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SUMMARY

We present a new output feedback fault tolerant control strategy for continuous-time linear systems with
bounded disturbances. The strategy combines a digital nominal controller under controller-driven (varying)
sampling with virtual-actuator (VA)-based controller reconfiguration to compensate for abupt actuator faults,
and invariant-set-based fault detection and isolation (FDI). Two independent objectives are considered:
(a) closed-loop stability with setpoint tracking and (b) controller reconfiguration under faults. Our main
contribution is to extend an existing FDI and VA-based controller reconfiguration strategy to systems under
controller-driven sampling in such a way that if objective (a) is possible under controller-driven sampling
(without VA) and objective (b) is possible under uniform sampling (without controller-driven sampling),
then closed-loop stability and setpoint tracking will be preserved under both healthy and faulty operation for
any possible sampling rate evolution that may be selected by the controller. Copyright c© 0000 John Wiley
& Sons, Ltd.

Received . . .
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networked control.

1. INTRODUCTION

Active Fault-Tolerant Control (FTC) systems aim to maintain control performance levels under a
number of fault scenarios by means of a controller reconfiguration mechanism. The main advantage
of the virtual actuator (VA) approach to controller reconfiguration for FTC [31, 18, 25], is that it
allows the engineer to design the controller for the nominal (“healthy”) plant, ignoring the possible
faults. In healthy operation, the incidence of the VA on the control signal provided to the plant is
null, and the whole control action is provided by the nominal controller. In faulty operation, the
VA generates additional signals that combine with the existing signals in specific ways in order to
cancel or mitigate the effect of the fault in the closed-loop system. Any existing nominal controller,
designed to satisfy the desired specifications for the fault-free plant, can be kept in the loop at all
times. In addition, the VA design is independent of the nominal controller and is aimed at preserving
specific closed-loop properties, such as stability and setpoint tracking, in the presence of faults.

A specific configuration of VA-based FTC technique was proposed in [27], where the use of
a bank of VAs that implicitly integrate both fault detection and isolation (FDI) and controller
reconfiguration tasks was proposed. Each VA is designed to operate appropriately in combination
with the nominal controller to achieve correct reconfiguration for a particular fault situation in a
considered range. In addition, a residual signal is constructed for each VA directly from its available
measurable signals. A switching rule engages the suitable VA from the bank according to an FDI
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decision based on sets defined for the residual signals. This set-based approach for FDI (see, e.g.,
[28, 29]) relies on the principle that each residual signal will belong to an invariant “correct-
matching” set when the associated VA model “matches” the actual actuator fault situation and will
shift to a “fault-transition-matching” set when a change to a “non-matching” fault situation occurs.
An important advantage of this invariant-set approach to FDI is that fault tolerance and closed-loop
stability can be guaranteed when the relevant sets have no intersection.

In the present paper we extend the approach of [27] to continuous-time linear systems operating
under a controller-driven (varying) sampling setting, where both the nominal controller and the
bank of VAs operate under a varying sampling rate administered by the controller. The motivation
for considering this class of systems stems from the increasing popularity of Networked Control
Systems (NCS) [1, 2], which broadly refers to control systems that include some kind of shared
communications network. In this setting, acceptable control performance and communication
bandwidth preservation may be conflicting objectives: increasing control performance by sampling
at a higher rate may require too much bandwidth and prevent other processes from accessing
the network. Thus, research effort has been directed at control strategies able to modify the
sampling rate on-line, according to time-dependent performance and bandwidth requirements (see
[11] for further details). As opposed to the general NCS setting where the different component
elements (sensors, actuators, controllers) may operate asynchronously, we consider a setting with
a centralised controller, with synchronous operation, and where the centralised controller is in
charge of not only computing control actions but also deciding on the appropriate sampling rate
by selecting, at each sampling instant, when it will take the next sample and control action. This
controller-driven sampling setting is akin to that presented in [4].

When a continuous-time system is controlled by means of controller-driven sampling as described
above, it can be regarded as a Discrete-Time Switched System (DTSS). Such DTSS is a kind of
hybrid system composed by a set of discrete-time subsystems and a switching logic that orchestrates
the switching between such subsystems. Indeed, viewed from the controller, the continuous-time
system can be interpreted as a DTSS under arbitrary switching, where each discrete-time equivalent
of the continuous-time system sampled at some of the possible sampling periods represents a
subsystem, and the sampling period sequence represents the switching law. For a general DTSS
under arbitrary switching, stability is ensured provided there exists a common Lyapunov function
(see [16]). This common Lyapunov function may be of a more complex form than quadratic.
However, the search for a common quadratic Lyapunov function can be approached via different
techniques, involving in most of the cases the use of Linear Matrix Inequalities (LMIs) [6, 15].
Alternatively, the existence of such a Lyapunov function can be ensured using some matrix-
structure-related conditions, associated with the solvability of the Lie algebra generated by the
DTSS matrices [7, 32, 20, 16]. An advantage of using the latter conditions is that invariant sets
for the DTSS can be computed using a simple formula, as shown in [13, 14].

In this context, the main contribution of the present paper is to adapt and extend the VA-based
FTC technique of [27] to the aforementioned controller-driven sampling setting, using a DTSS
approach. This extension is non trivial and requires a new design method for the VA parameters
to achieve the desired goals in this DTSS framework. Two independent objectives are considered:
(a) closed-loop stability with setpoint tracking and (b) controller reconfiguration under faults. Our
proposed design is such that if objective (a) is possible under controller-driven sampling (without
VA) and objective (b) is possible under uniform sampling (without controller-driven sampling), then
closed-loop stability and setpoint tracking will be preserved under both healthy and faulty operation
for any possible sampling rate evolution that may be selected by the controller.

The proposed FTC scheme with controller-driven sampling is illustrated in Figure 1. This FTC
scheme involves three main parts: a controller-driven sampling system, which computes the control
action and decides the next sampling instant (which will be used for sampling and hold and informed
to the FDI mechanism); a bank of VAs, each of which is designed for a specific fault situation; and an
FDI unit, which is in charge of diagnosing the current fault situation and engaging the corresponding
VA in the loop between the plant and the controller. The bank of VAs and the FDI unit constitute the
Fault Tolerance Mechanism illustrated in Figure 1. Some preliminary results related to this scheme
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INTEGRATION OF INVARIANT-SET-BASED FDI WITH VARYING SAMPLING RATE VIRTUAL [...] 3

have been recently presented in [24] and [23], for those cases where the system evolution matrix is
invertible; the results in the present paper, on the other hand, hold for invertible and non-invertible
evolution matrices. The remainder of the paper is organised as follows. In Section 2 we define
the equations of the plant to be controlled, the FTC strategy, and the bank of VAs. In Section 3
we present the main conditions related to the controller, the control objectives, the VA and FDI
design. Section 4 establishes the results associated to the closed-loop properties of the considered
scheme, namely, input convergence, VA state convergence, and setpoint tracking. In Section 5 we
describe the proposed FDI principle, based on an invariant set approach. In Section 6 we present an
illustrative example, while in Section 7 we provide some concluding remarks.
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Figure 1. Considered scheme: a central controller is in charge of commanding both the process and the next
sampling instant. The fault tolerance mechanism involves an FDI unit and a bank of VAs. The selection of

the active sampling period is communicated to the fault tolerance mechanism.

2. PROBLEM FORMULATION

We consider actuator-fault-tolerant output-feedback control of a continuous-time plant by means
of a discrete-time controller, bank of virtual actuators, and FDI unit. The discrete-time controller
is designed for the fault-free (healthy) situation and hence knowledge of the fault scenario is not
necessary at the controller design stage. In addition to computing the control action assuming fault-
free operation, this “fault-ignorant” controller is in charge of performing on-line variations of the
sampling rate. In the sequel, we explain the different components of the feedback control system
considered.

2.1. Continuous-time plant

The plant model that we employ is the following:

ẋ = Ax+BFu+ Ew, y = Cx+ η, (1)
v = Cvx, (2)

where x ∈ Rn, u ∈ Rm is the control input, w ∈ Rnw is a bounded state disturbance,E its incidence
matrix, y ∈ Rp is the plant measured output, η ∈ N ⊂ Rp its bounded disturbance, and v ∈ Rq is a
performance output. The matrix F ∈ Rm×m takes values from a finite set

F ∈ F := {F0, F1, · · · , FN}, F0 = I, (3)
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and represents the plant’s actuator fault situation. Under healthy operation, the matrix F in (1) takes
the value F = F0 = I , so that B in (1) represents the “healthy” plant input matrix. Under fault,
F = Fj for some j = 1, . . . , N . For example, total loss of actuator 2 is modelled by zeroing the 2nd
column of F0. Additionally, the occurence of faults over multiple actuators can be modeled by a
matrix Fj ∈ F , zeroing their corresponding columns of F0. We assume that the pairs (A,BFi) are
stabilisable for i = 0, 1, · · · , N , and that (C,A) is detectable.

The performance output v in (2) and the different fault situations in (3) must be such that for every
desired constant value vref of the performance output and every fault i, there exist equilibrium input
ūi and state x̄i such that Cvx̄i = vref , i.e. for every vref there exist x̄i, ūi such that[

A BFi
Cv 0

] [
x̄i
ūi

]
=

[
0
vref

]
(4)

for all i ∈ {0, 1, . . . , N}. Condition (4) means that the plant has sufficient levels of redundancy to
admit setpoint tracking in each fault scenario. Note that if, for a given vref and specific fault i, no
x̄i, ūi exist satisfying (4), then the performance output will not converge to vref under fault i, no
matter how sophisticated the fault tolerance mechanism may be. On the other hand, the VA fault
tolerance mechanism has to be designed so that the required equilibrium values satisfying (4) are
achieved under all possible fault situations; this will be addressed in detail in Section 3.2.

2.2. Fault-ignorant varying-sampling-rate controller

As previously explained, knowledge of the fault scenario is not needed at the controller design stage.
Consequently, controller design is independent of virtual actuator design. We consider a healthy-
plant-model-based reference-tracking sampled-data controller given by

uc = −Kh(x̂− xref ) + uref , (5)

x̂+ = Ahx̂+Bhuc + Lh(yc − Cx̂), (6)

where uc represents the controller-computed plant input signal (recall Figure 1), yc is the plant
output signal supplied to the controller, xref , uref are state and input constant reference signals,
respectively, and x̂, x̂+ are the current and successor states of the observer (6). The matrices Ah and
Bh are the discrete-time equivalents of A and B in (1), corresponding to a sampling period h,

Ah := eAh, Bh :=

∫ h

0

eAtBdt, (7)

and the reference signals satisfy

Axref +Buref = 0, Cvxref = vref . (8)

Observe that the above equation is a particular solution of (4), for the case when i = 0. The controller
may perform on-line variations of the sampling period h, under the constraint that all possible
sampling periods are taken from a finite set:

h ∈ H := {h1, · · · , hns
}, (9)

where every h ∈ H should be non-pathological (see [5] for further details on pathological sampling).
The feedback and observer gains Kh and Lh employed by the controller may depend on the
sampling period selected. The computation of these gains will be explained in Section 3.1. If no
fault tolerance mechanism were present, the plant input u would equal the controller-computed
plant input uc and the plant output supplied to the controller, yc, would equal the true plant output,
y, at all sampling instants. In the presence of the fault tolerance mechanism discussed in the current
paper, the equalities y = yc and u = uc will be true only under nominal (healthy) conditions and
provided the fault tolerance mechanism accurately detects that the plant is under healthy operation.
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2.3. Nominal plant-controller feedback loop

Under nominal conditions, at instant tk the controller receives the sample yc and processes it in order
to compute the required feedback action. To do so, it also determines the instant tk+1 = tk + h(k),
with h(k) ∈ H, at which it will take the next sample and control action. The plant dynamics at the
sampling instants can be written as

x+ = Ahx+BhFu+ wh (10)

where x = x(tk), u = u(tk), x+ = x(tk+1), Ah and Bh are as in (7) with h = h(k), wh =∫ tk+1

tk
eA(tk+1−t)Ew(t)dt. Note that a bound on wh can be computed when a bound on w(t) is

known, and hence, we write wh ∈ W , whereW ⊂ Rn is a bounded set.
The nominal controller signal given in (5) uses the reference values satisfying (8), which define an

equilibrium point for the continuous-time (CT) system ẋ = Ax+Bu. These values also define an
equilibrium point for the discrete-time (DT) system x+ = Ahx+Bhu for all values of the sampling
period h. To see this, first, from (7), we can obtain the identity

∫ h
0
eAtdtA = Ah − I . Next, compute

Bhuref =

∫ h

0

eAtdtBuref = −
∫ h

0

eAtdtAxref , (11)

where we have used (8). On the right-hand-side, replace the integral using the above identity to
obtain Bhuref = (I −Ah)xref . Thus,

xref = Ahxref +Bhuref ∀h ∈ H. (12)

Since the controller may perform arbitrary on-line variations of h, the DT system (10) (obtained
by looking at the CT plant only at the sampling instants) can be regarded as a Discrete-Time Switched
System (DTSS). Since we are interested in establishing closed-loop properties (such as stability and
setpoint tracking) that hold irrespective of the way in which the controller may vary h, we consider
a DTSS under arbitrary switching [16, 30].

2.4. Bank of virtual actuators

As in [27], we consider a bank of VAs where each of the VAs in the bank is designed to compensate
for a specific actuator fault. The VA corresponding to the i-th fault situation Fi is given by

θ+i = Ahθi +Bhuc −BhFiui, (13)

ui = −Mh
i θi +Nh

i uc + di, (14)
yi = y + Cθi (15)

where di are constant vectors that represent degrees of freedom in the design and must satisfy

BFidi = 0 for i ∈ {0, 1, · · · , N}. (16)

This condition is imposed in order that di have effect on the system only under wrong matching
situation (i.e.when Fj 6= Fi), but to have no effect under correct matching (F = Fi). Appropriate
selection of di enables the fault detection unit to distinguish between correct and wrong matching
situations, as will be illustrated in Section 6.

The variable θi represents the i-th VA internal state, ui is the i-th VA plant input signal, and yi
the i-th VA output to be supplied to the controller. How ui and yi relate to the true plant input u and
the true output supplied to the controller yc is explained in Section 2.5. The 0-th VA corresponds to
nominal operating conditions (healthy or fault-free) and has

Mh
0 = 0, Nh

0 = I, and d0 = 0, (17)

for all sampling periods h. For i = 1, . . . , N , the VAs’ internal matrices Mh
i and Nh

i may depend
on the sampling period h selected by the controller. The design of Mh

i and Nh
i is explained in
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6 E. OSELLA, H. HAIMOVICH, AND M. M. SERON

Section 3.2. For future reference, note that substitution of (14) into (13) yields

θ+i = Ahi θi +Bh(I − FiNh
i )uc, with (18)

Ahi := Ah +BhFiM
h
i . (19)

that is, the dynamics of each VA is driven by the controller-computed plant input signal, uc. To
obtain (18), we have used the fact that, because of (16), BhFidi =

∫ h
0
eAtdtBFidi = 0.

2.5. FDI and controller reconfiguration mechanism

Controller reconfiguration is achieved through a selector that, in response to the diagnosed fault
situation, interconnects the appropriate virtual actuator from the bank of virtual actuators with the
controller and the plant.

When the FDI mechanism detects that a transition from a fault status i to the j-th status has
occurred, the j-th virtual actuator is interconnected with the controller and plant by making u = uj
and yc = yj . In particular, whenever the FDI diagnoses that the plant is under healthy operation, the
selector will set u = u0 and yc = y0. The reconfiguration also resets the 0-th virtual actuator state
θ0 to zero whenever healthy operation is detected.

Under the above considerations, we next show that if the plant is under healthy operation and if
the FDI mechanism successfully assesses the plant’s healthy condition, then the plant and controller
feedback loop will operate as if the bank of virtual actuators and reconfiguration mechanism were
not present. From (14) and (17), then u0 = uc. Therefore, if at time k0 the FDI mechanism detects
that healthy operation is restored, then θ0 = 0 according to the virtual actuator state reset condition,
y0 = y from (15), and it follows that yc = y0 = y and u = u0 = uc at time k0. According to (13) it
follows that θ0 = 0 and yc = y0 = y and u = u0 = uc will continue to hold for time instants k ≥ k0
until the FDI mechanism diagnoses a change in the plant fault condition. The design of the controller
and VA matrices, as well as the FDI mechanism is explained in Section 3.

3. CONTROLLER, VIRTUAL ACTUATOR AND FDI DESIGN

The controller and bank of virtual actuators must be designed so that the performance output v [see
(2)] is able to track a constant reference in closed loop, even if faults occur, and so that all closed-
loop variables remain bounded. To do so, the FDI system must ensure the correct fault identification
and engagement of the correct VA.

3.1. Controller design

Controller design involves the appropriate selection of the matrices Kh and Lh in (5)–(6). In order
for the desired closed-loop properties to hold irrespective of the sampling period sequence selected
by the varying-sampling-rate controller, the matrices Kh and Lh should be selected so that the
closed-loop matrices

Ah,CL := Ah −BhKh, (20)

Ah,O := Ah − LhC, (21)

make the sets {Ah,CL : h ∈ H} and {Ah,O : h ∈ H} stable under arbitrary switching. Stability under
arbitrary switching is equivalent to the existence of a Lyapunov function common to every matrix
in the corresponding sets (see, e.g. [30, 17]). In general, this common Lyapunov function may be
not quadratic.

If Kh and Lh exist so that the closed-loop matrices (20) on the one hand, and (21) on the other,
share a common quadratic Lyapunov function (CQLF) for all h ∈ H, then Kh and Lh can be
computed via linear matrix inequalities (LMIs) (see, e.g. [6, 26]).

In some cases, Kh and Lh can be found so that not only CQLFs exist, but also additional
properties hold for the closed-loop matrices (20) and (21). One such case is when invertible TCL
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and TO exist so that T−1CL A
h,CLTCL and T−1O Ah,OTO are upper triangular for all h ∈ H (solvable Lie

algebra case). Such common transformations TCL and TO are also useful for computing invariant
sets and ultimate bounds in DTSS, as shown in [13, 14]. In addition, several works address the
computation of Kh (and Lh) so that this simultaneous triangularization is achieved for Ah,CL (and
Ah,O) for general switched linear systems [10, 8], and specifically for cases as the current one, where
Ah and Bh arise from sampling a single continuous-time system at different rates [12, 21, 11, 22].
While for general DTSS this design criterion may be restrictive, a reduction on such restrictiveness
can be observed in this specific context, considering the following facts:

• the DTSS arises from sampling a single continuous-time system at different rates [12, 21, 11,
22],

• the system has input redundancy, in order to achieve successful trajectory tracking in the
presence of total actuator loss, as explained in Section 2.1 [9].

3.2. Virtual actuator features and design

The bank of VAs, as defined in (13)–(15), jointly with the controller reconfiguration mechanism
endow the feedback loop with specific features when the plant’s fault situation is correctly
diagnosed. One of these features is known as “fault hiding” because the controller variables uc and
yc are related in such a way as if a plant under nominal conditions were connected to the controller.
In order to see this feature, define

ξi := x+ θi, i = 1, · · · , N, (22)

and write, using (13) and (10),

ξ+i = Ahξi +Bh(Fu− Fiui) +Bhuc + wh. (23)

When the plant fault situation is correctly diagnosed, we have Fi = F , ui = u and yc = yi. From
the latter equalities, (1), (15) and (23), it follows that

ξ+i = Ahξi +Bhuc + wh, (24)
yc = Cξi + η. (25)

Eqs. (24)–(25) show that under the correct fault diagnosis and reconfiguration, the controller
effectively sees a nominal plant, whose state is ξi instead of x.

A second feature of the bank of VAs and switching mechanism is that the desired setpoint vref
for the performance output v defined in (2) should be preserved for all fault situations and sampling
period variations, provided the plant fault situation is correctly diagnosed. In closed loop and under
absence of disturbances and noise, the boundedness of all variables and the tracking of the desired
setpoint vref are achieved by ensuring the following:

a) the controller-computed plant input uc converges to the steady state value ūc = uref ,

b) the VA state vector θi converges to a constant steady-state value θ̄i,

c) Under fault i, the plant state x and input u both converge to steady-state values x̄i and ūi
(independent of h) and satisfy (4).

In Section 4 we will show that items a)–c) above will be true (for noise- and disturbance-free plant)
if we select the matrices Mh

i and Nh
i as explained next.

The matrices Mh
i should be selected so that for every i ∈ {0, 1, . . . , N}, the matrices in the set

{Ahi : h ∈ H}, with Ahi as in (19), are stable under arbitrary switching. The latter can be achieved
using, for example, LMI- or Lie-algebraic-solvability-based methods, as mentioned in Section 3.1,
and implies that every eigenvalue of Ahi has magnitude less than 1, and hence that (I −Ahi ) is
invertible.
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Once the Mh
i are designed, select one sampling period h′ ∈ H and compute

Nh′

i =
[
Xh′

i

]†
Cv(I −Ah

′

i )−1Bh
′
, (26)

Xh
i := Cv(I −Ahi )−1BhFi for all h ∈ H, (27)

where † denotes the Moore-Penrose generalised inverse. For every other sampling period h ∈ H,
select the corresponding Nh

i as follows:

Nh
i = Nh′

i − (Mh′

i −Mh
i )Ph

′

i , where (28)

Phi := (I −Ahi )−1Bh(I − FiNh
i ) for all h ∈ H. (29)

The following result concerning the expression for Phi above will be required in Section 4.

Lemma 1
Let h ∈ H and i ∈ {0, . . . , N}. Then,

(I −Ahi )−1Bh = −(A+BFiM
h
i )−1B. (30)

Proof
Define Φ(h) as

Φ(h) :=

∫ h

0

eAτdτ. (31)

Since h > 0 and eAτ is invertible, so is Φ(h). Also, from (7) consider the identity

I −Ah = −Φ(h)A. (32)

Expand the left hand side of (30) and use (7), (31) and (19),

(I −Ahi )−1Bh = (I −Ahi )−1Φ(h)B (33)

=
(
Φ(h)−1(I − (Ah +BhFiM

h
i )
)−1

B (34)

=
[(

Φ(h)−1 − Φ(h)−1Ah
)
− Φ(h)−1BhFiM

h
i

]−1
B (35)

From (32), observe that Φ(h)−1 − Φ(h)−1Ah = −A and using (7) and (31) we get that Φ(h)−1Bh =
B. Thus,

(I −Ahi )−1Bh = (−A−BFiMh
i )−1B (36)

whence, (30) follows.

Observe that the above result also states that (A+BFiM
h
i ) is invertible for every possible

sampling period h.
In the next two sections we will present the main results of this paper. First, in Section 4 we show

that if the matrices Mh
i and Nh

i are selected as previously explained, then items a)–c) above will
be ensured and the closed-loop system will successfully track the desired setpoint vref under both
nominal and faulty conditions, even when the varying-sampling-rate controller performs on-line
variations of the sampling period. Secondly, in Section 5 we explain the residual generation and
describe the operation of the FDI unit via an algorithm based on (invariant) set membership tests.

4. CLOSED-LOOP PROPERTIES UNDER VARYING SAMPLING RATE

In this section, we present the closed-loop properties results obtained under the considered scheme.
These results are given below as Theorems 1, 2 and 3. Each theorem establishes the validity
of one of the items a)–c) detailed in Section 3.2, under the design conditions and assumptions
explained in Sections 2 and 3. These results ensure the appropriate operation of the VA for the
considered varying-sampling-rate case, by ensuring the boundedness of all closed-loop variables
and the convergence of the performance output to the desired reference value under persistent faults.
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4.1. Control-computed plant input convergence

To proceed, let us first define the following observer and tracking errors

ξ̃i := ξi − x̂, (37)
ζi := ξi − xref , (38)

with ξi as in (22), and express the controller-computed plant input uc in (5) as

uc = −Khζi +Khξ̃i + uref . (39)

Using (5)–(6), (12), (22), and (24)–(25), the observer and tracking error dynamics is given by

ξ̃+i = Ahξ̃i +Bh(Fu− Fiui) + wh − Lh(Cξ̃i + η), (40)

ζ+i = (Ah −BhKh)ζi +Bh(Fu− Fiui) +BhKhξ̃i + wh. (41)

Observe that if the FDI unit correctly identifies the fault situation and engages its associated VA,
(the “matching hypothesis”), then ξ̃+ and ζ+ take the form

ξ̃+i = (Ah − LhC)ξ̃i + wh − Lhη, (42)

ζ+i = (Ah −BhKh)ζi +BhKhξ̃i + wh. (43)

We are now ready to present our first Theorem, proving item a) of Section 3.2.

Theorem 1
Consider the continuous-time plant (1)–(2) without disturbances (w ≡ 0, η ≡ 0), in closed-loop
with the varying-sampling-rate controller (5)–(8) and bank of VAs (13)–(17). Suppose that there
exist feedback matrices Kh and observer-gain matrices Lh such that the sets {Ah,CL : h ∈ H} and
{Ah,O : h ∈ H}, with Ah,CL and Ah,O as in (20) and (21), are stable under arbitrary switching. If the
plant’s fault condition is persistent and successfully diagnosed by the FDI unit, then

i) the combined plant-VA state ξi in (22), where i identifies the plant’s fault condition, converges
to the steady-state value ξ̄i = xref , and so does the observer state x̂.

ii) the controller-computed plant input uc converges to the steady-state value ūc = uref .

Proof
The equality (39) is valid for all i ∈ {0, · · · , N}, and the equations for ξ̃i and ζi without disturbances
are obtained from (40)–(41), setting wh = 0 and η = 0. By hypothesis, the FDI unit correctly
diagnoses the plant’s fault condition and hence interconnects the i-th VA with the controller and
plant (u = ui, F = Fi, yc = yi). Under this matching hypothesis, the error dynamics (40)–(41)
become as in (42)–(43), with wh = 0 and η = 0. Since both Ah − LhC and Ah −BhKh are stable
under arbitrary switching, then

lim
k→∞

ξ̃i = 0 and lim
k→∞

ζi = 0, (44)

which establishes i) by recalling (37)–(38). From (39), then

ūc = lim
k→∞

uc = uref , (45)

which establishes ii). Note that both (44) and (45) are true for every possible evolution of the
sampling periods h ∈ H (even when varied on-line).

4.2. VA state convergence

The convergence of the VA state, as per item b) of Section 3.2, is established in Theorem 2 below.
We first require the following auxiliary result.
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10 E. OSELLA, H. HAIMOVICH, AND M. M. SERON

Lemma 2
Consider the matrices Xh

i as defined in (27). Suppose that the continuous-time system matrices A,
B are such that (A,BFi) are stabilisable for i = 0, 1, · · · , N , and for each fault matrix Fi there exist
constant values x̄i and ūi satisfying (4). Then, Xh

i

[
Xh
i

]†
= I .

Proof
The existence of constant values x̄i and ūi satisfying (4) is equivalent to the condition that the matrix[
−A BFi
−Cv 0

]
has rank n+ q. Under non-pathological sampling h ∈ H the latter rank condition

implies (see, e.g., the proof of Lemma IV.3 in [3])∗

rank

[
In −Ah BhFi
−Cv 0

]
= n+ q. (46)

Correct design of Mh
i (recall Section 3.2) implies that Ahi defined in (19) has all eigenvalues with

magnitude less than one; then (In −Ahi ) is invertible and we can write[
In 0

Cv(In −Ahi )−1 Iq

] [
In −Ah BhFi
−Cv 0

] [
In 0
−Mh

i Im

]
=

[
In −Ahi BhFi

0 Xh
i

]
, (47)

where Xh
i ∈ Rq×m is defined in (27). Since the first and third matrices on the left-hand side (LHS)

of (47) are invertible, it follows (using Sylvester’s inequality and properties of the matrix rank) that
the rank of the second matrix on the LHS is equal to the rank of the matrix on the right-hand side of
(47). Using (46) we then have rankXh

i = q, that is, Xh
i has full row rank. Thus, its Moore-Penrose

generalised inverse can be written as [Xh
i ]† = [Xh

i ]T
[
Xh
i [Xh

i ]T
]−1

and satisfies Xh
i

[
Xh
i

]†
= Iq.

The result then follows.

We are now ready to establish item b) of Section 3.2.

Theorem 2
Under the hypotheses of Theorem 1, suppose also that for each fault matrix Fi, i = 0, 1, . . . , N ,
there exist constant values x̄i and ūi satisfying (4), and matrices Mh

i so that the set of matrices
{Ahi : h ∈ H}, with Ahi as in (19), is stable under arbitrary switching. Suppose that Nh

i are selected
as explained in Section 3.2. If the plant’s fault condition is persistent and successfully diagnosed by
the FDI unit, then the VA state satisfies

lim
k→∞

θi = θ̄i and Cv θ̄i = 0, (48)

where θ̄i is constant and independent of the sampling period h, and the limit in (48) is valid for
every possible evolution (i.e., on-line variations) of the sampling period.

Proof
From Theorem 1-ii), we know that ūc = uref . Let θ̄hi denote the equilibrium value of the VA state
θi if a constant sampling period h were kept by the controller. Solving from (18) and using (29), we
can write

θ̄hi = Phi uref . (49)

We next show that Phi is independent of h. Let h′ ∈ H be the sampling period selected for the
computation of Nh′

i as in (26). Using (29) and Lemma 1, we can write

Phi = −(A+BFiM
h
i )−1B(I − FiNh

i ) (50)

∗For clarity, in this proof we use a sub-index to indicate the dimensions of the identity matrices, that is, In denotes the
n× n identity matrix.
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INTEGRATION OF INVARIANT-SET-BASED FDI WITH VARYING SAMPLING RATE VIRTUAL [...] 11

for all h ∈ H. Replacing Nh
i by the expression (28), adding −APh′

i +APh
′

i inside the square
brackets, and operating, yields

Phi = −(A+BFiM
h
i )−1

[
B(I − FiNh′

i )− (A+BFiM
h
i )Ph

′

i + (A+BFiM
h′

i )Ph
′

i

]
. (51)

Using (50), then (A+BFiM
h′

i )Ph
′

i = −B(I − FiNh′

i ). Using the latter expression in (51) yields

Phi = −(A+BFiM
h
i )−1[−(A+BFiM

h
i )Ph

′

i ] = Ph
′

i ,

which establishes that Phi is independent of h. We can thus write Phi = Pi for all h ∈ H. Therefore,
the steady-state value θ̄hi also is independent of h, as follows from (49), and we can write θ̄hi = θ̄i
for all h ∈ H. Define the incremental variables

∆θi := θi − θ̄i, and ∆uc := uc − ūc = uc − uref . (52)

Use (18) to write the VA dynamics in the incremental variables as

∆θ+i = Ahi ∆θi +Bh(I − FiNh
i )∆uc,

where ∆uc → 0 by Theorem 1, and {Ahi : h ∈ H} are stable under arbitrary switching for every
i = 0, . . . , N . It follows that ∆θi → 0 and hence limk→∞ θi = θ̄i. Using (26)–(27) and (29), yields

CvPi = CvP
h′

i =
(
I −Xh′

i

[
Xh′

i

]†)
Cv(I −Ah

′

i )−1Bh
′
.

Using Lemma 2, then CvPi = CvP
h
i = 0 for all h ∈ H. Recalling (49), then Cv θ̄i = Cv θ̄

h
i =

CvPiuref = 0.

Theorem 2 shows that the virtual actuator state converges to a constant steady-state value that is
independent of the sampling periods h ∈ H and, in addition, is in the null space of the performance
output matrix Cv [see (2)]. This property is key to achieving the correct setpoint vref for the
performance output v, a property that is established in the following section.

4.3. Setpoint tracking

We next present our last result on closed-loop properties, which establishes item c) of Section 3.2,
related to the setpoint tracking property of the controller-driven sampling VA introduced.

Theorem 3
Under the same hypotheses as for Theorem 2, the plant state x and the performance output v satisfy

lim
k→∞

x = x̄i := xref − θ̄i and lim
k→∞

v = vref .

Proof
From Theorem 1-i), the combined plant and VA state ξi converges to the steady-state value xref
and From Theorem 2, the VA state θi converges to θ̄i. Recalling (22), then the plant state x must
converge to the steady-state value x̄i = xref − θ̄i. The performance output thus satisfies

lim
k→∞

v = Cvx̄i = Cvxref − Cv θ̄i = vref ,

where we have used (8) and (48).

The above result shows that, if the correct fault situation has been diagnosed and the matching
VA has been engaged in the closed-loop system, then the VA-reconfigured system will achieve the
desired constant setpoint tracking, irrespective of the on-line variations of the sampling periods
h ∈ H.

While the above convergence results have been established for the system without disturbances,
boundedness of the closed-loop trajectories holds for the system with bounded disturbances.
Additionally, ultimate bounds for the system and VAs states can be computed using, for example,
the ultimate bound computation method for switched systems presented in [13].
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12 E. OSELLA, H. HAIMOVICH, AND M. M. SERON

5. FDI PRINCIPLE AND RESIDUAL GENERATION

The FDI unit is responsible for correctly identifying the fault situation, and engaging the correct
VA in the loop. In this paper, we extend the FDI and residual generation strategy of [27] to the
controller-driven sampling case considered here. In [27], the FDI unit uses available quantities to
compute a residual signal, which is a signal whose behaviour under fault distinctively deviates from
its behaviour under healthy operation, and verifies membership of the residual to some previously
computed sets. A change in the membership from a set to another means an abrupt change in the
fault situation. Recalling the definition of the observer error in (37), we will use as residual the
quantity

ri := yi − Cx̂ = Cξ̃i + η, (53)

(as in [27]) where yi is the output provided by the i-th VA (15), and x̂ is the state of the observer (6).
We will next analyse the behaviour of the residual (53) under healthy and faulty operation through
the computation of sets where it evolves in each case.

Consider the observer and tracking error dynamics under the matching hypothesis, given by (42)–
(43). Since {Ah,CL : h ∈ H} and {Ah,O : h ∈ H} are both stable under arbitrary switching (recall
Section 3.1), and since the process disturbance wh and measurement noise η are both bounded
(i.e., wh ∈ W and η ∈ N ), then attractive invariant sets Z and Ξ̃ can be computed for the error
variables ζi and ξ̃i. These sets are such that the errors converge to them in finite time (attractiveness)
and remain inside (invariance) if the fault situation is maintained for a sufficiently long time
(persistent fault). Invariant sets for stable DTSSs under arbitrary switching can be computed using
their common Lyapunov function. Alternatively, if the required closed-loop matrices have some
additional structure, such as being simultaneously triangularizable, some structure-based invariant-
set computation methods can be directly applied [13, 14]. This computation strategy is illustrated in
Section 6. Note that due to the form of (42)–(43), the sets Z and Ξ̃ are independent of which fault
occurs (independent of i). In other words, if a persistent fault i occurs and is correctly detected,
then the variables ζi and ξ̃i will converge to sets that are independent of which fault has occurred
(and also independent of the evolution of the sampling rate). Then, under persistent fault i and if the
FDI correctly detects the fault status change and engages the appropriate VA, the residual (53) will
satisfy (after some initial finite-time transient):

ri ∈ R, where R := CΞ̃⊕N (54)

is the “correct-matching” set and ⊕ denotes the Minkowski sum of sets.
Since the proposed fault diagnosis will rely on set membership, when a change in the fault

situation occurs the residual signal must have converged to its corresponding correct-matching set
for correct diagnosis of the new fault situation. This leads to the following fault scenario.

Assumption 1 (Fault Scenario)
Between the occurrence of any two consecutive changes in the fault situation, sufficient time elapses
such that the after-fault system variables converge to their respective invariant sets.

We next derive a set where the residual will belong when the fault situation suddenly changes
from i to j, assuming that fault situation i has been maintained for a sufficiently long time so that
ζi ∈ Z , ξ̃i ∈ Ξ̃ and (54) hold right up to the time when the change occurs. From (39), whenever
ζi ∈ Z and ξ̃i ∈ Ξ̃, the controller-computed signal uc satisfies

uc ∈ Uhc := −KhZ ⊕KhΞ̃⊕ {uref}. (55)

Recalling features a) to c) in Section 3.2, we may define the incremental variables ∆θi := θi − θ̄i
and ∆uc := uc − uref and obtain, using (18), ∆θ+i = Ahi ∆θi +Hh

i ∆uc, where Hh
i := Bh(I −

FiN
h
i ). Since ∆uc converges to the bounded set ∆Uc := ∪h∈H{−KhZ ⊕KhΞ̃} and {Ahi : h ∈ H}

is stable under arbitrary switching, then under persistent fault i the increment ∆θi will converge to
an attractive invariant set ∆Si and hence, θi will converge to Si := ∆Si + θ̄i. Note that whenever
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θi ∈ Si and uc ∈ Uhc , the i-th VA variable ui in (14) satisfies

ui ∈ Uhi := −Mh
i Si ⊕Nh

i Uhc ⊕ {di} (56)

at time instant tk, with h = tk+1 − tk. Suppose that the plant fault situation changes from i at instant
tk to j at tk+1. The fault matrix F in (1) thus changes from Fi to Fj . At tk+1, the residual ri of the
previously-matching i-th VA will satisfy, using (53), (40) and (21),

ri ∈ R+
ij,h := C

[
Ah,OΞ̃⊕Bh(Fj − Fi)Uhi ⊕W ⊕ (−Lh)N

]
⊕N . (57)

The second addend within the square brackets in the above definition forces the set R+
ij,h to shift

away from zero. If this set has empty intersection with R, then the change in the fault situation can
be successfully detected.

Assumption 2 (Set separation)

R∩R+
ij,h = ∅ ∀ i 6= j, ∀h ∈ H

andR+
ij,h ∩R

+
ik,h = ∅ ∀k 6= j, ∀h ∈ H,∀i 6= j,∀i 6= k

The scheme is guaranteed to work correctly for abrupt faults that are such that the set separation of
Assumption 2 holds. Notice that sinceBFidi = 0 and the setsR+

ij,h depend on di [recall (56)–(57)],
then di can be used as a design parameter in order to achieve the correct set separation. Observe that
knowledge of the sampling period h is necessary for testing whether the residual ri satisfies (57).
Following [27], the FDI mechanism can be devised by monitoring the matching VA and testing
whether its associated residual ri satisfies (54) or (57). If a change is detected, the correct VA is
immediately engaged but the algorithm waits enough time before making another test so that the
after-change system states converge to their respective invariant sets. The following is the analogue
of Algorithm 4.3 of [27] for the case of controller-driven sampling.

Algorithm 1 (FDI and controller reconfiguration logic)
Compute the sets R and R+

ij,h, for all i, j ∈ {0, 1 . . . , N}, i 6= j, and all h ∈ H.

1. Initialisation. Suppose that the initial fault situation i is known (e.g. healthy, i = 0) and allow
sufficient time for the system variables to converge to their respective invariant sets.

2. Evaluate the residual ri from yi and x̂ as in (53):

(a) If ri ∈ R, go to Step 2; else

(b) If ri ∈ R+
ij,h for some j 6= i, then engage the j-th VA by setting u = uj and y = yj

(reconfiguration). Set i← j and go to Step 3; else

(c) If ri /∈ R and ri /∈ R+
ij,h for any j 6= i, require intervention.

3. Wait sufficient time to allow convergence to invariant sets†.

4. Go to Step 2

The required waiting time (at initialization and Step 3) can be obtained, in general, by means of
the common Lyapunov function that is admitted by the stable closed-loop discrete-time switched
system. This would give an estimate of the required time as a number of discrete steps (number
of sampling events to wait for before performing any action). In the case where feedback design
achieves closed-loop Lie-algebraic solvability (simultaneous triangularization), an estimate of the
required waiting time can be obtained by following the ideas in [13, 14]. Condition 2(c) may occur,
for example, if the system experiences a new fault status change before reaching the invariant set.

†The details over the estimation of this convergence time is out of the scope of this paper, but a discussion on algorithms
to estimate this convergence time can be consulted in [19]
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14 E. OSELLA, H. HAIMOVICH, AND M. M. SERON

In such a case, due to the misconfiguration, the state variables may not reach their invariant sets and
thus, convergence toR cannot be ensured. Additionally, observe that controller reconfiguration after
a change in the fault situation is performed in only one sampling period, and hence takes at most
max{H} seconds. The implementation of the proposed FDI mechanism does not introduce much
processing overhead, since it only requires residual computation and set membership verification,
which are simple algebraic operations when the required sets are convex. We will next illustrate the
overall FTC scheme with an example.

6. EXAMPLE

We revisit the two tanks example presented in [31]. The considered plant is composed of two
interconnected tanks as shown in Figure 2, where the objective is to keep a constant level on the
second tank. In this plant, the redundant input is given by the inflow to the first tank control and the
connecting valve opening, which is located at a height lv.

u1

lv x2

x1

u2

Figure 2. Two interconnected tanks. Tank 1 (left) is fed by a pump (flow u1). Flow from Tank 1 into Tank
2 passes through the interconnecting valve (valve opening u2). The objective is to maintain a constant level

on Tank 2 (right).

Being x1 and x2 the incremental levels of the first and the second tank respectively, about
equilibrium levels x̄1 and x̄2, under the condition that x̄2 < lv < x̄1, the linearised plant equations
are given by (1)–(2), where

A :=

[
−0.25 0
0.25 −0.25

]
, B :=

[
1 −0.5
0 0.5

]
, C = I, Cv :=

[
0 1

]
and each component of the measurement disturbance η is bounded within the interval
[−10−4, 10−4]. In this example, we will consider only the loss of actuator u2 (connecting valve
blocked in nominal position), referred as Fault type 2 in [31], producing

F ∈ F := {F0, F1} =

{[
1 0
0 1

]
,

[
1 0
0 0

]}
.

When actuator u2 fails, the level in Tank 2 can only be modified by controlling the level in Tank 1
through the pump.

The considered sampling period set is given by H := {h1 = 0.1, h2 = 0.05, h3 = 0.025}. Note
that, while each of the considered sampling periods is a multiple of h3, this is not a requirement
of the proposed strategy. We assume that each component of the perturbation wh in the plant
dynamics at the sampling instants (10) is bounded within the interval [−10−4, 10−4] for every
possible sampling period.
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Since ensuring acceptable performance under total actuator outage requires that the plant have
sufficient input redundancy, some structure-based feedback design methods, such as those based on
simultaneous triangularization (i.e., solvable Lie algebra), become increasingly appealing [9, 11]
and facilitate the computation of the invariant sets required [13]. In this example we compute
feedback matrices for both controller (Kh) and VA (Mh

1 ), using the Lie-algebraic-solvability-based
method presented as Algorithm 1 in [10]. For such algorithm, we selected the parameter εc = 0.01,
which is associated with the stability limits. We first applied such algorithm to the matrix pairs
{(Ah, Bh), h ∈ H} and obtained the feedback matrices:

Kh1 = 0.01

[
999 975
−6.14 −5.99

]
, Kh2 = 0.01

[
1999 1975
−6.19 −6.12

]
, Kh3 = 0.01

[
3999 3975
−6.21 −6.18

]
,

and then to the pairs {(Ah, BhF1), h ∈ H}, in order to obtain the VA feedback matrices:

Mh1
1 = −

[
11.23 107.99

0 0

]
,Mh2

1 = −
[
21.34 233.18

0 0

]
,Mh3

1 = −
[
41.39 485.57

0 0

]
.

Using h1, we can compute Nh1
1 from (26) and then Nh2

1 and Nh3
1 using (28)–(29). The computed

values are

Nh1
1 =

[
1 22.46
0 0

]
, Nh2

1 =

[
1 2.25
0 0

]
, Nh3

1 =

[
1 −37.86
0 0

]
.

Since C = I we can choose Lh = Ah for all h ∈ H (dead-beat observer). The last step to finalize the
design usign the presented strategy is to select proper values of di in (14). As mentioned in Section
2.4, d0 = [0 0]T and d1 is a design parameter that facilitates correct set separation, as required by
the FDI unit. The correct-matching and fault-transition FDI sets (54) and (57) are computed based
on invariant sets Ξ̃ and Z obtained through the method in [13]. To illustrate how the selection of d1
affects set separation, we experimented with two values: d1 = [0, 0.2]T and d1 = [0, 0.6]T . The sets
corresponding to each value of d1 are displayed in Figure 3. Observe that d1 = [0, 0.6]T achieves
the desired set separation. Hence, d1 = [0, 0.6]T is selected for the simulation.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

R+
01,h3

R+
10,h2

R+
10,h3

R+
01,h2

x1

x
2

R

R+
10,h1

R+
01,h1

(a) FDI sets for d1 = [0, 0.2]T .

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x
2

x1

R+
01,h2

R+
01,h3R

R+
10,h3

R+
10,h2

R+
10,h1

R+
01,h1

(b) FDI sets for d1 = [0, 0.6]T and residual signal values.

Figure 3. FDI sets R, R+
01,h and R+

10,h for d1 = [0, 0.2]T (left) and d1 = [0, 0.6]T (right). Computed
residuals falling into R, R+

01,h1
and R+

10,h2
are shown for d1 = [0, 0.6]T .

In order to test the strategy, we simulated the two-tank system from the initial conditions x1 =
0, x2 = 0, with vref = 0.05 and with arbitrary choices for the sampling periods h ∈ H, including
actuator fault and restitution at time instants that ensure that the required variables have already
converged to their corresponding invariant sets.

The level in the first tank is displayed in Fig. 4(a), and the level and reference for the second tank
are shown in Fig. 4(b); the evolution of the first component of both the controller-computed input
and the input effectively sent to the actuator are displayed in Fig. 4(c), while that of their second
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component in Fig. 4(d); Figures 4(e) and 4(f) display the evolutions of these control signals over the
time interval 18 to 18.5, which contains the time instant when the fault occurs; the sampling period
and fault indices are shown in Fig. 4(g). The fault occurs at 18.05 sec, and restitution at 35.025 sec.
During healthy periods the controller-computed input coincides with the input effectively sent to the
actuator, except for one sampling period immediately after restitution. Fault detection and controller
reconfiguration behaviour can be observed in Figs. 4(e) and 4(f). At 18.05 sec, when the fault occurs,
and up to the next sampling instant (18.15 sec), the controller-computed input still coincides with
the input effectively sent to the actuator; one sampling period after the fault occurs (18.15 sec), the
fault is diagnosed, the reconfiguration is performed, and hence a difference between the controller-
computed input and the input effectively sent to the actuator can be observed beginning at the latter
time instant and up to the next reconfiguration instant.

The computed residual signal values are shown in Fig. 3 (right). The residuals fall into R when
the FDI matches the fault and after the corresponding variables have converged to their respective
invariant sets (marked with triangles); at a fault instant the residual falls into one of the R+

01,h sets
(marked with a white +); and at the restitution instant, the residual falls into one of the R+

10,h sets
(marked with a white ∗).

7. CONCLUSIONS

In this paper we have presented a new approach for the virtual actuator technique under varying-
sampling-rate control systems. In this approach, the controller (designed for the fault-free plant)
is in charge of both providing the control action and determining the sampling instants to the
continuous-time process. Such sampling period is informed to the FDI unit, and is selected from
a finite set. The FDI mechanism computes a residual signal and checks membership of such signal
to “correct-matching” or “fault-transition-matching” sets. The considered faults consist of abrupt
actuator faults. The main results of this paper show that in the considered scheme and under
persistent faults, the system will track the reference values, the control input will achieve its desired
constant reference, the VA states will converge to a constant value (irrespective of the sampling
period used, and the variations on it), and the desired constant setpoint tracking objective is ensured
for the performance variable. In addition, reconfiguration is performed in at most 1 sampling period.
The proposed approach is of particular interest for plants with input redundancy.
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Figure 4. A difference between the computed control uc and the effectively introduced to the plant ui can be
observed at the reconfiguration instant
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