we have used the conservation relations Eqs. (2a) and
(2c).

Adding Eqs. (A9) and (A11) we obtain the following
expression for the average gain of a + node in single time
step, corresponding to the sum of the first and second terms of
Eq. (A1):

dρ+

dt
|−→+ = 1

1/N
[�ρ+|−

0 → +
0

+ �ρ+|−
1 → +

1
]

� 1

2
ωρ+−, (A12)

with

ω ≡ 1 − q(1 − po)
(
ρ1 + ρ10

2

)
. (A13)

The prefactor ω plays an important role in the dynamics
of opinion consensus, by setting the time scale associated
to opinion updates, and can be interpreted as an effective
probability that a node adopts the opinion of randomly chosen
opposite-opinion neighbor. That is, Eq. (A12) for the gain of a
+ node simply describes the process of selecting a − node i and
a + neighbor j , which happens with probability ρ+−/2, and
then switching i’s opinion with a probability ω that depends
on the connection type and disease state of both i and j . This
“effective copying probability” ω turns out to be an average
copying probability over the entire social network, as shown
in Sec. IV.

In order to find the equation for the average loss of a + node
in a time step, corresponding to the sum of the third and fourth
terms of Eq. (A1), we can exploit the symmetry between +
and − opinion states and simply interchange signs + and − in

Eq. (A12),

dρ+

dt
|+→− = 1

1/N
[�ρ+|+

0 → −
0

+ �ρ+|+
1 → −

1
]

� −1

2
ωρ+−, (A14)

where we used ρ−+ = ρ+−. Finally, adding Eqs. (A12) and
(A14) we obtain

dρ+

dt
= 0, (A15)

quoted in Eq. (3a) of the main text. Therefore, the fractions of
+ and − nodes are conserved at all times: ρ+(t) = ρ+(0) and
ρ−(t) = ρ−(0) = 1 − ρ+(0). Even though the above calcula-
tion leads to a very simple result, it serves as an introduction to
the methodology used for deriving rate equations for the other
fractions ρ+−, ρ1, and ρ10, as we show next.

APPENDIX B: DERIVATION OF THE
RATE EQUATION FOR ρ+−

In analogy to the calculation for ρ+ in the previous section,
the average change of the faction of +− social links ρ+− in a
time step is given by the rate equation

dρ+−

dt
= dρ+−

dt

∣∣∣∣
−→+

+ dρ+−

dt

∣∣∣∣
+→−

, (B1)

with

dρ+−

dt

∣∣∣∣
−→+

= 1

1/N
[�ρ+−|−

0 → +
0

+ �ρ+−|−
1 → +

1
], (B2)

dρ+−

dt

∣∣∣∣
+→−

= 1

1/N
[�ρ+−|+

0 → −
0

+ �ρ+−|+
1 → −

1
]

=
{

dρ+−

dt

∣∣∣
−→+

}−⇐⇒+
, (B3)

where the symbol − ⇐⇒ + indicates the interchange of signs
+ and − in the expression between braces. Equation (B3)
means that the symmetry between + and − opinions allows
us to find the second term in Eq. (B1) by interchanging signs
in the first term. To calculate the first term in Eq. (B2) we sum
over all four types of interactions of a [−

0 ] node i with a [ +
D ]

neighbor j that lead to the [ −
0 ] → [+

0 ] transition:

�ρ+−|−
0 → +

0
= �ρ+−|−+

0 0 → ++
0 0

+ �ρ+−|−+
0 0 → ++

0 0

+�ρ+−|−+
0 1 → ++

0 1
+ �ρ+−|−+

0 1 → ++
0 1

. (B4)

As explained in the previous section, the probabilities of
interactions [ −+

0D ] and [ −+
0D ] are given by the respective fractions

N [−+
0D ]/μ andN [−+

0D ]/μ of each type of neighbor. The change
in the number of +− social links after node i switches
opinion is given by the expression μ − 2(N [−+

00 ] + N [−+
00 ] +

N [−+
01 ] + N [−+

01 ]), which takes into account the specific
configuration of links and neighbors connected to i, as depicted

052315-15



FÁTIMA VELÁSQUEZ-ROJAS AND FEDERICO VAZQUEZ PHYSICAL REVIEW E 95, 052315 (2017)

in Fig. 10. We obtain

�ρ+−|−
0 → +

0
= P (−0 )

μ∑
{N−

0 }

M({N−
0 },μ)

μ
(N [−+

00 ] + N [−+
00 ] + N [−+

01 ] + po N [−+
01 ])

× [μ − 2(N [−+
00 ] + N [−+

00 ] + N [−+
01 ] + N [−+

01 ])]

μN/2
(B5)

= 2P (−0 )

μ2N
{μ[〈N [−+

00 ]〉 + 〈N [−+
00 ]〉 + 〈N [−+

01 ]〉 + po 〈N [−+
01 ]〉]

− 2[〈N [−+
00 ]2〉 + 〈N [−+

00 ]2〉 + 〈N [−+
01 ]2〉 + po 〈N [−+

01 ]2〉
+ 2(〈N [−+

00 ]N [−+
00 ]〉 + 〈N [−+

00 ]N [−+
01 ]〉 + 〈N [−+

00 ]N [−+
01 ]〉)

+ (1 + po)(〈N [−+
00 ]N [−+

01 ]〉 + 〈N [−+
00 ]N [−+

01 ]〉 + 〈N [−+
01 ]N [−+

01 ]〉)]}, (B6)

where the first and second moments of M({N−
0 },μ) are

〈N [ −+
Di Dj

]〉 = μP [ −+
Di Dj

],

〈N [ −+
Di Dj

]〉 = μP [ −+
Di Dj

],

〈N [ −+
Di Dj

]2〉 = μP [ −+
Di Dj

] + μ(μ − 1)P [ −+
Di Dj

]2,

〈N [ −+
Di Dj

]2〉 = μP [ −+
Di Dj

] + μ(μ − 1)P [ −+
Di Dj

]2, (B7)

〈N [ −+
Di Dj

]N [ −+
Di D′

j

]〉 = μ(μ − 1)P [ −+
Di Dj

] P [ −+
Di D′

j

],

〈N [ −+
Di Dj

]N [ −+
Di D′

j

]〉 = μ(μ − 1)P [ −+
Di Dj

] P [ −+
Di D′

j

],

〈N [ −+
Di Dj

]N [ −+
Di D′

j

]〉 = μ(μ − 1)P [ −+
Di Dj

] P [ −+
Di D′

j

].

Here Di = 1,0 and Dj = 1,0 are the disease states of nodes i and j , respectively. Replacing the expressions for the moments
from Eqs. (B7) in Eq. (B6) and regrouping terms we obtain

�ρ+−|−
0 → +

0
= 2P (−0 )

μN
{(μ − 2)[P [−+

00 ] + P [−+
00 ] + P [−+

01 ] + po P [−+
01 ]]

−2(μ − 1)[(P [−+
00 ] + P [−+

00 ] + P [−+
01 ])2 + po P [−+

01 ]2

+(1 + po)P [−+
01 ](P [−+

00 ] + P [−+
00 ] + P [−+

01 ])]}. (B8)

Plugging the expressions for the probabilities P [−+
0D ] and P [−+

0D ] from Eq. (A8) into Eq. (B8), after doing some algebra we finally
obtain

�ρ+−|−
0 → +

0
= ρ+−

μN

{
(μ − 2)

[
(1 − q)ρ0 + q

(
ρ00 + po

ρ10

2

)]
− (μ − 1)

ρ+−

ρ−
[
ρ0 − (1 − po)q

ρ10

2

]}
. (B9)

We now follow an approach similar to the one above for �ρ+−|−
0 → +

0
and calculate the second term of Eq. (B2) as

�ρ+−|−
1 → +

1
= P (−1 )

μ∑
{N−

1 }

M({N−
1 },μ)

μ
[N [−+

10 ] + N [−+
11 ] + po(N [−+

10 ] + N [−+
11 ])]

× [μ − 2(N [−+
10 ] + N [−+

10 ] + N [−+
11 ] + N [−+

11 ])]

μN/2

= 2P (−1 )

μ2N
{μ[〈N [−+

10 ]〉 + 〈N [−+
11 ]〉 + po(〈N [−+

10 ]〉 + 〈N [−+
11 ]〉)] − 2[〈N [−+

10 ]2〉 + 〈N [−+
11 ]2〉

+po(〈N [−+
10 ]2〉 + 〈N [−+

11 ]2〉) + 2〈N [−+
10 ]N [−+

11 ]〉 + (1 + po)(〈N [−+
10 ]N [−+

10 ]〉
+ 〈N [−+

10 ]N [−+
11 ]〉 + 〈N [−+

10 ]N [−+
11 ]〉 + 〈N [−+

11 ]N [−+
11 ]〉) + 2po〈N [−+

10 ]N [−+
11 ]〉]}
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= 2P (−1 )

μN
{(μ − 2)[P [−+

10 ] + P [−+
11 ] + po(P [−+

10 ] + P [−+
11 ])]

− 2(μ − 1)[(P [−+
10 ] + P [−+

11 ])2 + po(P [−+
10 ] + P [−+

11 ])2

+ (1 + po)(P [−+
10 ] + P [−+

11 ])(P [−+
10 ] + P [−+

11 ])]}, (B10)

where we have used the moments from Eqs. (B7). After substituting expressions (A10) for the probabilities P [−+
1D ] and P [−+

1D ]
we arrive at

�ρ+−|−
1 → +

1
= ρ+−

μN

{
(μ − 2)

[
(1 − q)ρ1 + q po

(
ρ11 + ρ10

2

)]
− (μ − 1)

ρ+−ρ1

ρ− [1 − (1 − po)q]

}
. (B11)

By adding Eqs. (B9) and (B11) we obtain the following expression for the change in ρ+− due to − → + transitions:

dρ+−

dt

∣∣∣
−→+

= ωρ+−

μ

[
μ − 2 − (μ − 1)

ρ+−

ρ−

]
. (B12)

Then, by interchanging signs + and − in Eq. (B12) we obtain the change in ρ+ due to + → − transitions:

dρ+−

dt

∣∣∣
+→−

= ωρ+−

μ

[
μ − 2 − (μ − 1)

ρ+−

ρ+

]
. (B13)

Finally, adding Eqs. (B12) and (B13) we arrive at the following rate equation for ρ+− quoted in Eq. (3b) of the main text:

dρ+−

dt
= 2ωρ+−

μ

[
(μ − 1)

(
1 − ρ+−

2ρ+ρ−

)
− 1

]
.

APPENDIX C: DERIVATION OF THE
RATE EQUATION FOR ρ1

The average change of the fraction of infected nodes ρ1 in
a single time step can be written as

dρ1

dt
= 1

1/N
[�ρ1| +

1 → +
0

+ �ρ1| +
0 → +

1

+�ρ1| −
1 → −

0
+ �ρ1| −

0 → −
1
], (C1)

where each term represents a different transition corresponding
to a disease update on the contact layer. The first term of
Eq. (C1) corresponds to the recovery of a [+

1 ] node, and can
be estimated as

�ρ1

∣∣ +
1 → +

0
= −P (+1 )(1 − β)

1

N
� − (1 − β)

N
ρ+ρ1. (C2)

That is, with probability P (+1 ) � ρ+ρ1 a [+
1 ] node is picked at

random, and then recovers with probability 1 − β, decreasing
ρ1 in 1/N . The second term corresponds to the infection of
a [+

0 ] node, while the last two terms are equivalent to the
first two, but where a node with opinion − is recovered and
infected, respectively. By the symmetry of + and − opinions,
the last two terms are obtained by interchanging signs + and
− in the first two.

We now find an approximate expression for the second term
of Eq. (C1). A susceptible node j in state [+

0 ] can be infected
by a sick neighbor i with + or − opinion and connected to j by
a contact link or by both a social and a contact link. Thus, four
possible contact interactions lead to the [+

0 ] → [+
1 ] transition:

�ρ1| +
0 → +

1
= �ρ1| ++

1 0 → ++
1 1

+ �ρ1| ++
1 0 → ++

1 1
+ �ρ1| −+

1 0 → −+
1 1

+�ρ1| −+
1 0 → −+

1 1
. (C3)

The symbol [O+
1 0 ] represents a contact interaction between

node i in state [O1 ] (O = +,−) and node j in state [+
0 ]. The

state that changes in the interaction is now displayed on the
right-hand side of the symbol, instead of on the left-hand
side as for the case of the social interactions described in
the previous sections. This is because the chosen neighbor
j of i changes state in the CP, while in the VM it is node
i who changes state. Taking into account the events and
their associated probabilities that lead to each of the four
interactions described above, we can write Eq. (C3) as

�ρ1| +
0 → +

1
= P (+1 )

μ∑
{N+

1 }
M({N+

1 },μ)

× β

μ
(N [++

10 ] + N [++
10 ])

1

N

+P (−1 )
μ∑

{N−
1 }

M({N−
1 },μ)

× β

μ
(N [−+

10 ] + pd N [−+
10 ])

1

N
. (C4)

The first and third terms of Eq. (C4) correspond to selecting
an [O1 ] node i and a contact neighbor j with state [+

0 ] at

random, which happens with probability P (O1 )N [O+
10 ]/μ, and

then i infecting j with probability β, given that they are not
connected by a social link. The second and fourth terms are
similar to the first and second terms, respectively, but selecting
a social/contact neighbor j . As both types of links are present
in this case, i infects j with probability β pd when both nodes
have different opinions (fourth term). In all cases ρ1 changes
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FIG. 11. Schematic illustration of two disease updates. (a) Recovery: a node i in state [ +
1 ] recovers with probability 1 − β. (b) Infection: a

node i in state [ +
1 ] infects a contact neighbor j in state [ +

0 ] with probability β. The change in the density of 10 contact links is denoted by �ρ10.

by 1/N . Performing the sums of Eq. (C4) we obtain

�ρ1| +
0 → +

1
= β

μN
[P (+1 )(〈N [++

10 ]〉 + 〈N [++
10 ]〉)

+P (−1 )(〈N [−+
10 ]〉 + pd 〈N [−+

10 ]〉)]. (C5)

Replacing the expressions for the first moments 〈N [O+
10 ]〉 =

μP [O+
10 ] and 〈N [O+

10 ]〉 = μP [O+
10 ] in Eq. (C5), and using the

following expressions for the conditional probabilities

P [++
1 0 ] � (1 − q) ρ+ ρ10

2ρ1
, P [++

1 0 ] � q ρ++ ρ10

2ρ+ρ1
, (C6)

P [−+
1 0 ] � (1 − q) ρ+ ρ10

2ρ1
, P [−+

1 0 ] � q ρ+− ρ10

4ρ−ρ1
, (C7)

we finally arrive at

�ρ1

∣∣ +
0 → +

1
� β ρ10

2N

[
ρ+ − q

2
(1 − pd )ρ+−

]
, (C8)

where we have used the conservation relations from Eqs. (1a)
and (1c).

Now that we have estimated the first two terms of Eq. (C1),
the last two terms are obtained by interchanging signs + and
− in Eqs. (C2) and (C8):

�ρ1

∣∣ −
1 → −

0
� − (1 − β)

N
ρ−ρ1, (C9)

�ρ1

∣∣ −
0 → −

1
� β ρ10

2N

[
ρ− − q

2
(1 − pd )ρ+−

]
. (C10)

Adding Eqs. (C2), (C8), (C9), and (C10), the rate equation
(C1) for ρ1 becomes

dρ1

dt
� γβ ρ10

2
− (1 − β)ρ1, (C11)

with

γ ≡ 1 − q(1 − pd )ρ+−, (C12)

as quoted in Eqs. (5a) and (6) of the main text.

APPENDIX D: DERIVATION OF THE
RATE EQUATION FOR ρ10

The average change of the fraction of infected-susceptible
pairs of nodes ρ10 in a single time step can be written as

dρ10

dt
= 1

1/N
[�ρ10| +

1 → +
0

+ �ρ10| +
0 → +

1
]

+ 1

1/N
[�ρ10| +

1 → +
0

+ �ρ10| +
0 → +

1
]+⇔−, (D1)

where the first and second terms correspond to the change
in ρ10 due to the recovery of a [+

1 ] node and the infection
of a [+

0 ] node, respectively, while the last two terms are the
corresponding recovery and infections events of nodes with −
opinion, and are obtained by interchanging the symbols + and
− in the first two terms. The recovery term can be calculated
as

�ρ10| +
1 → +

0

= P (+1 )(1 − β)
μ∑

{N+
1 }

M({N+
1 },μ)

× [μ − 2(N [++
10 ] + N [++

10 ] + N [+−
10 ] + N [+−

10 ])]

μN/2
,

(D2)

where the expression in square brackets is the change in
the number of 10 links connected to a node i in state [+

1 ]
when i recovers, given a specific configuration of node types
connected to i [see Fig. 11(a)]. The summation in Eq. (D2)
leads to the first moments of the multinomial probability
M({N+

1 },μ), with single event probabilities P [++
10 ] and P [++

10 ]
given by Eqs. (C6), and

P [+−
1 0 ] � (1 − q) ρ− ρ10

2ρ1
, P [+−

1 0 ] � q ρ+− ρ10

4ρ+ρ1
. (D3)

Replacing these expressions for the probabilities and using the
conservation relations from Eqs. (1a) and (1c) we obtain, after
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doing some algebra,

�ρ10

∣∣ +
1 → +

0
� 2(1 − β)ρ+

N
(ρ1 − ρ10). (D4)

We now calculate the second term of Eq. (D1) corresponding to the change in ρ10 after the infection of a node with + opinion:

�ρ10| +
0 → +

1
=
⎡
⎣P (+1 )

μ∑
{N+

i, 1}
M({N+

i, 1},μ)
β

μ
(Ni[

++
10 ] + Ni[

++
10 ]) + P (−1 )

μ∑
{N−

i, 1}
M({N−

i, 1},μ)
β

μ
(Ni[

−+
10 ] + pd Ni[

−+
10 ])

⎤
⎦

×
μ−1∑

{N+
j, 0}

M({N+
j, 0},μ − 1)

[μ − 2(1 + Nj [++
01 ] + Nj [++

01 ] + Nj [+−
01 ] + Nj [+−

01 ])]

μN/2
= P × C. (D5)

The term called P in Eq. (D5)—the two summations inside the square brackets—is the probability that an [O1 ] node i infects a
[+

0 ] neighbor j , and is the same as the one calculated in Eq. (C4) for �ρ1| +
0 → +

1
, which is estimated in Eq. (C8) as

P � βρ10

2

[
ρ+ − q

2
(1 − pd )ρ+−

]
. (D6)

We notice that the extra 1/N prefactor in Eq. (C8) comes from the change in ρ1, which for ρ10 depends on the neighborhood of
node j . The subindex i in the term P indicates that the infection probability term depends only on node i and its neighborhood
[see Fig. 11(b)]. The term called C corresponding to the summation outside the square brackets expresses the change in ρ10

when node j gets infected [see Fig. 11(b)]. Here the subindex j refers to node j and its neighborhood. This term carries the
information that the infection on j comes from one of its infected neighbors i, and thus it is known already that at least one of j ’s
neighbors has disease state Di = 1. This is taken into account by running the summation on the other μ − 1 unknown neighbors
and considering that the number of 10 links connected to j is at least one, which is added to the total number of 10 links inside
the parentheses. Using the conditional probabilities

P [++
0 1 ] � (1 − q) ρ+ ρ10

2ρ0
, P [++

0 1 ] � q ρ++ ρ10

2ρ+ρ0
, (D7)

P [+−
0 1 ] � (1 − q) ρ− ρ10

2ρ0
, P [+−

0 1 ] � q ρ+− ρ10

4ρ+ρ0
, (D8)

and the conservation relations Eqs. (1b) and (1c), the change term becomes

C � 2

μN

[
(μ − 1)

(
1 − ρ10

ρ0

)
− 1

]
. (D9)

Finally, combining Eqs. (D6) and (D9) for P and C we arrive at

�ρ10

∣∣ +
0 → +

1
� βρ10

μN

[
ρ+ − q

2
(1 − pd )ρ+−

][
(μ − 1)

(
1 − ρ10

ρ0

)
− 1

]
. (D10)

Then, adding the recovery and infection terms from Eqs. (D4) and (D10), respectively, we obtain the first two terms of Eq. (D1),
while the last two terms are obtained by interchanging symbols + and − in this last expression. Adding these four terms we
arrive at the following rate equation for ρ10:

dρ10

dt
� γβρ10

μ

[
(μ − 1)

(
1 − ρ10

ρ0

)
− 1

]
+ 2(1 − β)(ρ1 − ρ10), (D11)

quoted in Eq. (5b) of the main text.
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