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Abstract. Let (X, f) be a dynamical system with X a compact metric space.

Let Xr be the product of r−copies of X, r ≥ 1, and Φ : Xr → R. The

multifractal decomposition for V−statistics for Φ, f is defined as

EΦ,f (α) =


x : lim

n→∞

1

nr

∑
0≤i1,...,ir≤n−1

Φ
(
f i1 (x) , ..., f ir (x)

)
= α


 .

The set of points x ∈ X, for which the limit does not exist is called the irregular

part, or historic set, of the spectrum. In this article we analyze the irregular

part of the V−statistics for systems satisfying a weak form of the known Bowen

specification property, called the non-uniform specification property. This con-

cept was introduced by P. Varandas and allows to work in a nonuniformly

hyperbolic context.
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2 ALEJANDRO MESÓN AND FERNANDO VERICAT

1. Introduction

The multiple ergodic averages appeared as a dynamical version of the Sze-

meredi theorem in combinatorial number theory. This analogy was pointed out

by Furstenberg[8] who studied ergodic averages in a measure-preserving probabil-

ity space (X,B, µ, f) of the form

1

N −M

N−1∑
n=M

µ
(
A ∩ fnA ∩ ... ∩ fknA

)
,

where A ∈ B and j ∈ N. Furstenberg established that if µ (A) > 0 then

lim inf
N→∞

1

N −M

N−1∑
n=M

µ
(
A ∩ fnA ∩ ... ∩ f jnA

)
> 0.

This relevant result serves to prove by arguments from Ergodic Theory the Sze-

meredi theorem, which states that if S is a set of integers with positive upper

density then S contains arithmetic progressions of arbitrary length.

The multifractal analysis of V -statistics treated by Fan, Schmeling and Wu[5]

was motivated by the problems on convergence of multiple ergodicaverages. Let us

consider a topological dynamical system (X, f) , with X a compact metric space

and f a continuous map. Let Xr = X × ... ×X be the product of r−copies of X

with r ≥ 1, if Φ : Xr → R is a continuous map, then let

(1) VΦ (n, x) =
1

nr

∑
1≤i1,...,ir≤n

Φ
(
f i1 (x) , ..., f ir (x)

)
.

These averages are called the V−statistics of order r with kernel Φ. For the idea of

V -statistics from a Statistical point of view and its relationship with the U -statistics

see section 2 of[5]. Ergodic limits of the form

lim
n→∞

1

n

n−1∑
i=0

Φ
(
f i1 (x) , ..., f ir (x)

)
,

were studied among others by Furstenberg[8], Bergelson[1] and Bourgain[2].

The multifractal decomposition for the spectra of V−statistics is

EΦ (α) =
{
x : lim

n→∞
VΦ (n, x) = α

}
.
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015) 3

Fan, Schemeling and Wu[5] have obtained the following variational principle for

dynamical systems with the specification property.:

(2) htop(EΦ (α)) = sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
,

where htop is the topological entropy for non-compacts nor invariant sets and hµ (f)

is the measure-theoretic entropy of µ. Here µ⊗r means µ × ... × µ, r−times. This

generalizes the variational principle established by Takens and Verbitski for r =

1[12].

The irregular part of the spectrum, or historic set, is the set of points x for which

lim
n→∞

VΦ (n, x) does not exist. We denote this set by E∞Φ , so that the space X can

be decomposed as

X =
⋃
α∈R

EΦ (α) ∪ E∞Φ .

In a recent paper [10]we have studied the irregular part of the multifractal decom-

position of V−statistics, in order to determine its dimension. We proved that for

topological dynamical systems with the property of specification, if the irregular

part of the spectrum of multiple ergodic averages, or V−statistics is non-empty

then it has the same topological entropy as the whole space X.

The objective of the present article is to extend the above result for systems

satisfying a weak form of the specification property, known as non-uniform specifi-

cation condition. This notion was introduced by P. Varandas[14] and is satisfied, for

instance, by non-uniformly quadratic maps and for the so called Viana maps, which

are a robust class of multidimensional non-uniformly hyperbolic functions[14]. The

result to be proved is

Theorem 1.1: Let (X, f) be a dynamical system with the property of non-

uniform specification. Let Φ ∈ C (Xr) , r ≥ 1, and let E∞Φ (α) be the irregular part

of the spectrum of multiple ergodic averages VΦ (n, x) . Then EΦ (α) is empty or

htop(E
∞
Φ (α)) = htop (X) .

For the proof of the result in [10], we used the variational principle for systems

with the specification property of Fan, Schemeling and Wu. The key point for the

demonstration of this variational principle is the saturadness. This means that
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4 ALEJANDRO MESÓN AND FERNANDO VERICAT

(3) htop (G (µ)) = hµ (f) ,

where by G (µ) is denoted the set of µ−generic points. Bowen [3] proved the

inequality

htop (G (µ)) ≤ hµ (f) ,

while in [7] was proved the opposite inequality, i.e. the saturatedness of dynamical

systems with specification. Thus to extend our result of [10] to systems with the

non-uniform specification property we must prove that such systems are saturated.

Once proved this, following [7], we obtain

Theorem 1.2: Let (X, f) be a dynamical system with the property of non-

uniform specification. Let Φ ∈ C (Xr) , r ≥ 1, then

htop(EΦ (α)) = sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

With the theorem 1.2 and the saturadness, following similar lines than in [10] we

obtain theorem 1.1.

We must mention that the case r = 1 was proved in[15]. However, unlike we do

here, in that article the proof is not based on the saturadness.

2. Preliminaries

Firstly let us recall the Bowen definition of topological entropy of sets: Let

f : X → X, with X a compact metric space, for n ≥ 1 the dynamical metric, or

Bowen metric, is dn (x, y) = max
{
d
(
f i (x) , f i (y)

)
: i = 0, 1, ..., n− 1

}
. We denote

by Bn,ε (x) the ball of centre x and radius ε in the metric dn. Let Z ⊂ X and

let C (n, ε, Z) be the collection of finite or countable coverings of the set Z by balls

Bm,ε (x) with m ≥ n. Let

M (Z, s, n, ε) = inf
B∈C(n,ε,Z)

∑
Bm,ε(x)∈B

exp (−sm) ,

and set

M (Z, s, ε) = lim
n→∞

M (Z, s, n, ε) .
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015) 5

There is an unique number s such that M (Z, s, ε) jumps from +∞ to 0. Let

H(Z, ε) = s = sup {s : M (Z, s, ε) = +∞} = inf {s : M (Z, s, ε) = 0} ,

and

(4) htop (Z) = lim
ε→0

H(Z, ε).

The number htop (Z) is the topological entropy of Z.

A dynamical system (X, f) has the non-uniform specification property if the

following condition holds, for δ > 0, 0 < ε < δ, n ∈ N, x ∈ X, there exists an

integer M (x, n, ε) such that

lim
ε→0

lim
n→∞

sup
1

n
M (x, n, ε) = 0,

and such that is verified, given x1, x2, ..., xk ∈ X, n1, n2, ..., nk ∈ N, if Mi ≥
M (xi, ni, ε) then there is a point z ∈ X such that

dn1 (x1, z) < ε

and

dni

f i−1∑
j=1

(nj+Mj)

(z), xi

 < ε.

By M(X) we denote the space of measures in X, and by Minv(X, f) the space

of f−invariant measures on X. The space M(X) can be endowed with a metric D

compatible with the metric in X, in the sense that D(δx, δy) = d(x, y), where δ is

the point mass measure. More precisely the metric considered in M(X) will be

D (µ, ν) =

∞∑
n=1

∣∣∫ ϕndµ− ∫ ϕndν∣∣
2n ‖ϕn‖∞

,

where {ϕn} is a dense set in C(X). We denote by BR (µ) the ball of center µ and

radius R in the above metric. The topology induced by this metric is the weak ∗−
topology, and if X is compact then M(X) is compact in the weak topology. The

weak convergence is the convergence in the metric which induces the weak topology.

The so called empirical measures on X associated to the dynamical system (X, f)

are
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6 ALEJANDRO MESÓN AND FERNANDO VERICAT

En (x) =
1

n

n−1∑
i=0

δfi(x).

Here δ is the point mass measure. We denote the weak limits of the sequence{En (x)}
by V (x). Since X is compact, V (x) 6= ∅. If µ is a measure on X then a point

x ∈ X is µ−generic if V (x) = {µ} , by G (µ) is denoted the set of µ−generic points.

Following [7] the set of generic points can be characterized in the following way.

Let {pi} be a sequence of numbers with
∞∑
i=1

pi = 1 and let {si} be a sequence in

`∞. The sequence {si = sn,i}i converges to α = (αi) ∈ `∞ in the weak ∗− topology

if and only if limn→∞ |sn,i − αi| = 0. Let {ϕ1, ϕ2, ...} a dense subset in unit ball of

C(X), for a fixed µ ∈Minv(X, f), let α = (α1, α2, ...), with αi =
∫
ϕidµ- Thus

G (µ) =

{
x : lim

n→∞

∞∑
i=1

pi |Sn (ϕi (x))− αi | = 0

}
Lemma 2.1([16],[14]): For any µ ∈ Minv(X, f) , 0 < δ < 1, 0 < γ < 1, there

is a measure ν such that ν =
k∑
j=1

λiνi, where each νj is ergodic and
k∑
j=1

λj = 1, and

such that

i) hν (f) ≥ hµ (f)− γ.

ii)
∞∑
i=1

pi
∣∣∫ ϕidµ− ∫ ϕidν∣∣ < δ, where {ϕi} and {pi} are sequences like above.

Let N ≥ 1 and

Yj (N) =

{
x :

∞∑
i=1

pi

∣∣∣∣Sn (ϕi (x))−
∫
ϕidνj

∣∣∣∣ < δ, for n > N

}
,

where Sn (ϕi (x)) =
n−1∑
k=0

ϕi
(
fk(x

)
). By the Birkhoff ergodic theorem we have that

lim
n→∞

∞∑
i=1

pi

∣∣∣∣Sn (ϕi (x))−
∫
ϕidνk

∣∣∣∣ = 0, νk − a.e.,

and for sufficiently large N holds νj (Yj (N)) > 1− γ.

Let α = (α1, α2, ...) ∈ `∞ and Θ = {ϕ1, ϕ2, ...} be a dense subset in unit ball of

C(X). Set

(5) ΛΘ (α) = lim
ε→0

lim
δ→0

lim
n→∞

sup
1

n
logN (α, δ, ε, n) ,

where N (α, δ, ε, n) is the minimal number balls Bn,ε (x) needed to cover the set
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015) 7

XΘ (α, δ, n) =

{
x :

∞∑
i=1

pi |Sn (ϕi (x))− αi| < δ, α = (αi) ∈ `∞
}

3. Construction of a fractal set and proof of saturadness

The next step is the construction of a fractal set F , such that F ⊂ G (µ). For

the construction is followed [7], [12],[13] or [4], Let {nk} be a sequence of positive

integers and {Nk} be an increasing sequence of integers with Nk →∞ and

N1 = 1, N2 ≥ 2n1+maxx∈S1
M(x,n1,ε/4)+n3+maxx∈S3

M(x,n3,ε/16).

Let {Sk} be a sequence of finite subsets of X, and {nk} be a sequence of positive

integers. Let ε > 0 and assume that dnk
(x, y) > 5ε, for anyx 6= y ∈ Sk. Sequences

of sets {Dk} and {Lk} are constructed in the following way: Set D1 = S1, let

x1, ..., xNk
∈ Sk, ε > 0, by the non-uniform specification property, there exists a

y = y(x1, ..., xNk
) such that

dnk
(xj , f

aj (y)) < ε/2k,

with

aj = (j − 1)

(
nk + max

x∈Sk

M
(
x, nk, ε/2

k+1
))

Let

(6) Dk =
{
y = y(x1, ..., xNk

) : (x1, ..., xNk
) ∈ SNk

k

}
,

and

(7) tk = aNk
+ nk = Nknk +Nk−1 × max

x∈Sk

M
(
x, nk, ε/2

k+1
)
.

The sequence {`k} is recursively defined as `1 = n1, and

`k+1 = `k + max
x∈Sk

M
(
x, `k, ε/2

k+1
)

+ tk+1.

Finally is introduced the sequence {Lk} by L1 = D1, if x ∈ Lk, y ∈ Dk+1 then, by

the non-uniform specification property, there is a z = z (x, y) such that

(8) d`k (x, z) < ε/2k+2,
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8 ALEJANDRO MESÓN AND FERNANDO VERICAT

and

(9) dtk+1

(
f `k+maxx∈Lk

M(x,`k,ε/2k+1) (z) , y
)
.

Thus Lk+1 = {z (x, y) : x ∈ Lk, y ∈ Dk+1} .if x ∈ Lk, y ∈ Dk+1 and y1, y2 ∈ Dk+1

then

d`k (z (x, y1) , z (x, y2)) < ε/2k and d`k+1
(z (x, y1) , z (x, y2)) > 2ε. So that each

Lk is (`k, 2ε)−separated.

The sequence {Nk} verifies

logNk ≥ log 2

k−1∑
i=1

Nini + (Ni − 1) max
x∈Si

M
(
x, ni, ε/2

i+1
)

+

max
x∈Li

M
(
x, `i, ε/2

i+3
)

+ max
x∈Sk+1

M
(
x, nk+1, ε/2

k+2
)

A fractal set F = F ({nk} , {Nk} , ε, {Sk}) is defined as

F =

∞⋂
k=1

Fk,

with Fk =
⋃

x∈Lk

B`k (x, ε/2k−1).

For each n ∈ N and x ∈ Lk, let j be the unique number such that

`k + j

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
≤ n

(10) n < `k + (j + 1)

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
.

It can defined a sequences of measures concentrated on Fk by

µk =
1

Ak
νk,

with νk =
∑
x∈Lk

δx and Ak = cardLk = MN1
1 ...MNk

k , where Mk = cardSk. Let B =

Bn,ε/2 (x) such that B∩F 6= ∅, so

µk (B) ≤
M

Nk+1−j
k+1

MN1
1 ...MNk

k M
Nk+1

k+1

=
1

cardLk ×M j
k+1

.

Let µ be the w∗−limit of the sequence{µk} , then by the distribution mass principle
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015) 9

(11) htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi + j logMk+1

)
.

Proposition 3.1: The fractal F is contained in the set of genereric points G (µ) .

Proof: Let Θ = {ϕ1, ϕ2, ...} and recall that

G (µ) =

{
x : lim

n→∞

∞∑
i=1

pi

∣∣∣∣Sn (ϕi (x))−
∫
ϕidµ

∣∣∣∣ = 0

}
,

where {pi} is a sequence of numbers with
∞∑
i=1

pi = 1. Let

var (ϕi, ε) = sup {|ϕi (x)− ϕi (y)| : d (x, y) < ε} ,

if dn (x, y) < ε then∣∣∣∣∣∣
n−1∑
j=0

ϕi
(
f j(x

)
)−

n−1∑
j=0

ϕi
(
f j(y

)
)

∣∣∣∣∣∣ ≤ nvar (ϕi, ε) .

Let us suppose firstly that y ∈ Dk, and estimate

∣∣∣∣∣∣
tk−1∑
j=0

ϕi
(
f j(y

)
)− tkαi

∣∣∣∣∣∣ ,
where α =

(
αi =

∫
ϕidµ

)
i
. Let us consider the sets Sk in the construction of the

sets Dk and Lk contained in the set

XΘ (α, δk, nk) =

{
x :

∞∑
i=1

pi |Snk
(ϕi (x))− αi| < δk

}
,

with δk → 0. If y ∈ Dk then there are points xk`j ∈ Sk, j = 1, 2, ..., Nk such that

dnk

(
xk`j , f

am (y)
)
< ε/2k,

with

am = (m− 1)

(
nk + max

x∈Sk

M
(
x, nk, ε/2

k
))

.

We have

(12)

∣∣∣∣∣∣
nk−1∑
j=0

ϕi

(
f j(xk`j

)
)−

nk−1∑
j=0

ϕi
(
f j+am(y

)
)

∣∣∣∣∣∣ ≤ nkvar (ϕi, ε/2k) .
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10 ALEJANDRO MESÓN AND FERNANDO VERICAT

Since Sk ⊂ XΘ (α, δk, nk) holds

(13)

∣∣∣∣∣∣
nk−1∑
j=0

ϕi
(
f j+am(y

)
)− αi

∣∣∣∣∣∣ ≤ nk (var (ϕi, ε/2k)+ δk
)
.

Set

[0, tk − 1] =

Nk−1⋃
m=0

[am, am +Nk − 1] ∪

Nk−2⋃
m=0

[
am + nk, am + nk max

x∈Sk

M
(
x, nk, ε/2

k
)
− 1

]
.

Thus

(14)

∣∣∣∣∣∣
nk−1∑
j=0

ϕi
(
f j+am+nk(y

)
− nkαi

∣∣∣∣∣∣ ≤ max
x∈Sk

M
(
x, nk, ε/2

k
)

[|αi|+ ‖ϕi‖0]

So that, ∣∣∣∣∣∣
tk−1∑
j=0

ϕi
(
f j+am(y

)
)− tkαi

∣∣∣∣∣∣
≤Nknk

(
var

(
ϕi, ε/2

k
)

+ δk
)

+ 2 (Nk − 1) max
x∈Sk

M
(
x, nk, ε/2

k
)
‖ϕi‖0(15)

.

The next step in to get an estimation on Lk. Let

Rk,i = max
z∈Lk


∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(z

)
− `kαi

∣∣∣∣∣∣
 ,

so is validR1,i ≤ `1δ1, for any i. Let x ∈ Lk, y ∈ Dk+1, z ∈ Lk+1, by the construction

the sets

d`k (x, z) < ε/2k+1,

and

dtk+1

(
f `k+maxx∈Lk

M(x,`k,ε/2k+1) (z) , y
)
< ε/2k+1.
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015)11

Thus ∣∣∣∣∣∣
`k+1−1∑
j=0

ϕi
(
f j(z

)
− `k+1αi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(z

)
−
`k−1∑
j=0

ϕi
(
f j(x

)∣∣∣∣∣∣+

∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− `kαi

∣∣∣∣∣∣+∣∣∣∣∣∣∣
`k+maxx∈Lk

M(x,`k,ε/2k+1)−1∑
j=`k

ϕi
(
f j(z

)
− max
x∈Lk+1

M
(
x, `k, ε/2

k+2
)∣∣∣∣∣∣∣+∣∣∣∣∣∣

`k+1−1∑
j=0

ϕi

(
f j+maxx∈Lk+1

M(x,`k,ε/2k+2)+`k(z
)
−
`k+1−1∑
j=0

ϕi
(
f j(y

)∣∣∣∣∣∣+∣∣∣∣∣∣
`k+1−1∑
j=0

ϕi
(
f j(y

)
− tk+1αi

∣∣∣∣∣∣
≤ `kvar

(
ϕi, ε/2

k+1
)

+Rk,i + 2 max
x∈Lk+1

M
(
x, `k, ε/2

k+2
)
‖ϕi‖0 +

tk+1var
(
ϕi, ε/2

k+1
)

+Nk+1nk+1

(
var

(
ϕi, ε/2

k+1
)

+ δk+1

)
+

2 (Nk+1 − 1) max
x∈Lk+1

M
(
x, `k, ε/2

k+2
)
‖ϕi‖0 .

Rk,i ≤ 2

k∑
j=1

`j

(
var

(
ϕi, ε/2

j
)

+ δj +
Nj maxx∈Lj

M
(
x, `k, ε/2

j
)

`j
‖ϕi‖0

)
.

Since X is compact lim
ε→0

var (ϕi, ε) = 0, also δk → 0. We may choose the sequence

{nk} with nk → ∞ such that nk ≥ 2maxx∈Lk
M(x,`k,ε/2k) so we can express Rk,i

bounded as

Rk,i ≤
k∑
j=1

`jTj ,

where Tk → 0 as k →∞. So that

Rk,i
`k
≤ Tk +

1

k

k∑
j=1

`jTj
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12 ALEJANDRO MESÓN AND FERNANDO VERICAT

and
∞∑
i=1

piRk,i ≤
k∑
j=1

`jTj . Thus, for k enough large and since `k ≥ 2`k−1 we have

(16)

∞∑
i=1

pi
Rk,i
`k
≤ Tk +

1

k

k∑
j=1

Tj .

Therefore
∞∑
i=1

pi
Rk,i
`k
→ 0 as k →∞.

Finally is done the estimation on F. Let x ∈ F , n ∈ N, n > `1, there is an unique

number k such that `k < n < `k+1. Besides there exist a number m such that

n ≥ `k + j

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
.

If x ∈ F then there exists a point z ∈ Lk+1 such that

d`k+1
(x, z) < ε/2k.

If z ∈ Lk+1 then there exist x ∈ Lk, y ∈ Dk+1 such that

d`k (x, z) < ε/2k+1.

For each z ∈ Lk+1 there are points x ∈ Lk, y ∈ Dk+1

d`k (x, z) < ε/2k+1

and

dtk+1

(
f `k+maxx∈Lk

M(x,`k,ε/2k+1) (z) , y
)
< ε/2k+1.

Thus we have d`k (x, x) < ε/2k−1 and

dtk+1

(
f `k+maxx∈Lk

M(x,`k,ε/2k+1) (x) , y
)
< ε/2k−1.

If m > 0 there are points xk+1
`1

, ..., xk+1
`m
∈ Sk+1, such that

dnk+1

(
xk+1
`m

, fam (y)
)
< ε/2k+1

with

am = (m− 1)

(
nk+1 + max

x∈Sk+1

M
(
x, nk+1, ε/2

k+1
))

.

So that

(17) dtnk+1

(
f `k+maxx∈Sk+1

M(x,nk+1,ε/2
k+1+am) (z) , xk+1

`m

)
< ε/2k−2.

Let us consider the interval [0, n− 1] partitioned as
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015)13

[0, n− 1] = [0, `k−1]∪
m⋃
i=1

[
`k + (i− 1)

(
nk+1 + max

x∈Sk

M
(
x, nk, ε/2

k+1
))

, `k +

i

(
nk+1 + max

x∈Sk

M
(
x, nk, ε/2

k+1
)
− 1

))
∪[

`k +m

(
nk+1 + max

x∈Sk

M
(
x, nk, ε/2

k+1
))

, n− 1

]
.

Thus ∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− `kαi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
−
`k−1∑
j=0

ϕi
(
f j(x

)∣∣∣∣∣∣+

∣∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− −`kαi

∣∣∣∣∣∣
≤ `kvar

(
ϕi, ε/2

k+1
)

+Rk,i.

In each interval of the form[
ri, ri + (i− 1)

(
max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

+ nk+1

)]
,

using eq. (20) and the fact that Sk+1 ⊂ XΘ (α, δk+1, nk+1) it can be done the

estimation

∣∣∣∣∣∣∣∣
ri+ max

x∈Sk+1

M(x,nk+1,ε/2
k+1)+nk+1−1∑

j=ri

ϕi
(
f j(x

)
−

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
αi

∣∣∣∣
(18) ≤ .2 max

x∈Sk

M
(
x, nk, ε/2

k+1
)
‖ϕi‖0 + nk+1var

(
ϕi, ε/2

k−2
)
.

On the intervals

[
`k +m

(
nk+1 + max

x∈Sk

M
(
x, nk, ε/2

k+1
))

, n− 1

]
we have
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14 ALEJANDRO MESÓN AND FERNANDO VERICAT

∣∣∣∣∣∣∣∣∣
n−1∑

s=`k+m

(
nk+1+ max

x∈Sk

M(x,nk,ε/2k+1)

)ϕi (fs(x) −

(
n− `k −m

(
nk+1 + max

x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)))

αi

∣∣∣∣
≤ 2

(
n− `k −m

(
nk+1 + max

x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)))

‖ϕi‖0

≤ 2

(
nk+1 + max

x∈Sk

M
(
x, nk+1, ε/2

k+1
))
‖ϕi‖0 .

Finally∣∣∣∣∣∣
n−1∑
j=0

ϕi
(
f j(x

)
− nαi

∣∣∣∣∣∣ ≤ Rk,i + (`k +mnk+1) var
(
ϕi, ε/2

k−2
)

+

2

(
nk+1 + (m+ 1) max

x∈Sk

M
(
x, nk, ε/2

k+1
))
‖ϕi‖0 +mnk+1δk+1.

Recall that

n ≥ `k + j

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
and `k > Nk, so

∞∑
i=1

pi |Sn (ϕi (x))− αi| ≤
∞∑
i=1

pi
Rk,i
`k

var
(
ϕi, ε/2

k−2
)

+

2

nk+1 + max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

Nk

+

max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

nk+1

 ‖ϕi‖0 + δk+1.

The right hand tends to 0 as n→∞ and k →∞, so that

lim
n→∞

∞∑
i=1

pi |Sn (ϕi (x))− αi | = 0,

therefore x ∈ G (µ) . �
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015)15

Proposition 3.2: For systems with nonuniform specification and for a fixed

µ ∈Minv(X, f), holds that

ΛΘ (α) ≥ hµ (f) .

Proof: Let

var (ϕi, ε) = sup {|ϕi (x)− ϕi (y)| : d (x, y) < ε} ,

since X is compact and ϕi ∈ C(X) we have lim
ε→0

var (ϕi, ε) = 0. It can be chosen

ε > 0, δ > 0 such that
∞∑
i=1

pivar (ϕi, ε) < ε < γ.

with 0 < γ < 1 given by lemma 2.1, and

(19) lim
n→∞

sup
1

n
logN (α, δ, ε, n) < ΛΘ (α) + ε.

Let Rn (ε, δ, µ) be the minimal number of balls Bn,ε (x) whose union has µ−measure

≥ 1− δ. By a theorem of Katok[9] if µ is ergodic then holds

hµ (f) = lim
ε→0

lim
n→∞

supRn (ε, δ, µ) = lim
ε→0

lim
n→∞

inf Rn (ε, δ, µ) .

Let us consider the measure ν and its convex ergodic decomposition given by the

lemma 2.1 ν =
k∑
j=1

λjνj , thus for any ε > 0 there is a `j = `j (νi, 4ε, γ) ≥ 1, such

that

Rn (4ε, γ, νi) ≥ exp
[
n
(
hνj (f)− γ

)]
, for n ≥ `j , j = 1, ..., k.

Let N0 enough large such that nj := [λjn] ≥ max {`1, ..., `k, N} , for n ≥ `j

and where N is sush that νj (Yj (N)) > 1 − γ. Let Ej , j = 1, ..., r, be a finite

(nj , 4ε)−separated set in Yj (N), by the non-uniform specification property given

points x1, x2, ..., xr, xj ∈ Ej , there is a y = y ( x1, x2, ..., xr) such that

dnj
(faj (y) , xj) < ε/2k,

with aj =
j−1∑
i=1

(
ni + maxy∈Ei

M
(
y, ni, ε/2

k+1
))
. By [7] hold these two facts

i) y = y ( x1, x2, ..., xr) ∈ XΘ (α, 5δ, n̂), with n̂ = ak + nk.

ii) If y = y ( x1, x2, ..., xk) , y¨ = y¨
(
x´1, x

´
2, ..., x

´
k

)
correspond to different r−tuples

( x1, x2, ..., xr) ,
(
x´1, x

´
2, ..., x

´
r

)
then d

(
y, y
)̈
> 5ε.

Thus is valid
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16 ALEJANDRO MESÓN AND FERNANDO VERICAT

N (α, 5δ, ε, n̂) ≥M1...Mk,

with Mj = cardEj .Since each Ej is (nj , 4ε)−separated set in Yj (N), then

(20) Mj ≥ exp
[
nj
(
hνj (f)− γ

)]
.

and

(21) N (α, 5δ, ε, n̂) ≥ exp

 k∑
j=1

[λjn]
(
hνj (f)− γ

) .
Since

k∑
j=1

λj = 1 and
[λjn]

n
→ λj , as n→∞, we have

lim inf
n̂→∞

1

n̂
N (α, 5δ, ε, n̂) ≥ hµ (f)− 3γ

and by (6)

ΛΘ (α) ≥ hµ (f)− 4γ.

�

Proposition 3.3: For dynamical systems with the non-uniform specification

property holds htop (G (µ)) = hµ (f) , for any f−invariant measure µ.

Proof: Let {Sk} be the sequence of finite sets and {nk} , {Nk}be the sequence

of positive integers as in the earlier constructions. Recall (c.f. eq 14) that

htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi +m logMk+1

)
with Mj = cardSj and m the unique number such that

`k +m

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
≤ n

n < `k + (m+ 1)

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
.

The sets Sk are(nk, 5ε)−separated sets, for a fixed ε > 0, in XΘ (α, δk, nk) , we can

considered Mk = cardSk ≥ exp [nk (ΛΘ (α)− γ)] , like in proposition 3.1. Thus,

since F ⊂ G (µ) and by proposition 3.1

htop (G (µ)) ≥ htop(F ) ≥ hµ (f)− 5γ,

for arbitrary small γ. The inequality htop (G (µ)) ≤ hµ (f) was proved by Bowen[3].

�
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015)17

4. Proof of the theorems 1.1 and 1.2

The following result, appeared in [5], is very useful for the proof of the variational

principle (theorem 1.2) as well as for the study of the irregular part of the spectrum

(theorem 1.1)

Lemma 4.1: For any Φ ∈ C(Xr) and for any ε > 0 there is a map Φ̃ :Xr → R

of the form

Φ̃ =

n∑
j=1

ϕ
(1)
j ⊗ ...⊗ ϕ

(r)
j ,

with ϕ
(i)
j ∈ C(X) and such that

∥∥∥Φ− Φ̃
∥∥∥
∞
< ε.

Also is needed

Lemma 4.2(Bowen[3]): For any t ≥ 0 holds

htop({x : ∃µ ∈ V (x) with hµ (f) ≤ t}) ≤ t.

In fact the proof of the theorem 1.2 is totally similar of that of the theorem 1.1 in

[5]. Here we show it just for completeness.

Proof of the theorem 1.2: Let ε > 0 and Φ̃ be the map of the lemma 4.1, so that

VΦ̃ (n, x) =

n∑
j=1

r∏
i=1

1

n
Sn

(
ϕ

(i)
j (x)

)
,

where Sn

(
ϕ

(i)
j (x)

)
=
n−1∑
k=0

ϕ
(i)
j

(
fk(x

)
. Let x ∈ EΦ (α) , since X is compact there is

a µ ∈ V (x) and a sequence {nk} such that w∗ − limk→∞ Enk
(x) = µ, .where w∗−

means weak convergence. Therefore

lim
n→∞

VΦ̃ (nk, x) =

∫
Φ̃dµ⊗r.

We have

∣∣∣∣∫ Φdµ⊗r − α
∣∣∣∣ ≤ ∣∣∣∣∫ Φdµ⊗r −

∫
Φ̃dµ⊗r

∣∣∣∣+

∣∣∣∣∫ Φ̃dµ⊗r − VΦ̃ (nk, x)

∣∣∣∣+
and

∣∣VΦ̃ (nk, x)− VΦ (nk, x)
∣∣+ |VΦ (nk, x)− α| ,

where limk→∞
(
VΦ̃ (nk, x)− VΦ (nk, x)

)
= 0 and limk→∞ (VΦ (nk, x)− α) = 0. Thus∣∣∫ Φdµ⊗r − α

∣∣ < 2ε, and, since ε is arbitrary, µ ∈MΦ (α) . Then we have that
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18 ALEJANDRO MESÓN AND FERNANDO VERICAT

EΦ (α) ⊂ {x : ∃µ ∈ V (x) with hµ (f) ≤ sup {hµ (f) : µ ∈MΦ (α)}} . Hence by

the Bowen lemma

htop(EΦ (α)) ≤ sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

To prove the opposite inequality, let x ∈ G (µ), with µ ∈MΦ (α) , so that

lim
n→∞

VΦ̃ (n, x) =

∫
Φ̃dµ⊗r.

we have∣∣∣∣ lim
n→∞

VΦ (n, x)−
∫

Φdµ⊗r
∣∣∣∣ ≤ ∣∣∣ lim

n→∞
VΦ (n, x)− lim

n→∞
VΦ̃ (n, x)

∣∣∣+
∣∣∣∣ lim
n→∞

VΦ̃ (n, x)−
∫

Φ̃dµ⊗r
∣∣∣∣+

∣∣∣∣∫ Φ̃dµ⊗r −
∫

Φdµ⊗r
∣∣∣∣ < 2ε.

Thus lim
n→∞

VΦ (n, x) =
∫

Φdµ⊗r = α, since µ ∈ MΦ (α). In this way is proved that

G (µ) ⊂ EΦ (α) , from this and proposition 3.3 is obtained

htop(EΦ (α)) ≥ htop(G (µ) ) ≥ hµ (f) ,

then taken sup over the measures µ ∈MΦ (α) results

htop(EΦ (α)) ≥ sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

�

Let

GΦ (α) =

{
x : there is {nk} such that w∗ − lim

k→∞
Enk

(x) = µ ∈MΦ (α)

}
,

For α1 6= α2 ∈ R, we shall find a set G ⊂ GΦ (α1) ∩GΦ (α2) .

Before proving the theorem 1.1 we give some lemmas.

Lemma 4.3: If α1 6= α2 then GΦ (α1) ∩GΦ (α2) ⊂ E∞Φ .

Proof: Let ε > 0 and Φ̃ be the map of the lemma 4.1. Let x ∈ GΦ (α1)∩GΦ (α2),

so there are sequences {nk} , {mk} such that
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ON THE IRREGULAR PART OF V -STATISTICS ... — JDSGT VOL. 13, NUMBER 1 (2015)19

µ = w∗ − lim
k→∞

Enk
(x) ;µ ∈MΦ ( α1)

ν = w∗ − lim
k→∞

Emk
(x) ; ν ∈MΦ ( α2) ,(22)

We have

VΦ̃ (n, x) =
∑
j

r∏
i=1

1

n
Sn

(
ϕ

(i)
j (x)

)
,

where Sn

(
ϕ

(i)
j (x)

)
=
n−1∑
k=0

ϕ
(i)
j

(
fk(x

)
). Therefore, by Eqs.(22)

lim
k→∞

VΦ̃ (nk, x) =

∫
Φ̃dµ⊗r

lim
k→∞

VΦ̃ (mk, x) =

∫
Φ̃dν⊗r.

By the argument of approximation of lemma 4.1 we get in the same way of [5]

that

lim
k→∞

VΦ (nk, x) =

∫
Φdµ⊗r = α1

and

lim
k→∞

VΦ (mk, x) =

∫
Φdν⊗r = α2, with α1 6= α2.

Then x ∈ E∞Φ .

�

For ρ1, ρ2, ..., ρk ∈M(X) and positive numbers R1, R2, ..., Rk, let x1, x2, ..., xk ∈
X, n1, n2, ..., nk ∈ N such that Enj

(xj) ∈ BRj
(ρj) , j = 1, 2, ..., k., for a given

ρ1, ρ2, ..., ρk ∈ M(X) and R1, R2, ..., Rk. Let ε1 > 0, ε2 > 0, ..., εk > 0 , by the

non-uniform specification property if Mj ≥M (xj , nj , εj) , j = 1, 2, ..., k, then there

is a point z ∈ X such that

uch that

dn1
(x

1
, z) < ε
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20 ALEJANDRO MESÓN AND FERNANDO VERICAT

and

dni

f i−1∑
j=1

(nj+Mj)

(z), xi

 < ε.

Let sj = nj +Mj , j = 1, 2, ..., k, and Sj = s1 + s2 + ...+ sj .

Lemma 4.4: Let z such that dni

f i−1∑
j=1

(nj+Mj)

(z), xi

 < ε, then for any ρ ∈

M(X) holds

D (ESk
(z) , ρ) ≤ 1

Sk

k∑
j=1

sj
(
Rj +D (ρj , ρ)

)
,

where Rj = Rj + εj , j = 1, 2, ..., k.

Proof: We have

ESk
(z) =

1

Mk

k∑
j=1

sjEsj
(
fSj−1(z)

)
,

and

D(Esj (xj) , Esj
(
fSj−1(z)

)
) ≤ 1

sj

nj−1∑
l=0

d
(
f l (xj) , f

−Sj−1−l (z)
)
.

Therefore

D (ESk
(z) , ρ)

≤ 1

Sk

k∑
j=1

[
D(Esj (xj) ,j , Ensj

(
fMj−1(z)

)
) +D(Esj (xj) , ρj) +D(ρj , ρ)

]
≤ 1

Mk

k∑
j=1

[Rj + εj +D(ρj , ρ)] .

�

.
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Lemma 4.5: Let α1 6= α2 with MΦ (α1) 6= ∅,MΦ (α2) 6= ∅ then

htop(GΦ (α1) ∩GΦ (α2)) = min {htop(GΦ (α1)), htop(GΦ (α2))} .

Proof: Since GΦ (α1) ∩GΦ (α2) ⊂ GΦ (α1) and GΦ (α1) ∩GΦ (α2) ⊂ GΦ (α2) ,

by the monotonicity of the entropy we have

htop(GΦ (α1) ∩GΦ (α2)) ≤ min {htop(GΦ (α1)), htop(GΦ (α2))}

. To prove the other inequality we shall find a set G ⊂ GΦ (α1) ∩ GΦ (α2) with

htop(G) ≥ min {htop(GΦ (α1)), htop(GΦ (α2))} .
To construct G, let us choose sequences {nk} , {Rk} , {εk} with Rk ↘ 0 and

εk ↘ 0 and, for a given sequence {ρ1, ρ2, ..., ρk} ⊂ M(X), for , ε > ε1.let us

consider (nk, ε)−sets Γk ⊂ {x : Enk
(x) ∈ BRk

(ρk)} , so that (by the Lemma 4.4)

x ∈ Γk, z ∈ Bsk,εk (x) =⇒ Esk (z) ∈ BRk+εk (ρk) .

Let us choose now a strictly increasing sequence {Nk} such that

sk+1 ≤ Rk
k∑
j=1

sjNj

and
k−1∑
j=1

sjNj ≤ Rk
k∑
j=1

sjNj .

We consider stretched sequences
{
s
′

j

}
,
{
ε
′

j

}
,
{

Γ
′

j

}
such that if j = N1 + ... +

Nk−1 + q with 1 ≤ q ≤ Nk then n
′

j = nk, ε
′

j = εk and Γ
′

j = Γk.

Finally, we can define

Gk :=

k⋂
j=1

 ⋃
xj∈Γ

′
j

f−Sj−1

(
Bs′j ,ε

′
j

(xj)
) ,

with Sj = s
′

1 + s
′

2 + ...+ s
′

j and

G :=
⋂
k≥1

Gk.

Any element of G can be labelled by a sequence x1 x2..., with xj ∈ Γ́j . According

to Pfister and Sullivan [11] the following holds: Let xj , yj ∈ Γ́j , xj 6= yj , if
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22 ALEJANDRO MESÓN AND FERNANDO VERICAT

x ∈ Bsj ,εj (xj) , y ∈ Bsj ,εj (yj) then max
{
d
(
fk(x), fk(y)

)
: k = 0, ..., nj − 1

}
> 2ε,

with ε > ε1/4.

We see that G ⊂ GΦ (α1) ∩ GΦ (α2) . Let z ∈ G, and let µ0 ∈ MΦ (α1) ,

ν0 ∈MΦ (α2) , it can be considered sequences[4] {µk} , {νk} such that

D (µ0, µk) < Rk and D (ν0, νk) < Rk, then form the sequence

{ρk} = {µ1, µ1, ν1, ν1, µ2, µ2, ν2, ν2, ...} .

Let ρ ∈ {µ0, ν0} , and
∑j
l=1 slNl ≤ Sk ≤

∑j+1
l=1 slNl, thus

D (ESk
(z) , ρ) ≤ 1

Sk

j−1∑
l=1

slNlD

Ej−1∑
l=1

slNl

(z) , ρ

+
sjNj
Sk

D
(
EsjNj (z), ρ

)
+

Sk −
∑j
l=1 slNlj
Sk

D
(
Esj+1Nj+1

(z), ρ
)
.

Therefore

D (ESk
(z) , ρ) ≤ Rj +D

(
EsjNj

(z), ρj
)

+D (ρj , ρ)

+D
(
Esj+1Nj+1(z), ρ

)
+D (ρj+1, ρ)

≤ 2Rj + εj +D (ρj , ρ) +D (ρj+1, ρ) .

Thus, choosing subsequences tk = 4k + 1 and uk = 4k + 3, we get

µ0 = w∗ − lim
k→∞

EStk
(z)

ν0 = w∗ − lim
k→∞

ESuk
(z) ,

so that z ∈ GΦ (α1) ∩GΦ (α2) .

To complete the proof it must be proved that

htop(G) ≥ min {htop(GΦ (α1)), htop(GΦ (α2))} ,

for this we follow [11]. Let s < h := min {htop(GΦ (α1)), htop(GΦ (α2))} , the set G

is closed, and so it is compact, let us consider a finite covering U by balls Bm,ε (x)

having non-empty intersection with G. Now
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M (G, s,N, ε) = inf
U∈C(n,ε,G)

∑
Bm,ε(x)∈U

exp (−sm) .

For any finite covering U of G, we can construct a covering U0 in the following

way: each ball Bm,ε (x) is replaced by a ball BMrr,ε (x) with Mr ≤ m ≤ Mr+1.

Thus

M (G, s,N, ε) = inf
U∈C(n,ε,G)

∑
Bm,ε(x)∈U

exp (−sm) ≥

inf
U∈C(N,ε,G)

∑
BMr,ε∈U0

exp (−sMr+1) .

Now we can consider a covering U0 in which

m = max {r : there is a ball BMr,ε (x) ∈ U0} .

We set

Wk :=

k∏
i=1

Γi, Wm =

m⋃
k=1

Wk.

Let xj , yj ∈ Γ́j , xj 6= yj , as we pointed out earlier, if x ∈ BŃj ,έj (xj) , y ∈
BŃj ,έj (yj) then d

(
f l(x), f l(y)

)
> 2ε for any l = 0, ..., Nj − 1, and with ε > ε1/4.

Now for any x ∈ BMr,ε (z) ∩ G there is a, uniquely determined z = z(x) ∈ Wr. A

word w ∈ Wj , with j = 1, 2, ..., k, is a called a prefix of a word w ∈ Wk if the first

j−letters of w agree with the first j−letters of w.The number of times that each

w ∈ Wk is a prefix of a word in Wm is cardWm/cardWk, thus if W is a subset of

Wm then

m∑
k=1

card (W ∩Wk)

card (Wk)
≥ card (Wm) .

If each word in Wm has a prefix contained in a W ⊂ Wm then

m∑
k=1

card (W ∩Wk)

card (Wk)
≥ 1,

and since U0 is a covering each point of Wm has a prefix associated to a ball in U0.

By this and because cardWk ≥ exp
(
hMr

)
, we obtain
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24 ALEJANDRO MESÓN AND FERNANDO VERICAT

∑
BMr,ε∈U0

exp (−sMr) ≥ 1.

Thus if r is taken such that k ≥ r then sMk+1 ≤ hMk, for N ≥Mr, U ∈ G (N, ε,G) .

Therefore

∑
Bm,ε(x)∈U

exp (−sm) ≥ 1,

and so

M (G, s,N, ε) ≥ 1.

By this htop(G) ≥ h .

�

Proof of the theorem 1.1.: Let

Ψ = Ψr,Φ :M(X)→ R

Ψ (µ) =

∫
Φdµ⊗r

and let

h = htop(X) be the topological entropy of the whole space X. By the classical

variational principle and by the variational principle of [5]

h = sup {hµ (f) : µ ∈Minv(X, f)} = sup
α∈ImΨ

{hµ (f) : µ ∈MΦ (α) }

= sup
α∈ImΨ

{htop(EΦ (α)) } .

We must show that htop(E
∞
Φ ) ≥ h. For any γ > 0, there is an α1 ∈ ImΨ such that

htop(EΦ (α1)) > h− γ, let α2 ∈ ImΨ and let µ1, µ2 ∈ M(X, f) with Ψ (µ1) = α1,

Ψ (µ2) = α2. The map λ 7−→ Ψ ((1− λ)µ1 + λµ2) is continuous.Recall that

htop(GΦ (α1) ∩ GΦ ((1− λ)α1 + λα2))

= min {htop(GΦ (α1) , htop ( GΦ ((1− λ)α1 + λα2))} ,
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then, by the continuity of Ψ as a function of λ, we have

htop(E
∞
Φ ) ≥ lim

λ→0
htop(GΦ (α1) ∩GΦ ((1− λ)α1 + λα2)) ≥

htop(GΦ (α1) ≥ htop(EΦ (α1)) > h− γ.

Since γ is arbitrary the result follows. �
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