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We study the temporal correlations from dynamic imaging
through turbulence using incoherent light from fixed high-
contrast targets. We conduct our experiment in controlled
laboratory conditions using several values of the C 2

n con-
stant from the weak to strong fluctuation regime. We em-
ploy detrended fluctuation analysis to measure long-range
correlations while considering scintillation information
for every recorded pixel. We find that turbulence strength
generally increases temporal correlations in time series from
pixels in high-contrast regions of the image. ©2016Optical
Society of America
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The existence of spatial and temporal fluctuations in air pro-
duces index-of-refraction variations that deform optical waves
propagating through this turbulent medium. In imaging
experiments, this phenomenon produces a dynamic blur in
formed images and is generally known as seeing [1]. Since
McGlamery’s original paper [2] addressing the simulation of
an optical wave propagating through turbulence, several meth-
ods have been proposed to incorporate the temporal dynamics
of the process [3,4], and cited references. However, experimen-
tal work usually focuses on thin beam [5,6] or average beam
dynamics [7,8]. In a previous work [9], we proposed an in-
expensive setup for the dynamic incoherent imaging of fixed
(high-contrast) targets through turbulence; in this Letter, we
investigate the presence of long-term memory effects in that
same experimental setup.

For the purpose of estimating the temporal correlations
present in this imaging situation (to later find their relation
with known turbulence intensity) we will use detrended fluc-
tuation analysis (DFA). The DFA technique is widely used
to characterize the fractal dynamics of a system from which
a time series has been measured [10], and it is the most popular
approach to detect the presence of long-term memory in data
[11]. However, specific applications in the optical field are

scarce [6,12–15]. In this Letter, we propose to characterize tem-
poral correlations by imaging fixed targets through atmospheric
turbulence by means of a pixel-by-pixel DFA estimation of the
Hurst exponent (H ).

The DFA method follows five steps that we shall briefly
enumerate (the reader will find a more detailed explanation
in Refs. [16,17]). Step 1: given a time series S � fxt ; t �
1;…; N g, with N being the number of equidistant observa-
tions, the cumulated data series Y �k� � Pk

t�1�xt − hxi�, with
k � 1;…; N and hxi � �PN

t�1 xt�∕N , is considered. Step 2:
this profile is divided into ⌊N∕s⌋ nonoverlapping windows of
equal length s (⌊a⌋ denotes the largest integer less than or equal
to a). Step 3: a local polynomial fit yν;m�k� of degree m is fitted
to the profile for each window ν � 1;…; ⌊N∕s⌋. The degree of
the polynomial can be varied to eliminate constant (m � 0),
linear (m � 1), quadratic (m � 2), or higher order trends of
the profile. Step 4: the variance of the detrended time series
is evaluated by averaging over all data points k in each segment
ν, F 2

m�ν; s� � �1∕s�Ps
k�1 fY ��ν − 1�s � k� − yν;m�k�g2, for

ν � 1;…; ⌊N∕s⌋. Step 5: the DFA fluctuation function is
obtained by averaging over all segments and taking the square
root, Fm�s� � f�1∕⌊N∕s⌋�P⌊N∕s⌋

ν�1 �F 2
m�ν; s��g1∕2. This pro-

cedure should be repeated for different values of the time scale
s in order to unveil the s-dependence of Fm. If the time series
has long-range power-law correlations, Fm�s� scales as

Fm�s� ∼ sH ; (1)

for a certain range of s [18]. The Hurst exponent for a given
pixel, H , is estimated by the slope of the best linear regression
in a double logarithmic plot. The long-range correlations em-
bedded in the time series are quantified by this exponent: if
H > 1∕2, consecutive increments tend to have the same sign
so that these processes are persistent. If H < 1∕2 consecutive
increments are more likely to have opposite signs, and it is said
that the processes are antipersistent. H � 1∕2 is obtained for
uncorrelated data [19].

Since in this Letter we deal with dynamic imaging of a fixed
target through turbulence, we will have an intensity time series
I i;j�t� for each recorded pixel, and the DFA method will
provide a pixel-based Hurst exponent Hi;j. Considering the
individual irradiance of a single pixel we defined in [9] the
pixel-based scintillation index �σ2I �i;j:
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�σ2I �i;j �
hI 2i;ji
hI i;ji2

− 1; (2)

where I i;j�t� expresses the irradiance over time of an image pixel
with coordinates �i; j� given by an optical wave propagating
through an active atmospheric turbulence and h i is the time
average. For incoherent imaging through atmospheric turbu-
lence, the intensity of a target image (at the receivers’ aperture)
will fluctuate the most on high-contrast borders [20] and will
barely fluctuate over uniform regions; therefore, the visual rep-
resentation of �σ2I �i;j will resemble an edge-filter applied to the
target image [21]. In order to locate only the pixels with a rel-
atively high scintillation, where most of turbulence information
is located for this situation [9], a threshold value τ can be
applied to this scintillation index representation to define a
binary set Ωi;j � f0 if �σ2I �i;j < τ; and 1 if τ ≤ �σ2I �i;j < 1g
(pixels related to edges of highest contrast over the imaged
target). In [9] we found that the amount of nonzero pixels
in Ωi;j can be compared to the amount of nonzero pixels from
a simple binary edge detection filter output Ei;j applied to the
time-average image [21]. The relationship between these
magnitudes in our experimental setup was found to be

X
i;j

Ωi;j �
�X

i;j
E i;j

�
C2

n

G0

; (3)

where G0 � �2.39� 0.08� · 10−8 m−2∕3. This result shows
that (a) the number of high scintillation pixels increases with
turbulence intensity with respect to the amount of edge pixels
in the mean image; (b) these pixels are located in high-contrast
regions of target image; and (c) turbulence intensity informa-
tion is preserved in

P
i;jΩi;j.

In order to study Hi;j values as a function of C2
n, we per-

formed a conceptually simple experiment of laboratory imaging
in controlled conditions in which a checkerboard pattern
[Fig. 2(a)] is displayed on a standard LCD monitor followed
by a region with an artificial turbulence (depicted in Fig. 1)
and then focused on an off-the shelf webcam (Logitech
Webcam Pro 9000, 640 × 400 resolution, 30 frames/s).

For the purpose of having a fully developed inertial turbu-
lence at stable and statistically repeatable conditions, we employ
a laboratory turbulent chamber commonly called a turbulator
[22,23]. To simulate the atmospheric turbulence, two air fluxes
at different temperatures are forced to collide in the chamber,
producing an isotropic mix between hot and cold air. The heat
source is an electric heater controlled by changing the current
passing through it, and the cold channel injects room-temper-
ature air. Light from the target propagates across ∼0.35 m of
turbulence in the mixing chamber. The strength of the artificial
turbulence, quantified by the refractive index structure
constant C2

n, and the inner and outer scales (l0 and L0) were
previously estimated following the procedure suggested by
Masciadri and Vernin [24] (l 0 ∼ 3 mm and L0 ∼ 15 cm).
Particularly, C2

n is expressed as a function of the temperature
difference between hot and cold sources (ΔT � T 1 − T 2).
Experiments were carried out with 13 temperature differences
ranging from 15.5°C to 152.7°C, all with characterized C2

n
ranging from 9.54 · 10−9 to 3.99 · 10−8 m−2∕3 and calculated
Rytov variance σ2R�632 nm� ranging from 0.24 to 1.02 (weak
to strong fluctuation range [8]). Reference measurements with
the fans on and off were captured as well and can be considered

Fig. 1. Experimental setup. The turbulator is suspended from an
independent structure in order to avoid any vibration in optical
components.

Fig. 2. Representative case, strongest turbulence condition
(C2

n ∼ 4 · 10−8 m−2∕3). (a) Average frame of checkerboard in ROI
(300 × 300 pixels) affected by turbulence (300 pixels ≡ 15.027 cm);
the red line (central column) is detailed in -c. (b) Visual representation
of Ωi;j�τ � 0.01�; (c) fluctuation functions for pixels in the middle
column of -a (red line): lines go from black to red based on mean image
value pixel (black for the darkest, and red for the brightest). (d) Visual
representation of Hi;j; (e) error ΔHi;j in the estimation of Hi;j (note
that all values are one order of magnitude smaller than Hi;j).

2856 Vol. 41, No. 12 / June 15 2016 / Optics Letters Letter



as background measurements to quantify the electronic,
mechanical noise and room turbulence effects.

We determined a region of interest (ROI) of 300 × 300 pix-
els (300 pixels ≡ 15.027 cm). We selected the green channel
from the RGB output of the camera (λ ∼ 510 nm) for analysis
purposes. Averages were taken for 1100 consecutive frames
(∼36.7 s) [see Fig. 2(a)].

For the DFA analysis, we chose a detrending polynomial of
degree m � 3 (this is customary; however we have tried m � 1
and 2 with similar results), and estimated the fluctuation func-
tions for 100 scale sizes 10 ≤ s ≤ 275. A representative case is
depicted in Fig. 2. We chose the full range of scales s to fit all
fluctuation functions. This interval choice is both supported
by the resulting ∼10% uncertainty in slope (H ) estimations
[Fig. 2(e)] and a range estimation criterion described in [18]
for several randomly selected fluctuation functions. It is worth
noting that, for all studied turbulence intensities, in the visual
representation of Hi;j [Fig. 2(d)], the values of Hi;j ∼ 0 (<1∕2,
antipersistent) correspond to extremely low intensity target
pixels (homogeneous black areas), where even the noise level
becomes too low for this setup. In extremely high intensity
target pixels (homogeneous white areas) we observe predomi-
nantly Hi;j ∼ 1∕2 (uncorrelated): fluctuations in these areas are
mainly due to electronic noise. Values of Hi;j > 1∕2 (persis-
tent) are observed within high-contrast edges of the target,
which are known to have high scintillation [Fig. 2(b)]; we shall
therefore focus the study on Hurst exponents H in Ω (we now
drop the subindices for notation simplicity).

We studied the distributions of H values in Ω for references
and all experimental cases and found that the mean and stan-
dard deviation are representative of the set. Both references H
means in Ω are around 1/2 (uncorrelated data), and are pre-
dominantly attributable to electronic noise (mechanical noise
effect is negligible). With these histogram considerations, we
can now study the behavior of mean H in Ω�H̄Ω� as a function
of C2

n (please refer to Fig. 3). Observed correlations generally
increase with C2

n with a maximum observed mean H̄Ω �
0.7� 0.1. We find that in ranges explored experimentally in
this Letter H̄Ω, as a first approximation, scales according to

H̄Ω ∼
C2

n

CH
�H 0; (4)

whereCH � �3.6� 1.4� · 10−7 m−2∕3 andH 0 � 0.50� 0.03
(these results are summarized in Table 1). This value of H 0

emphasizes the fact that scintillating pixels in low turbulence
conditions (in this setup) are mostly affected by electronic noise,
as expected from previous remarks.

In summary, we have found that when imaging a high-
contrast target through turbulence, correlations increase with
turbulence intensity for pixels with a relative high scintillation
index. This knowledge may be key to refine the temporal aspect
for both simulation techniques and theoretical models. Imaging
simulation techniques should take into account restrictions in
output pixel time series imposed by Eqs. (3) and (4); moreover,
we have found that both are linearly related to C2

n in our ex-
perimental range. The general study of Hi;j conducted in this
Letter may also benefit the field of image reconstruction in
turbulence conditions: for observed pixels with Hi;j < 1∕2
(antipersistent) consecutive increments in the time series are
more likely to have opposite signs, so that taking the temporal
average becomes statistically representative of the actual target
value. However, pixels found to have greater Hi;j values must
be dealt with other reconstruction techniques. This problem
will be studied in future communications.
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