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Abstract. An isolated word speech recognition system based on audio-
visual features is proposed in this paper. To enhance the recognition over
different noisy conditions, this system combines three classifiers based
on audio, visual and audio-visual information, respectively. The perfor-
mance of the proposed recognition system is evaluated over two isolated
word audio-visual databases, a public one and a database compiled by
the authors of this paper. Experimental results show that the structure of
the proposed system leads to significant improvements of the recognition
rates through a wide range of signal-to-noise ratios.
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1 Introduction

The last decades have witnessed an increasing interest in the development of
more natural Human Computer Interfaces (HCI), that mimic the way humans
communicate among themselves. Communication among humans is inherently
a multimodal process, in the sense that, for the transmission of an idea, not
only is important the acoustic signal but also the facial expressions and body
gestures [6]. For instance, a significant role in spoken language communication
is played by lip reading. This is essential for the hearing-impaired people, and
is also important for normal listeners in noisy environments to improve the in-
telligibility of the speech signal. Audio Visual Speech Recognition (AVSR) is a
fundamental task in HCIs, where the acoustic and visual information (mouth
movements, facial gestures, etc.) during speech are taken into account. Several
strategies have been proposed in the literature for AVSR [9][7][8], where improve-
ments of the recognition rates are achieved by fusing audio and visual features
related to speech. As expected, these improvements are more notorious when
the audio channel is corrupted by noise, which is a usual situation in speech
recognition applications. These approaches are usually classified according to
the method employed to combine (or fuse) the audio and visual information.
Three main approaches can be distinguished, viz., feature level fusion, classifier
level fusion and decision level fusion [4]. In feature level fusion (early integration),



audio and visual features are combined to form a unique audio-visual feature vec-
tor, which is then employed for the classification task. This strategy requires the
audio and visual features to be exactly at the same rate and in synchrony, and
it is effective when the combined modalities are correlated, since it can exploit
the covariations between audio and visual features. In classifier level fusion (in-
termediate integration), the information is combined within the classifier using
separated audio and visual streams, in order to generate a composite classifier
to process the individual data streams [9]. This strategy has the advantage of
being able to handle possible asynchrony between audio and visual features. In
decision level fusion (late integration), independent classifiers are used for each
modality and the final decision is computed by the combination of the likelihood
scores associated with each classifier [5]. Typically, these scores are fused using
a weighting scheme which takes into account the reliability of each unimodal
stream. This strategy does not require strictly synchronized streams.

In this paper an isolated word speech recognition system based on audio-
visual features is proposed. This system is based on the combination of early
and late fusion schemes. In particular, acoustic information is represented by
mel-frequency cepstral coefficients, and visual information is represented by co-
efficients related to mouth shape. The efficiency of the system is evaluated con-
sidering noisy conditions in the acoustic channel. The proposed system combines
three classifiers based on audio, visual and audio-visual information, respectively,
in order to improve the recognition rates through a wide range of signal-to-noise
ratios (SNRs), taking advantage of each classifier’s efficiency at different SNRs
ranges. Two audio-visual databases are employed to test the proposed system.
The experimental results show that a significant improvement is achieved when
the visual information is considered.

The rest of this paper is organized as follows. The description of the proposed
system is given in section 2, and the databases used for the experiments are
described in section 3. In section 4 experimental results are presented, where
the performance of the proposed strategy is analyzed. Finally, some concluding
remarks and perspectives for future work are included in section 5.

2 Audio-visual Speech Recognition System

The proposed system aims to improve speech recognition when the acoustic
channel is corrupted by noise, which is the usual situation in most applications,
by fusing audio and visual features. In this scenario, the efficiency of a classi-
fier based on audio-only information deteriorates as the SNR decreases, while
the efficiency of a visual-only information classifier remains constant, since it
does not depend on the SNR in the acoustic channel. However, the use of only
visual information is usually not enough to obtain relatively good recognition
rates. It has been shown in several works in the literature [6][9][8], that the
use of audio-visual feature vectors (early integration) improves the recognition
rate in the presence of noise in comparison to the audio-only case. An exam-
ple of this typical behavior is illustrated in Fig. 1, where the recognition rates
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Fig. 1. Typical recognition rates for the cases of audio-only, video-only and audio-visual
classifiers under acoustic noisy conditions.

for audio-only (red), visual-only (magenta), and two different audio-visual (blue
and green) classifiers as a function of SNR are depicted. These recognition rates
were computed using an audio-visual database compiled by the authors. As ex-
pected, the audio classifier performs better than the visual one for high SNRs
and viceversa. The combination of audio-visual features leads to an improvement
of the recognition rates in comparison to the audio-only case. However, for the
case of low SNRs, the audio-visual classifier performs worse than the visual one
since fused audio-visual features are degraded by the highly corrupted acous-
tic data. Using different combinations of acoustic and visual features, different
performances can be obtained. For instance, if the audio-visual features contain
more visual than acoustic information, the performance at low SNRs is improved
since visual information is more reliable in this case. However, the efficiency at
high SNRs is deteriorated, where the acoustic information is more important.
Even for cases where a small portion of audio information is considered, a no-
torious improvement could be obtained for low SNRs, but the efficiency at high
SNRs could be worse than for the audio-only case. Thus, there exists a trade-off
between performance at low and high SNRs. These situations are depicted in
Fig. 1, where AV 1 contains more visual information than AV 2.

Taking into account the previous analysis, the recognition system proposed in
this paper combines three different classifiers based on audio, visual and audio-
visual information, respectively, aiming at recognizing the input word and max-
imizing the efficiency over the different SNRs. In the training stage, a combined
classifier is trained for each particular word in the vocabulary. Then, given an
audio-visual observation sequence associated with the input word to be recog-
nized, denoted as Oav, which can be partitioned into acoustic and visual parts,
denoted as Oa and Ov, respectively, the probability (Pi) of the proposed com-
bined classifier corresponding to the i-class is given by

Pi = P (Oa|λ
a
i )

α
P (Ov|λ

v
i )

β
P (Oav|λ

av
i )

γ
, (1)
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Fig. 2. Schematic representation of the computation of the probability associated with
a particular class i for the proposed combined classifier. Pav refers to P (Oav|λ

av

i ).

where P (Oa|λ
a
i ), P (Ov|λ

v
i ) and P (Oav|λ

av
i ) are the probabilities corresponding

to the audio (λa
i ), visual (λv

i ) and audio-visual (λav
i ) classifiers, respectively, and

α, β and γ are positive real coefficients that satisfy the following condition

α + β + γ = 1. (2)

The visual (λv
i ) classifier is more useful at low SNRs (β is predominant), where

the acoustic data is highly corrupted by noise, while at medium levels of SNRs,
the audio-visual classifier (λav

i ) retrieves better decisions (γ is predominant). For
high SNR conditions, an audio classifier (λa

i ) is employed (α is predominant). A
block diagram representing this computation is depicted in Fig. 2.

The audio (λa
i ), visual (λv

i ) and audio-visual (λav
i ) classifiers are implemented

using left-to-right Hidden Markov Models (HMM) with continuous observations.
Audio-visual features are extracted from videos where the acoustic and visual
streams are synchronized. The audio signal is partitioned in frames with the
same rate as the video frame rate. For a given frame t, the first eleven non-DC
Mel-Cepstral coefficients are computed and used to compose a vector denoted
as at. In order to take into account the audio-visual co-articulation, informa-
tion of ta preceding and ta subsequent frames is used to form the audio fea-
ture vector at frame t, oat = [at−ta

, . . . ,at, . . . ,at+ta
], and the information of

tv preceding and tv subsequent frames is used to form the visual feature vec-
tor, ovt = [vt−tv

, . . . ,vt, . . . ,vt+tv
], where vt contains the visual information at

frame t. Finally, the audio-visual feature vector is composed by the concatena-
tion of the associated acoustic and visual feature vectors, that is oavt = [oat,ovt],
considering tav

a and tav
v frames of co-articulation for the audio and visual fea-

tures, respectively. Hereafter, the audio, visual and audio-visual classifiers will
be denoted as λ

ata
(s,m)

, λ
vtv
(s,m)

and λ
ata

vtv
(s,m)

, respectively, where the subscripts s and
m denote the number of states and Gaussian mixtures of the HMM, respectively.
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Fig. 3. AV-UNR Database visual features. (a) Candide-3 face model. (b) Visual pa-
rameters.

3 Audio-visual Databases

The performance of the proposed audio-visual speech classification scheme is
evaluated over two isolated word audio-visual databases, viz., Carnegie Mellon
University (AV-CMU) database (now at Cornell University) [2], and a database
compiled by the authors, hereafter referred to as AV-UNR database.

I) AV-UNR database: The authors of this paper have compiled an audio-
visual database consisting of videos of 16 speakers facing the camera, pronounc-
ing a set of ten words 20 times, in random order. These words correspond to
the Spanish utterances of the following actions: up, down, right, left, forward,
back, stop, save, open and close, a total of 3200 utterances. The videos were
recorded at a rate of 60 frames per second with a resolution of 640×480 pixels,
and the audio was recorded at 8 kHz synchronized with the video. Individual
words in the database were automatically segmented based on the audio signal,
by detecting zero-crossings and energy level in a frame wise basis.

Visual features are represented in terms of a simple 3D face model, namely
Candide-3 [1]. This 3D face model, depicted in Fig. 3(a), has been widely used in
computer graphics, computer vision and model-based image-coding applications.
The advantage of using the Candide-3 model is that it is a simple generic 3D face
model, adaptable to different real faces, that allows to represent facial movements
with a small number of parameters. The method proposed by the present authors
in [10] is used to extract visual features related to mouth movements during
speech. As it is described in [10], this visual information is related to the generic
3D model and it does not depend on the particular face being tracked, i.e,
this method retrieves normalized mouth movements. The mouth shape at each
frame t is then used to compute three visual parameters, viz., mouth height (vH),
mouth width (vW ) and area between lips (vA), as depicted in Fig. 3(b). These
three parameters are used to represent the visual information at frame t.

II) AV-CMU database: The AV-CMU database [2] consists of ten speak-
ers, with each of them saying a series of 78 words and repeating the series ten
times, resulting in a total of 7800 utterances. The raw audio data is in the form
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Fig. 4. CMU database. (a) Visual data included in the database. (b) Parabolic lip
contour model proposed in [3].

of pulse-code-modulation-coded signals sampled at 44.1 kHz. The visual data is
composed of the horizontal and vertical positions of the left (x1, y1) and right
(x2, y2) corners of the mouth, as well as of the heights of the openings of the
upper (h1) and lower lips (h2), as depicted in Fig. 4(a). The visual information
was captured with a sample rate of 30 frames per seconds.

In this paper, the model-based method proposed in [3] is employed to rep-
resent the visual information associated to each uttered word. This method is
based on weighted least-squares parabolic fitting of the upper and lower lip con-
tours, and it does not require the assumption of symmetry across the horizontal
axis of the mouth, and it is therefore more realistic. As described in [3], this
model does not depend on the accurate estimation of specific facial points and it
is robust to missing or noisy data points. This parameterized lip contour model
is based on a pair of intersecting parabolas with opposite orientation, as it is
depicted in Fig. 4(b). This parabolic model includes separate parameters for the
motion of the upper and lower lips of the mouth during speech. The defining
parameters of the model include the focal parameters of the upper and lower
parabolas (au and al, respectively) and X and Y , the difference between the
offset parameters of the parabolas (bu and bl). As reported in [3], the best rep-
resentation of the visual information for the AV-CMU database is obtained with
a feature vector composed of 5 coefficients, [Y, X, au, al, Θ], where

Y = bu − bl

X = 2

√

bl − bu

au − al

Θ = arctan

{

√

(al − au)(bu − bl)

2

}

Thus, in this paper, these five parameters are used to represent the visual infor-
mation at each frame of the sequence.



4 Experimental Results

The proposed audio-visual speech recognition system is tested separately on
the databases described in section 3. To evaluate the recognition rates under
noisy acoustic conditions, experiments with additive Gaussian noise, with SNRs
ranging from -10 dB to 40 dB, were performed. To obtain statistically significant
results, a 5-fold cross-validation (5-fold CV) is performed over the whole data
in each of the databases, to compute the recognition rates. For each instance
of the 5-fold CV, audio, visual and audio-visual HMM models are is trained for
each word in the database, using the corresponding training set of 5-fold CV. It
is important to note that, all the speakers are equally represented in both the
training and the testing sets. This evaluation setup corresponds to the so-called
“semi-speaker-dependent” approach [11], since both the training and testing sets
include the utterances from all speakers.

The three classifiers in the proposed system, based on audio, visual and
audio-visual information, respectively, are implemented using left-to-right Hid-
den Markov Models (HMM) with continuous observations. The tuning param-
eters of this system are the ones associated with the structure of each HMM
classifier, the co-articulation times considered to compose the audio, visual and
audio-visual feature vectors, and the coefficients α, β and γ of the decision level
integration stage. In order to select the optimum parameters for the classifiers,
several experiments were performed considering number of states in the range
from 3 to 15, number of Gaussian mixtures from 4 to 20, full covariances ma-
trices, and co-articulation parameters in the range from 0 to 7. Regarding the
coefficients α, β and γ, which modify the contribution to the final decision of
the audio, visual and audio-visual classifiers, respectively (see Eq. (1)), several
experiments were performed using different possible combinations of them. In
order to obtain better recognition rates over the different SNRs, the values of
these coefficients should be modified for the different SNRs, so that the higher
contribution at low SNR comes from the visual classifier, at medium SNRs from
the audio-visual classifier, and at high SNRs from the audio classifier.

I) AV-UNR database: Figure 5(a) depicts the results, using a boxplot rep-
resentation, of the evaluation of different configurations for the visual classifier.
For each tv, the results associated with the best HMM structure are presented.
As it is customary, the top and bottom of each box are the 75th and 25th per-
centiles of the samples, respectively, and the line inside each box is the sample
median. It must be noted that there is no need to carry out this test considering
different SNRs, since the visual features are not affected by the acoustic noise.
The higher accuracy was obtained for an HMM with 8 states, 17 Gaussian mix-
tures, and tv = 5, which corresponds to a visual feature vector ovt composed by
33 parameters, associated to a sliding window of 183 msec in the time domain.

In Fig. 5(b), the results of the experiments to select the proper values for
the audio classifier are depicted. These experiments were performed considering
several SNRs for the additive Gaussian noise. In this case, only the medians for
each noise level are depicted for visual clarity reasons. Although this figure shows
the results for a wide range of SNRs, it must be noted that the selection of ta



should be done taking into account that the contribution of the audio classifier
to the final decision stage is more important at high SNR conditions. For that
reason, an HMM with 3 states and 4 Gaussian mixtures, using ta = 5 is the best
option for this classifier.

For the case of the audio-visual classifier, two co-articulation parameters are
involved tav

a and tav
v . Figure 5(c) shows the recognition rates obtained for three

particular audio-visual features configurations, namely λa0v5
(6,4)

, λa5v5
(6,6)

and λa5v0
(4,6)

,
where the number of states and Gaussian mixtures have been optimized for each
case. It can be noted from Fig. 5(c) that the best performance at middle SNRs
is obtained for the case of configuration (tav

a = 0, tav
v = 5), while configurations

(tav
a = 5, tav

v = 5) and (tav
a = 5, tav

v = 0) present a better performances at high
SNRs. The performance of the remaining possible configurations lies between
upper and lower limiting curves, following the same properties. These results
support the comments in section 2, regarding the fact that configurations that
use more visual information perform better at low SNRs and viceversa. Regard-
ing the selection of the optimal audio-visual classifier configuration to be used
at the final decision stage, it must be taken into account that the contribution
of this classifier is important at low and middle range SNR conditions, since at
high SNR the audio classifier provides more accurate decisions. Thus, an ade-
quate configuration for this purpose is (tav

a = 0 and tav
v = 5).

At this point, the parameters associated with the three classifiers have been
selected, and the optimal values for α, β and γ must be chosen. The results of
tests performed for this purpose are depicted in Fig. 6(a). As expected, it can be
seen that the optimum value of α is the lower one at low SNRs, and it increases
as the SNR increases, becoming the higher one at high SNRs. On the other hand,
the optimum values of coefficient β present an inverse evolution. While for the
case of coefficient γ the higher values are at medium SNRs.

Figure 6(b) shows the recognition rates obtained with the proposed fusion
strategy (green) over the SNRs, using the optimum values for the weighting co-
efficients α, β and γ, presented in Fig. 6(a). In this figure, the recognition rates
corresponding to the audio (red), visual (magenta) and audio-visual (blue) clas-
sifiers are also depicted. It is clear that the proposed objective of improving the
recognition rates through the different SNRs has been accomplished. In addition,
the performance of the proposed system is comparable to that of other methods
presented in the literature [9]. In these experiments, the SNR of each speech
signal was a priori known since the noise was intentionally injected in order to
evaluate the proposed system at different SNRs. In practical applications, the
SNR present in a speech signal can be estimated by comparing its energy with
the one corresponding to a previously recorded background noise. A sample of
the background noise could be automatically extracted from the silence interval
preceding the occurrence of the speech, or it could be recorded on demand by
the user. The weights could then be selected from the curves in Fig. 6(a).

II) AV-CMU database: The proposed recognition system was also eval-
uated over the public AV-CMU database [2]. In particular, in order to compare
the performance of the proposed system with the one presented in [3], this eval-
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Fig. 5. Recognition rates for the (a) visual, (b) audio and (c) audio-visual classifiers
using different tuning parameters.

uation was carried out over a subset of ten words, the numbers from 1 to 10.
To select the values of the tuning parameters of the system, the same procedure
used with the AV-UNR database was employed. The details have not been in-
cluded due to space limitations. In Fig. 7(a), the performance of the proposed
fusion strategy (green) is depicted, where it can be noted that it enforces a sig-
nificant improvement of the recognition rates through a wide range of SNRs.
Figure 7(b) compares the performances obtained with the proposed method and
with the one described in [3], evaluated over the same database. It is clear that
the proposed method outperforms the one in [3] across all the considered SNRs.

5 Conclusions

An isolated word speech recognition system based on audio-visual information
was proposed in this paper. This system is based on the combination of early
and late fusion schemes. Three classifiers based on audio, visual and audio-visual
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Fig. 7. (a) Performance of the proposed recognition system over the AV-CMU
database. (b) Efficiency comparison with the method proposed in [3].

information, respectively, are combined in order to improve the recognition rates
through a wide range of signal-to-noise ratios. The performance of the proposed
recognition system was evaluated over two isolated word audio-visual databases.
Experimental results show that the structure of the proposed system leads to a
significant improvement of the recognition rates through a wide range of signal-
to-noise ratios. It is important to note that, the absolute recognition rates could
be further improved by considering well-known strategies usually employed in
speech recognition, for instance, by incorporating delta mel-cepstral coefficients
to the audio features, by including noisy features in the training stage, etc.



References

1. Ahlberg, J.: Candide-3 - an updated parameterised face. Tech. rep., Department
of Electrical Engineering, Linköping University, Sweden (2001)
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