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ABSTRACT. Let (X, f) be a dynamical system with X a compact metric space.
Let X" be the product of r—copies of X, » > 1, and & : X" — R. The
multifractal decomposition for V —statistics for @, f is defined as
i 1 ) )
Epj(a)={z: lim — > O (f1 (z),..., [ (2)) =

n—oo N’ . -
0<i1,..,ip<n—1

The set of points € X, for which the limit does not exist is called the irreqular
part, or historic set, of the spectrum. In this article we analyze the irregular
part of the V —statistics for systems satisfying a weak form of the known Bowen
specification property, called the non-uniform specification property. This con-
cept was introduced by P. Varandas and allows to work in a nonuniformly

hyperbolic context.
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1. INTRODUCTION

The multiple ergodic averages appeared as a dynamical version of the Sze-
meredi theorem in combinatorial number theory. This analogy was pointed out
by Furstenberg[8] who studied ergodic averages in a measure-preserving probabil-

ity space (X, B, u, f) of the form

1 N-1
n kn
N_Mn:Mu(Amf An..nfm4),

where A € B and j € N. Furstenberg established that if ;1 (A) > 0 then

liminf —
N N—M

N-1
o u(AnfrAn..nfmA) > 0.
n=M

This relevant result serves to prove by arguments from Ergodic Theory the Sze-
meredi theorem, which states that if S is a set of integers with positive upper
density then S contains arithmetic progressions of arbitrary length.

The multifractal analysis of V-statistics treated by Fan, Schmeling and Wul5]
was motivated by the problems on convergence of multiple ergodicaverages. Let us
consider a topological dynamical system (X, f), with X a compact metric space
and f a continuous map. Let X" = X X ... X X be the product of r—copies of X
with r > 1, if & : X" — R is a continuous map, then let

1) Valno)= = S (@), S (@)

1<iy,..ir<n
These averages are called the V —statistics of order r with kernel ®. For the idea of
V -statistics from a Statistical point of view and its relationship with the U-statistics

see section 2 off5]. Ergodic limits of the form

n—1
Jim S0 (7 @) (@),
i=0

were studied among others by Furstenberg[8], Bergelson[1] and Bourgain[2].

The multifractal decomposition for the spectra of V —statistics is

Eg (o) = {x : lim Vg (n,2) = oz}.

n—roo
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Fan, Schemeling and Wu[5] have obtained the following variational principle for

dynamical systems with the specification property.:

2) (B (@) =sup {1 (1) [0 =a}.

where hy,p is the topological entropy for non-compacts nor invariant sets and h, (f)
is the measure-theoretic entropy of u. Here pu®" means p X ... X pu, 7—times. This
generalizes the variational principle established by Takens and Verbitski for r =
1[12].

The irreqgular part of the spectrum, or historic set, is the set of points x for which
nh_)n;g Vo (n,x) does not exist. We denote this set by Eg°, so that the space X can

be decomposed as

X=|J Es () UES.
a€R
In a recent paper [10]we have studied the irregular part of the multifractal decom-
position of V —statistics, in order to determine its dimension. We proved that for
topological dynamical systems with the property of specification, if the irregular
part of the spectrum of multiple ergodic averages, or V —statistics is non-empty
then it has the same topological entropy as the whole space X.

The objective of the present article is to extend the above result for systems
satisfying a weak form of the specification property, known as non-uniform specifi-
cation condition. This notion was introduced by P. Varandas[14] and is satisfied, for
instance, by non-uniformly quadratic maps and for the so called Viana maps, which
are a robust class of multidimensional non-uniformly hyperbolic functions[14]. The
result to be proved is

Theorem 1.1: Let (X, f) be a dynamical system with the property of non-
uniform specification. Let ® € C'(X"), r > 1, and let EZ («) be the irregular part
of the spectrum of multiple ergodic averages Vg (n,z). Then Eg (o) is empty or
hiop(Eg” (@) = hiop (X).

For the proof of the result in [10], we used the variational principle for systems
with the specification property of Fan, Schemeling and Wu. The key point for the

demonstration of this variational principle is the saturadness. This means that
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(3) hiop (G (1) = by (),

where by G (u) is denoted the set of u—generic points. Bowen [3] proved the

inequality

hiop (G (1)) < by (),

while in [7] was proved the opposite inequality, i.e. the saturatedness of dynamical
systems with specification. Thus to extend our result of [10] to systems with the
non-uniform specification property we must prove that such systems are saturated.
Once proved this, following [7], we obtain

Theorem 1.2: Let (X, f) be a dynamical system with the property of non-
uniform specification. Let & € C (X"), r > 1, then

haop(Ea (0)) = sup {hu (h): [ oau® = a} .

With the theorem 1.2 and the saturadness, following similar lines than in [10] we
obtain theorem 1.1.
We must mention that the case r = 1 was proved in[15]. However, unlike we do

here, in that article the proof is not based on the saturadness.

2. PRELIMINARIES

Firstly let us recall the Bowen definition of topological entropy of sets: Let
f: X — X, with X a compact metric space, for n > 1 the dynamical metric, or
Bowen metric, is d,, (x,y) = max {d (fl (x), f (y)) 1i=0,1,....,n — 1}. We denote
by By . (z) the ball of centre x and radius ¢ in the metric d,,. Let Z C X and
let C (n,e, Z) be the collection of finite or countable coverings of the set Z by balls
B (x) with m > n. Let

M (Z,s,n,e) = Beci(rrlfs,z) i X(:)EB exp (—sm),

and set

M (Z,s,e) = lim M (Z,s,n,e).

n—roo
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There is an unique number 3 such that M (Z, s, €) jumps from +oo to 0. Let
H(Z,e)=35=sup{s: M (Z,s,e) = +oo} =inf {s: M (Z,s,e) = 0},

and

(4) Ptop (Z) = Eli_I%H(Z’ 5)'

The number hy,p (Z) is the topological entropy of Z.

A dynamical system (X, f) has the non-uniform specification property if the
following condition holds, for § > 0, 0 < ¢ < §, n € N, & € X, there exists an
integer M (x,n,e) such that

1
lim lim sup —M (z,n,e) =0,
e—=+0n—o0 n

and such that is verified, given x1,xs,...,zx € X, ni,ng,...,ng € N, if M; >

M (x;,n;,€) then there is a point z € X such that

dp, (21,2) <€

and
z_il(njﬂwj)
dn, | f7= (2),z; | <e.

By M(X) we denote the space of measures in X, and by M, (X, f) the space
of f—invariant measures on X. The space M(X) can be endowed with a metric D
compatible with the metric in X, in the sense that D(d,,d,) = d(x,y), where 0 is

the point mass measure. More precisely the metric considered in M(X) will be

)

o - ’f@ndu_IQOndV‘
D(,L"7V) 77121 2n|‘¢n||m

where {@,} is a dense set in C(X). We denote by Br (1) the ball of center p and
radius R in the above metric. The topology induced by this metric is the weak *—
topology, and if X is compact then M(X) is compact in the weak topology. The
weak convergence is the convergence in the metric which induces the weak topology.

The so called empirical measures on X associated to the dynamical system (X, f)

are



Downloaded by [Fernando Vericat] at 06:48 03 June 2015

6 ALEJANDRO MESON AND FERNANDO VERICAT

=
= Z; Ofi(z)-

Here 4 is the point mass measure. We denote the weak limits of the sequence{&,, (z)}
by V(z). Since X is compact, V(z) # @. If 1 is a measure on X then a point
x € X is p—generic if V(z) = {u}, by G (1) is denoted the set of p—generic points.

Following [7] the set of generic points can be characterized in the following way.
Let {p;} be a sequence of numbers with io: p; = 1 and let {s;} be a sequence in
£°. The sequence {s; = sy, i}, converges té:olz = (o) € £ in the weak x— topology
if and only if lim,,—, o0 [Sns — ;| = 0. Let {1, @2, ...} a dense subset in unit ball of
C(X), for a fixed p € Miny(X, f), let a = (a1, aa, ...), with a; = [ ¢;dp- Thus

G(p) = {36 2 lim Y pi S (i (2) — i | = 0}

i=1
Lemma 2.1([16],[14]): For any g € M;n,(X,f) ,0<d <1, 0 < v < 1, there
k k
is a measure v such that v = 3 A;u;, where each v; is ergodic and > A; =1, and
j=1 j=1
such that

i) o (f) 2 T (F) =
i1) Z pi| [ pidp — [ pidv| < 8, where {¢;} and {p;} are sequences like above.

Let N > 1 and
{ sz (i ( / pidv;

n—1
where S,, (¢; (z)) = Y. ¢; (f*(2)). By the Birkhoff ergodic theorem we have that
k=0

nh~>ngo va Pi / ¢7dyk

and for sufficiently large N holds v; (Y; (N)) >1—~

< 4, forn>N},

=0, vy —a.e.,

Let o = (o1, a2, ...) € £° and © = {1, 2, ...} be a dense subset in unit ball of
C(X). Set

(5) Ao (@) = lim lim lim sup — logN(a d,e,m),

e—06—>0n—00

where N (a, d,€,n) is the minimal number balls B,, . (z) needed to cover the set
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o0
Xo (a,6,n) = {x : Zpi ISn (¢i (2) — i <6, a= () € 6"0}
i=1

3. CONSTRUCTION OF A FRACTAL SET AND PROOF OF SATURADNESS

The next step is the construction of a fractal set F, such that FF C G (u). For
the construction is followed [7], [12],[13] or [4], Let {ns} be a sequence of positive

integers and {Nj} be an increasing sequence of integers with N — oo and

Ny =1, Ny > 2mitmaxecs; M(z,n1,e/4)+ns+maxzesy M(z,n3,6/16)
k) — .

Let {Si} be a sequence of finite subsets of X, and {nj} be a sequence of positive
integers. Let ¢ > 0 and assume that d,,, (z,y) > 5e, for anyx # y € Si. Sequences
of sets {Dy} and {Lj} are constructed in the following way: Set D; = Si, let
Z1,...,ZN, € Sk, € > 0, by the non-uniform specification property, there exists a

y =y(x1,...,xN,) such that

dnk (xja faj (y)) < E/Qka

with
aj=(j—1) (nk + max M (x,nbs/?k“))
TESK
Let

(6) D, = {y:y(xl,...,a:Nk) (X1, TN ESZCV’“},
and

(7) ty = an, +nk = Ning + Ni_1 X né%xM (x,nk,5/2k+1) .

zESy

The sequence {{;} is recursively defined as ¢; = ny, and
€k+1 = Ek + m%XM (.1?,@]@,5/2164'_1) + tk-‘rl-
eSSk

Finally is introduced the sequence {Ly} by Ly = Dy, if # € Ly, y € Dg41 then, by

the non-uniform specification property, there is a Z = z (z, y) such that

(8) dy, (z,%) < g/2V2,
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(9) i, (frermseen M2 z) ).

Thus Lgy1 = {Z(x,y) :x € Ly, y € D1} .if @ € Ly, y € Diyq1 and y1,y2 € Diqq
then

de, (Z(z,y1) .2 (2,92)) < /2% and dy,,, (Z(z,91),Z (z,92)) > 2. So that each
Ly, is (€, 2¢) —separated.

The sequence { Ny} verifies

log Ni, > log2
k—1
Nyn; + (N; — 1 M i e/2i !
3 Mo+ (5 = Dt (s e/ 2 +

max M (x,&-,s/Q”?’) + max M (x,nk+1,5/2k+2)

x€L; TESk41
A fractal set F = F ({ng},{Nx},e, {Sk}) is defined as
o
F = ﬂ Fy,
k=1

with F, = | By, (z,g/2F-1).
xELy
For each n € N and x € Ly, let j be the unique number such that

by + 7 (m%XM (m,nk,s/Qk'H) +nk+1> <n
TESK

(10) n<lp+(+1) (m%‘XM(x,nk,g/ng) _|_nk+1> .
reESE
It can defined a sequences of measures concentrated on Fj by
1
= —v
M Ak ks

with v, = Y 0, and Ay = cardLy = MlNl...M,iV", where M}, = cardsS),. Let B =
x€ Ly
By, /2 (x) such that BNF # &, so

MNk+1*j
m (B) S k41 - _ 1 ‘ .
MM MYEMT cardLy x My,

Let p be the w*—limit of the sequence{uy} , then by the distribution mass principle
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k
(11) hiop(F) > hmlnf— (ZN log M; +]long+1> .

n—oo N
=1

Proposition 3.1: The fractal F is contained in the set of genereric points G (u) .
Proof: Let © = {1, @2, ...} and recall that

G(p) = {x + lim sz ©i /%du ’ = 0},

[ee]
where {p;} is a sequence of numbers with > p; = 1. Let

i=1

var (pi,€) = sup {|p; (v) — i (y)| : d(z,y) < e},

if d,, (z,y) < € then

Zsoz Fa Zgoz F ()| < nvar (gi,e).

Let us suppose firstly that y € Dy, and estimate

tr—1

> e (F ) — trai,
=0

where o = (ai = f@idﬂ)i- Let us consider the sets S, in the construction of the

sets Dy, and Lj contained in the set

Xo (a 5k,nk { sz|5nk ‘Pz )_ ai| <57€}7

with 6 — 0. If y € Dy, then there are points ;UZ € Sk, 7=1,2,..., N; such that

o (t,, 17 (1)) < /2",

with
am = (m—1) (nk + max M (x,nk,5/2k)> .
€Sy
We have
ng—1 np—1
(12) Pi (fj(xlg,)) - Z Pi (fjﬂ’” (Z/)) < ngvar (%.,5/2’“) .

Jj=0 Jj=0
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Since S C Xo (a,5k,nk) holds

nk—l
(13) Z Vi (fjJr“’” (y)) — ;] < ny (var (goi,z-:/2k) + (5k) .
j=0
Set
Ni—1
0.tk =1 = |J [am,am + Np = 1] U
m=0
Ng—2
U [am + Nk, Ay + N néaéxM (x,nk,s/Zk) —1].
m=0 ok
Thus
ng—1 )
(14) Z @i (f7TemTme (y) — npoy| < %E?:M (2,1, £/2%) | + [lpall o)
Jj=0 )
So that,
tr—1 )
o (7T (y) — troy
j=0

(15) SNkTLk (’UO/I" (@ivg/zk) + (;k) +2 (Nk - 1) Hé%,XM (manka€/2k) ||Q07HO
zESk

The next step in to get an estimation on Lj. Let

lr—1

Ry = max ; s (fj(z) —lra;| 7,

sois valid Ry ; < £101, foranyi. Let x € Ly, y € D41, 2 € Li41, by the construction

the sets

dy, (z,2) < g/2M1

and

iy, ((frmmsocn M2/ (2) ) < 2kt
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Thus
lp+1—1
> @i (F(2) = b
§j=0
lrp—1 O —1 L —1

ZSDZ fJ 2901 fj Zﬁpz fj 78/{:041

Lr+maxzer, M(x,ék,s/2k+1)_1
> pi (f7(z) = max M (x,0,2/2%2)| +
=t o€Lkt
br1 -l Lry1—1
S g (e M2 ) S ()
=0 =
Lpt1—1
> e (F) — tepra
=0
< Gpvar (95, 6/2H) + Ry ; +2 max M (2, 00, £/22) iy +
k+1

tpr1var (goi,s/2k+1) + Npi1nga (var (goi,s/2k+1) + 5k+1) +
2 (Ng+1 — 1) max M(x ék,s/Qk”) lloilly -

T€Lgk11

N;max,er,, M (x,0,c/27
RIHSQZE (var (pire/27) + 85 + —2 ver; M (.6, ¢/ )||%||0>

¢

Since X is compact lin(lJ var (p;,e) = 0, also §x — 0. We may choose the sequence
E—r
{ng} with n, — oo such that nj > 2maxeer, M@ee/2k) 6 we can express Ry

bounded as

k
Ry, < Z 4T},

j=1
where Ty, — 0 as kK — oco. So that
Rk i
<T} 4T
5 <Ttg Z

] 1
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00 k
and Y p;Ri; < Y £;T;. Thus, for k enough large and since £, > 2~ we have
i=1 j=1

(2

oo k
Ry 1
1 g —— <Tp+—>» Tj.
(16) ;p o< k+k; j

o0
Therefore Y p;
T
Finally is done the estimation on F. Let x € F', n € N, n > /{1, there is an unique

number k such that £ < n < €iy1. Besides there exist a number m such that

n>l+j (m%XM (m,nk,g/gk'—s-l) + nk+1> .
TESK

If € F then there exists a point z € Ly,1 such that
dg,., (z,2) < g/2k.
If 2z € Li41 then there exist € Ly, y € Dy41 such that
dg, (2,2) < g/2F1
For each z € Ly there are points T € Ly, y € Dyy1
dy, (T, 2) < g/2M!

and
diyeis (fe’“rmaxwebk M(e.bre/27) () 73/) <e/2Mt

Thus we have dy, (7,2) < ¢/2F~1 and
ooy (Frmmsecn MIo0e2) (g) y) < /2L,

If m > 0 there are points xZ‘H, ...,m]lfil € Sk+1, such that

dnk+1 (x;f::la fam (y)) < 6/2k+1

with
am = (m—1) (nk+1 + max M (x,nk+1,5/2k+1)> .
xeSk+1
So that
(17) dy, .. (f£k+maxm€Sk+l M(z,np41,6/2" +am ) (2) x§+1) < 5/2k—2
nk+ ) m ’

Let us consider the interval [0, n — 1] partitioned as
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[0,n — 1] = [0, lk—1] U

U [Ek +(i—1) <nk+1 + Hé%XM (xv”k»E/ZkH)) A +
i=1 oo

i (nkH + max M (x,nk,s/2k+1) — 1)) U
€S
{Ek +m (nk+1 + max M (x,nk,5/2k+1) ,n— 1} .
€Sy

Thus

£ —1

> i () — bra

=0
-1 A -1 . -1 .

< Z ei (f/(x) — Z oi (f1(T)| + Z oi (f(z) = —Llray
=0 =0 =0

< lrvar (goi,é‘/?kJrl) + Ry ;.

In each interval of the form

|:7‘i,7‘i +(@-1) ( max M (m,nk+1,5/2k+1) +nk+1>} )

rE€SKy1

using eq. (20) and the fact that Sky1 C Xo (@, 0k41,nk+1) it can be done the

estimation
i+ enéix M(ac,nk+1,e/2"'+1)+nk+1—1
we8pin
Z Pi (fj(x) -
J=ri
(Crbnez?zM (2, ng,e/28T1) + nkH) a;
(18) < 2max M (z,n,e/25) @il + nugrvar (pi,6/2572) .

€S

On the intervals {Ek +m (nkH + m%XM (:E,nk,g/gkﬂ)) - 1] we have
TESkK
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n—1
Z @i (f*(z) —

s=lr+m (nk+1+ max M(m,nk,a/2k+1)>
z€S)y,

_ [k — (nk+1 + max M ('ry nk+1a€/2k+1))> @

:EGSk+1

<2 (n by, (nkﬂ + max M (m,nk+1,€/2k+1))> lleillo
:CESk+1

< 2| ngs1 —|—maXM (2, nk+1,s/2k+1)> llillo -

Finally

n—1

Z @i (f7(x) — nai| < Ry + (b + mnyq) var (<Pi,€/2k_2) +

2 (’I’Lk+1 + (m + 1) max M (x,nk,€/2k+1)) leillg + mmng410p41-
€Sk

Recall that

n>40+3j (maxM (x nk,£/2k+1) + nk+1>

and £ > Np, so

[eS)
szlsn ((pz _az‘ <sz
i=1

E/Qk 2) +

k+1
Npy1 + max M(:c,nk+1,5/2 + )
TE€SKy1

Ni

M 2k+1
g, M (e, /24)

; Oky1-
Mht ||%4’z||0 + Ok+1

The right hand tends to 0 as n — co and k — oo, so that
W}Lrgoz;pi |Sn (i () — i | =0,
=

therefore z € G (u) .
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Proposition 3.2: For systems with nonuniform specification and for a fixed
p € Mino(X, f), holds that
Ae (@) =y (f).

Proof: Let

var (i,€) = sup{[pi (z) — @i () : d(z,y) < e},

since X is compact and ¢; € C(X) we have lir% var (i, ) = 0. It can be chosen
e—
e >0, 0 > 0 such that
Zp,-var (pi,e) <e <.
i=1
with 0 < v < 1 given by lemma 2.1, and
n— oo

(19) lim sup 1 log N (o, 0,¢,n) < Ag (o) + €.
n

Let R, (&, 9, 1) be the minimal number of balls B, . () whose union has y—measure

>1— 4. By a theorem of Katok[9] if u is ergodic then holds

hy (f) =lim lim sup R, (¢,0, ) = lim lim inf R, (¢,0, 1) .

—0n—o0 e—>0n—o0

Let us consider the measure v and its convex ergodic decomposition given by the

k
lemma 2.1 v = ) \jv;, thus for any € > 0 there is a ¢; = ¢; (v;,4¢,7) > 1, such

j=1
that
Ry (4,7, vi) = exp [n (hy, (f) —7)], forn>¢;, j=1,..k
Let Ny enough large such that n; := [\;jn] > max{l,... 0y, N}, for n > ¢;

and where N is sush that v; (Y;(N)) > 1 —~. Let E;, j = 1,...,r, be a finite
(nj,4e) —separated set in Y; (IV), by the non-uniform specification property given

points 21, Z2, ..., Ty, ; € Ej, there is a y = y ( x1, 22, ..., z,) such that

dn, (f (y),25) < /2",
j—1
with aj = > (n; + maxyep, M (y,n;,e/25T1)) . By [7] hold these two facts

i)y = yZ(icl,xg, ey @y) € Xo (o, 50,0), with 1 = ay + ng.

i) fy =y (@1, 02,...,21),y =y (@1, 2, ..., x,) correspond to different r—tuples
(21,%2y ey Tp) ( Ty, To, ,a:r) then d (y,y) > be.

Thus is valid
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N (a,50,€,m) > My... M,
with M; = cardE};.Since each E; is (n;,4e) —separated set in Y (IV), then

(20) M; > exp [n; (hy, (f) —7)] -
and
k
(21) N (a,56,€,1) > exp Z (An] (R, (f) =)
j=1

N A7)
Since >> A; =1 and — Aj, as n — 0o, we have
j=1 "

1
liminf =N (o, 560,€,m) > h,, (f) — 3y
n—oo NN

and by (6)
Ag (a) > hu (f) —4y.

[ ]

Proposition 3.3: For dynamical systems with the non-uniform specification
property holds hyop (G (1)) = hy, (f), for any f—invariant measure p.

Proof: Let {Si} be the sequence of finite sets and {ny}, { Ny }be the sequence

of positive integers as in the earlier constructions. Recall (c.f. eq 14) that

k
1
Riop(F) > liminf = (Z N;log M; + mlog MM)

n—oo N \ 4
i=1

with M; = cardS; and m the unique number such that

Uy, +m (m%xM (x,nk7€/2k+1) + ﬂk+1) <n
TESEK

n < b+ (m+ 1) (ngM (i, /251 + ”k+1> :
x k

The sets Sy, are(ny, 5¢) —separated sets, for a fixed € > 0, in Xg («, 0k, ny) , we can
considered My, = cardSy, > exp [ng (Ao (o) —7)], like in proposition 3.1. Thus,
since F' C G (u) and by proposition 3.1

hiop (G (1)) 2 hiop(F) = hyu (f) = 57,

for arbitrary small 4. The inequality hop (G (1)) < hy (f) was proved by Bowen|[3].
|
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4. PROOF OF THE THEOREMS 1.1 AND 1.2

The following result, appeared in [5], is very useful for the proof of the variational
principle (theorem 1.2) as well as for the study of the irregular part of the spectrum

(theorem 1.1)

Lemma 4.1: For any ® € C'(X") and for any ¢ > 0 there is a map ®:X" >R

of the form

1 T
Zga( )®...®g0j),

with <p§-i) € C(X) and such that H<I> - <I>H <e.
o0
Also is needed

Lemma 4.2(Bowen[3]): For any ¢ > 0 holds

hiop({x : 3p € V(z) with b, (f) < t}) <t.

In fact the proof of the theorem 1.2 is totally similar of that of the theorem 1.1 in
[5]. Here we show it just for completeness.

Proof of the theorem 1.2: Let e > 0 and ® be the map of the lemma 4.1, so that
=3 T1 58 (o ).
j=11i=1

where S, (apj (x )) Z g@j (f*(z) . Let # € Eg (), since X is compact there is

apu€ V(z)and a sequence {ng} such that w* — limy_, 0 En, () = u, .where w*—

means weak convergence. Therefore

lim Vg (ng, ) = /%d,u@".

n—oQ

‘We have

‘/@du‘gr -«

where limy_, oo (V;I; (ng, z) — Vo (ng, x)) = 0 and limg o0 (Vo (ng, ) — ) = 0. Thus
U Odu®r — a| < 2¢, and, since ¢ is arbitrary, p € Mg (a) . Then we have that

< ‘/(I)du(gr—/(id,u@r

and |V§,(nk7 x) — Vo (N, |+|V<I’ ng, x) — af,

S,
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Eg (o) C {x:3p e V(x) with hy, (f) <sup{h, (f):p € Mqs(a)}}. Hence by

the Bowen lemma

(B (@) < sup {1, (1) [ @ = a}.

To prove the opposite inequality, let x € G (u), with u € Mg (a), so that

1 ~ = o ®r
nhm Vs (n, ) /(I)du .
we have

lim Vg (n,x) —/@du‘g’r <
n—oo

nh_>ngo Vo (n,x) — nh—>néo Vs (n, x)‘ +

+ ‘ / ddp®r — / ddp®”

Thus lim Vg (n,z) = [ @dp®" = «, since p € Mg («). In this way is proved that
n—oo

< 2e.

lim Vg (n,z) — /6d,u®r

n—r oo

G (u) C Eg (o), from this and proposition 3.3 is obtained

htop(Ew (@) 2 hiop(G (1) ) = Py (f) 5

then taken sup over the measures u € Mg () results

heop(Fa (a)) > sup {hu (1 [ @ = a} |

Let

Go (o) = {z : there is {ny} such that w* — klim En, () =p € Mg (a)} )

—

For a1 # as € R, we shall find a set G C Gg (1) N Go (a2) .
Before proving the theorem 1.1 we give some lemmas.
Lemma 4.3: If oy # ay then Go (aq) N Go (a2) C E.
Proof: Let € > 0 and ® be the map of the lemma 4.1. Let € Gg (a1)NGg (a2),

so there are sequences {ny}, {my} such that
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p=w*— lim &, (z);pu € Mg (a1)
k—o0

(22) v=w"— lim &,, (v);v € Mg (az),

k—o0

Vi (n,0) = ST 350 (4 @)

. n—1 .
where S, (gag-z) (m)) = kz_jo @52) (f*(z)). Therefore, by Eqs.(22)

i Vg (o) = [ "

lim Vg (mg,x) = /Cfdl/@”.

k—oc0

By the argument of approximation of lemma 4.1 we get in the same way of [5]

that

lim Vg (ng,z) = /<I>d/¢®r =
k—o0
and

lim Vg (myg,z) = /@dl/®r = an, with ag # as.

k—o0

Then z € Eg°.
|

For p1,p2, ..., pr € M(X) and positive numbers Ry, Ra, ..., Ry, let 21, o, ..., 21 €
X, ni,ng,...,n; € N such that &,, (z;) € Bg, (p;), j = 1,2,...,k., for a given
01,02, P € M(X) and Ry, R, ..., Ri. Let 1 > 0,9 > 0,..., e, > 0, by the
non-uniform specification property if M; > M (z;,n;,¢;), j =1,2,..., k, then there

is a point z € X such that

uch that

dp, (2,,2) < e
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Z (nj+Mj)
dp, | f7= (2),z; | <e.

Let s; =n; +M;, j=1,2,...,k and S; = s1 + 52 + ... + 5.

and

i—1
2 (nj+M;)
Lemma 4.4: Let z such that d,, | f7=* (2),x; | < e, then for any p €

M(X) holds

ki
where Bj = Rj +¢; ,j =1,2,... k.
Proof: We have
1 &
gsk (Z) - ZS]‘ESJ (fSJ?l(Z)) 9
ki
and
1 nj—1
D(Es, (25) &, (15 () < = D d(f (). 17577 ().
J 1=0
Therefore

D (ESk (Z) ,P)

k
Sik Z [D(Es; (x5) 5 Eny (FY771(2))) + D(Es, (x5), p5) + D(pj, p)]

k

1

MZ i+ e+ D(pj,p)] .-
j=1

IA
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Lemma 4.5: Let a; # ag with Mg (a1) # &, Mg (a2) # & then
hiop(Ga (a1) N Ga (@2)) = min {hiop(Ge (1)), hiop(Ge (a2))}-

Proof: Since Go (a1) NGg (a2) C Go (1) and Go (1) N Go (a2) C Go (a2),

by the monotonicity of the entropy we have

hiop(Ga (a1) NGa (az)) < min {hiop(Ga (a1)), hiop(Ga (a2))}

. To prove the other inequality we shall find a set G C Gg (a1) N G (a2) with
hiop(G) 2 min {hiop(Ga (1)), hiop(Ga (r2))} -

To construct G, let us choose sequences {ny}, {Rxr}, {ex} with Rx \, 0 and
ex \¢ 0 and, for a given sequence {p1,p2,...,p6} C M(X), for ;& > e;1.let us
consider (ny,€) —sets I'y, C {z : &, (x) € Br, (px)}, so that (by the Lemma 4.4)

zely,ze Bsk@c (x) = gsk (Z) € BRk+6k (Pk)

Let us choose now a strictly increasing sequence { Ny} such that

k
Sp+1 < Ry, Z 5;N;

j=1

and
k—1 k
Z s;N;j < Ry, Z 5;Nj.
j=1 j=1

/

j}, { 1";} such that if j = Ny + ... +
Ni_1+ q with 1 < g < N then n;»:nk, 5;-: e and I‘;-:I‘k.

We consider stretched sequences { s;} , { €

Finally, we can define
k
G- | U o (5 0) |
Jj=1 x;er;

with S = Sy + Sg+ ..+ s; and

G .= mGk

k>1
Any element of G can be labelled by a sequence 1 z5..., with z; € I';. According

to Pfister and Sullivan [11] the following holds: Let z;, y; € I, z; # y;, if
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x € By, ¢, (x;),y € By, ., (y;) then max {d (f*(z), f*(y)) : k=0,....,n; — 1} > 2¢,
with € > e /4.

We see that G € Go (1) N Go (a2). Let z € G, and let py € Mo (),
vy € Mg (az), it can be considered sequences[4] {ur}, {vk} such that

D (uo, px) < R and D (vg,v;) < Ry, then form the sequence

{Pk} - {ul;ulvylvyl,/*LQv/*LZvVQ; V2, } .
Let p € {po, 0}, and 2{11 siN; < S < Zfill 51Ny, thus

112 5N
D (&s, (2),p) < S, SINID | &4 (2),p | + iS“ *D (ESij(Z),P) +
ki Zl s1N; k

1=

J
_ Nyj;
Sk %lk:l SV (Esjan;a(2),p) -

Therefore

D(&s, (2),p) < R;j+D (gSij (Z)vpj) + D (pj;p)
+D (gSj+1Nj+1 (Z)7p) + D(pj+17p)
< 2R;j+¢ej+D(pj,p) +D(pjt1,p)-

Thus, choosing subsequences t;, = 4k + 1 and uy = 4k + 3, we get

po=w" — lim Es, ()

vy=w"— lim &g, (2),
k—o0 k

so that z € Gg (1) NG (a2) .
To complete the proof it must be proved that
hiop(G) = min{hiop(Ga (1)), hiop(Ga (2))}

for this we follow [11]. Let s < h := min {hsop(Go (a1)), hiop(Go (a2))}, the set G
is closed, and so it is compact, let us consider a finite covering U by balls B,, . ()

having non-empty intersection with G. Now
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M (G,s,N,e) = ueci(rrlfs,G) ; X(T;)euexp (—sm).

For any finite covering U of G, we can construct a covering Uy in the following
way: each ball B,, . () is replaced by a ball By, . (z) with M, < m < M,1;.
Thus

M (G,s,N,e) = ueci(%fs - Z exp (—sm) >
T Be (z)EU
inf exp (—sM, .
UEC(N,e,G) BM,.ZEMO p( +1)

Now we can consider a covering U in which
m = max {r : there is a ball By, - (z) € Up} .

We set

k m
W, = Hri, W,, = U W.
i=1 k=1

Let xj, y; € I'j, x; # y;, as we pointed out earlier, if * € By, o, (), y €
By, e, (y;) then d (f'(z), f'(y)) > 2¢ for any I = 0,...,N; — 1, and with € > &1 /4.
Now for any = € By, - (2) NG there is a, uniquely determined z = z(z) € W,. A
word w € W;, with j =1,2,...,k, is a called a prefix of a word w € W}, if the first
j—letters of w agree with the first j—letters of w.The number of times that each
w € Wy is a prefix of a word in W, is cardW,,/cardWy, thus if W is a subset of

W,, then
i card (W N Wy)

> .
card(Wy) — card (Wim)

k=1
If each word in W,,, has a prefix contained in a W C W, then

m

Z card (W N Wy) > 1
—  card(Wiy) ’

and since U is a covering each point of W, has a prefix associated to a ball in U.

By this and because cardWj > exp (EMT), we obtain
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Z exp (—sM,) > 1.

B, €Uy
Thus if 7 is taken such that k& > r then sMy,1 < hMy, for N > M,, U € G (N,¢,G).

Therefore

Z exp (—sm) > 1,

B, e(z)eU
and so

M (G,s,N,e) > 1.
By this hyop(G) > T .

Proof of the theorem 1.1.: Let

U="U,4: MX)—=R

U (u) = / dp®"

and let
h = htop(X) be the topological entropy of the whole space X. By the classical

variational principle and by the variational principle of [5]

h=sup{h,(f):p € Min,(X,f)} = sup {h,(f):peMs(a) }

aclm

= sup {hiop(Lo (o)) }.
acelm¥

We must show that hiop(EZ) > h. For any v > 0, there is an a1 € Im¥ such that
hiop(Ea (01)) > h — 7, let ag € Im¥ and let pq, pe € M(X, f) with ¥ (111) = o,
U (p2) = ag. The map A — W ((1 — A) g + Auo) is continuous.Recall that

htop(Gq> (041) N Go ((1 — )\) a1 + )\az))
= min{hwop(Go (a1) , hiop ( Go (1 — A) a1 + Aaz))},
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then, by the continuity of ¥ as a function of A\, we have
hop(Bg”) 2 . hiop(Ga (1) N Ge (1= A) a1 + Aaz)) 2
hiop(Ga (1) > hiop(Es (1)) > h — 7.

Since 7 is arbitrary the result follows. |
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