
PHYSICAL REVIEW E 91, 052810 (2015)

Self-organization of plants in a dryland ecosystem: Symmetry breaking and critical cluster size
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Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics
and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual
occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation,
solar radiation, nutrients, etc.) are available to the ecosystem, it is possible to obtain the persistent configurations
of plants compatible with an equitable distribution of resources maximizing the Shannon entropy. Variation
of vegetation patterns with density, critical cluster size, and facilitation distance are predicted. Morphological
changes of clusters are shown to be a function of the external resources. As a final remark, it is proposed that
an early warning of desertification could be detected from the coefficient of variation of the mean cluster size
together with the distribution of cluster sizes.
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I. INTRODUCTION

Climatic change, overgrazing, soil erosion, etc., contribute
locally to change biomass density over large regions and
consequently to desertification, which is more an effect than
a cause. In this century, one third of the land surface of the
world could be in drought conditions via desertification. The
livelihood of ∼25% of the world population will be affected
if desertification progresses according to the present detection
and quantification [1]. Diagnosis of critical shift in ecosystems
has been the subject of continuous research by many authors
[2–11]. Criticality in ecology generally applies to a system that
exhibits threshold behavior, with sudden shifts between states,
due to the high sensitivity to the environmental parameters
controlling its dynamics [12]. Besides the different causes
that induce changes upon ecosystems, the proposed models
are able to predict the morphologies of some of the observed
patterns and indicate qualitative operative options to attenuate
or remove some of the causes that promote desertification and
their catastrophic effects.

In arid and semiarid regions of the Earth plant biomass
self-organizes in periodic or quasiperiodic patterns. Different
models try to explain how plants self-organize by using
partial differential equations (PDEs) [2,8,13–19]. Most of
these models hypothesized that movement of water, due to
runoff, or diffusion or infiltration in the soil, causes the
vegetation patterns. There is an interesting experimental paper,
in which the infiltration rates and soil moisture in groved
mulga is measured [20]. When the fundamental unit is not
the patch, but the individual plant, it is assumed that a plant
interact with others through its above- and below-ground
organs, canopy, and root systems, respectively. Models that
consider plant-plant interactions have been also studied with
cellular automaton algorithms [1,9,21], by individual-based
model methods [22], or a variational method with numerical
simulation [10]. It is worth mentioning that, in dryland
vegetation, patches are often formed by single plants, and each

*Corresponding author: vasco@iflysib.unlp.edu.ar

individual is still capable of responding continuously to water
stress by letting parts of its canopy die. This is because of
the modular hydraulic systems dryland plants typically have,
which consist of hydraulically independent multiple stems
[23].

It has been previously suggested that positive interactions
between neighbors are exerted by the aerial part of the plants,
which are known to improve the water budget in the soil [24,25]
as well as increase the water infiltration [20,26], whereas com-
petitive effects result from lateral resource (water) absorption
by the shallow root systems. Roots tend to grow superficially
and larger than the canopy size to gain enough water from
the individual’s surrounding [16,27]. This interplay between
competition and collaboration [2] has been modeled also by
Gilad and co-workers [17,18], and recently reviewed by Meron
[28]. Following these ideas, the present model [10] considers
that spatial periodic vegetation patterns (PVPs) in semiarid
ecosystems are caused by a collaboration-competition struggle
process for the limited resource, specifically water, even
though, in a recent work [29], different vegetation patterns
were obtained with a PDE model where the authors state that
the facilitative interaction was not included.

Individuals (plants) are objects that use an exclusive
area and a facilitation-competition pair interaction. In that
previous work we showed that shape and size of clusters,
and biomass density are functions of the water activity
in the environment. Presently, it is worth analyzing other
important aspects of the desertification problem: the critical
threshold transition, pattern variation (with density, critical
cluster size, and facilitation strength), and the morphological
change of clusters with the external resources. Furthermore it
is shown how ecosystems, plants in a limited resource system,
undergo a sequence of self-organized spatial two-dimensional
patterns as they approach the critical threshold transition.
Pattern organization is the answer for increasing aridity,
and a regular pattern characterized by spots of vegetation
signals the proximity of a threshold or symmetry breaking to
catastrophic desertification [4,5,30,31]. Previously to discuss
the clusterization of the elements (plants), we introduced a
specific criterion to define the inter- and intracluster distance
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via the use of the coefficient of variation of the mean cluster
size. The coefficient of variation is a powerful tool, because as
it is a dimensionless quantity, it could be compared with other
coefficients of variation (e.g., precipitation, temperature, net
radiation, etc.) to build up some spatial experimental corre-
lation. Cluster formation depends on the external resources
and on the synergetic resources of the system associated
to the facilitative-competitive contribution of the interacting
plants. In this context we show how clusters of plants could
be self-organized. A quantitative characterization of aridity is
suggested for values of the synergetic resources below to those
corresponding to the critical threshold. Also changes upon
pattern morphologies due to the effects of grazing and human
actions are considered by varying the canopy-root relationship
or by examining the system at different values of the external
resources.

II. DESERTIFICATION MODEL

In a previous work [10], the general foundations have been
established by which it is possible to capture the general
aspect of PVP in arid and semiarid ecosystems. The model
was developed from statistical mechanics, thermodynamics,
and information theory. Furthermore, it is proposed that plant
interactions could be described via a pairwise potential with the
following contributions: The aerial part of the plant contributes
with a short-range facilitative interaction while the root system
contributes via a long-range competitive interaction. The N

individuals of the same species are distributed in an area A

and their variation (grand canonical ensemble) is represented
by the death and birth of individuals. Each individual occupies
an element of area and consumes a certain amount of resources
(water, solar radiation, nutrients such as nitrogen, phosphorus,
etc.). It must be remarked that while facilitation reduces the
evaporation rate from the soil, competition reallocates and
increases the potential resources that could be absorbed by the
individual from its area of influence. These kind of potentially
generated resources are called r int

i . Then the resource balance
ri managed by a generic individual is

ri = rc
i + r int

i . (1)

rc
i are available resources that can be consumed by any

individual without interaction and r int
i are the potential re-

sources available to the individual if and only if there are
interactions among them, being r int

i = 1
2

∑N
j=1 v(xij ), with

v(xij ) the plant-plant pairwise interaction, and xij =(�xi − �xj )
the interdistance between individuals i and j (i �= j ).The
total resource balance [10] for a given configuration of N

individuals is

R =
N∑

i=1

ri =
N∑

i=1

rc
i + 1

2

N∑
i=1

N∑
j=1

v(xij ), (2)

where v(xij ) is composed of two parts:

v(xij ) = vh(xij ) + vfc(xij ). (3)

vh(xij ) represents the exclusive use of the space by each
individual, and vfc(xij ) is the short-range facilitation and long-

range competition interaction (f/c), modeled by [32]

vfc(xij ) = −εf

(
La

Lf

)2

e(−xij

/
Lf ) + εc

(
La

Lc

)2

e(−xij

/
Lc). (4)

εf and εc are the strengths of the interaction, La is
the dimensionless average crown (set to unity), and Lf

and Lc are quantities proportional to the canopy and root
dimensions. (La/Lf )2 and (La/Lc)2 are two morphological
quantities, which in fact are area ratios. Equation (2) is a
fundamental equation that rules, via its minimization, the
persistent or self-sustained ecosystem configurations. Why
does the minimization of Eq. (2) determine the persistent
plant configuration? Because minimum total resources (e.g.,
moisture in the soil) are equivalent to a maximum biomass on
the top soil. The total mean resources 〈R〉, compatible with the
observed configurations, are calculated by using the maximum
entropy principle [10,33,34].

If Rα and Nα represent the total resources and the number
of individuals for a particular vegetation distribution α with
a probability pα , then the total expected values 〈R〉 and
〈N〉 are obtained by the maximization of the entropy with
the constraints

∑n
α=1 pαRα = 〈R〉, ∑n

α=1 pαNα = 〈N〉, and∑n
α=1 pα = 1. The maximization process gives, as the result

the Boltzmann probability distribution for pα ,

pα = e−βRα−γNα

�
with � =

n∑
α=1

e−βRα−γNα . (5)

β and γ are the two Lagrange multipliers coming from the
maximization, with

〈R〉 = −
(

∂ln�

∂β

)
γ

, 〈N〉 = −
(

∂ ln �

∂γ

)
β

(6)

Then the total mean resource 〈R〉 is

〈R〉 = 〈Rc〉 + 〈Rint〉 . (7)

〈N〉/β = 〈Rc〉 represents the average consumed resources
without interaction and Rint are the redistributed or locally
gained resources as a consequence of the f /c interaction
between individuals under the effect of the input of resources
from the environment (γ ). Equation (7) in conjunction with the
probability distribution pα justify using numerical simulation
for studying the properties of the proposed model. Then
minimization of Eq. (7) via the grand canonical Monte
Carlo (GCMC) technique allows us to find the persistent
configurations for each simulated system. Standard GCMC
simulations have been done in a two-dimensional box of
area A = 150La × 150La with periodic boundary conditions
[35,36]. A cutoff of 10La has been considered to capture the
fact that roots spread an order of magnitude beyond the crown
diameter La [8]. A total of 106 GCMC steps for equilibration
and not less than 105 GCMC steps for production have been
done. N individuals are initially randomly distributed in the
simulation box. The election of the place to create a new
individual (birth) and the election of the individual that will die
are chosen at random (from a uniform probability distribution).
Next, creation or deletion of individuals is accepted or rejected
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based on the following rules [35,36]:

a(creation,N → N + 1) = Az

N + 1
e−β(Rint

N+1−Rint
N ),

a(deletion,N → N − 1) = N

Az
e−β(Rint

N−1−Rint
N ),

z = e−γ being the activity (soil water activity) of the system.
Beneath these acceptance rules lies a Markov birth-death pro-
cess (a stochastic process where the next configuration depends
only on the present configuration). Markov chain models are
widely used in ecology modeling (see Refs. [37–39], to quote
only a few). The rules define an importance sampling of the
phase space, in order to get the more relevant configurations
from the Markovian process. The water activity z might be
identified with the inverse of aridity or dryness index (Ø) [40],
which is defined as the ratio of potential evapotranspiration
E0 to precipitation P . Then it is proposed that z is the ratio
of precipitation to potential evapotranspiration, z ≈ 1/Ø (See
Fig. 1).

(a)

(b)

(c)

FIG. 1. Schematic of a local water balance in semiarid or arid
ecosystems. This ideal system does not consider runoff. E0 is the
potential evapotranspiration that is proportional to net radiation; P

is precipitation 38; EFS and EFT are evapotranspiration from the
top soil and the tree leaves, respectively. (a) Absence of plants
and runoff, then EFS = P . (b) For low biomass density, EFS → P ,
and the difference is EFT , the quantity directly related with the
resources that each individual consumes without interaction, rc

i .
(c) As z = P/E0 increases, then plant density increases and the
relationship is modified, now EFT → P . It should be remarked that
the interaction among individuals is the cause of self-organization
in the ecosystem, giving as a result an important increment in the
amount of available resources r int

i . Therefore, it is worth emphasizing
that the most efficient ecosystem is the one that accomplishes the goal
of EFS → 0.

To evaluate the influence of the interaction parameters in
the vegetation patches, we study z in the range 0.05 � z � 10,
for mean consumed resource per individuals 〈Rc/N〉 = 〈rc〉 =
0.5 and 〈rc〉 = 0.6. The interaction parameters were fixed to
(La/Lf )2 = 1 and (La/Lc)2 = 0.25, and εf = εc = 1. Other
systems with 〈rc〉 = 0.6, and εf = 1, εf = 0.95, or εf = 0.90
have also been simulated, in order to show how the persistence
of the vegetation patterns are affected by a change of some of
these quantities.

III. RESULTS

A. Density description of pattern behavior

To begin with, we present a quantitative description of
the self-organization. Figure 2 shows GCMC results for
population density ρ = 〈N〉/A versus the soil water activity.

FIG. 2. (a) GCMC results for density versus the activity of the
external resources (the resources uptake), for two different consumed
resources. As can be seen less consuming plants are more abundant.
(b) Examination of the variation of the crown’s strength εf , for the
same consumed resources. It characterizes the cooperation between
plants and its variation could reflect pollution signals, overgrazing
damages, etc. For the same activity of the external resources, ρ(z)
decreases when crown’s strength decreases.
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In Fig. 2(a), ρ(z) is explored for two different mean con-
sumed resources 〈rc〉 =β−1 that mimic species with different
morphologies and/or metabolic rate. It is clearly seen in this
figure that, for the same water activity z, the less consuming
species is more abundant. Also the foliage density effect (∼εf )
in the population density [Fig. 2(b)] is analyzed. If foliage
density decreases then the cooperative strength εf becomes
smaller. This variation of the crown’s strength could represent
anthropogenic effects, pollution signals, overgrazing damages,
etc. It should be emphasized that εf is a measurement of the
cooperation between plants. There is a direct correspondence
between the crown’s strength and biomass density. As cooper-
ation intensity decreases, the interaction between individuals
becomes more competitive. The result is a diminution in the
number of individuals, per area, that can persist.

The average density ρ(z) shows a nonlinear behavior
(Fig. 2), and the GCMC data is well fitted to the following
equation:

ρ ≈ (1 − rc)1+rc

zrc

rc + (1 − rc)zrc . (8)

This is a typical Langmuir-like shape equation [10]. This
function shows two dissimilar regions (with significative
changes in the slope) that can be well described with the
concept of sensitivity (χ ), the ratio between the changes of
population density to the water activity in the ecosystems
(
ρ/
z) [9]. This abrupt change in the sensitivity slope could
be associated to the catastrophic threshold, and it seems to
occur in the vicinity of z ∼ 0.5 for the cases studied here.
When water activity z < 0.5, slight fluctuations of z produce
large changes in the biomass density, the ecosystem being very
sensitive. A typical snapshot of the ecosystem in this region is
shown in Fig. 3(a). The other region is observed when z 	 0.5.
The population density is not affected even by large changes
in the external resources meaning that ecosystem sensitivity
is null or very low. In Fig. 3(c) a snapshot for z = 3.0 shows
the closed structure of the system that precludes significative
changes in density for big changes in z. Around the threshold
in the vicinity of z ∼ 0.5 vegetation patterns are extremely
symmetric, with spots of around 20 individuals arranged at
the vertices of a quasiregular hexagonal grid [Fig. 3(b)].
The symmetry breaking of these quasihexagonal vegetation
patterns characterizes desertification–green forest transition
or simply a “drought-wet” transition or vice versa. The system
could move back and forth or may shift permanently to an
alternative state if the underlying changes persist, moving
the system to only one stable state. This symmetric system,
clusters hexagonally arranged, could be viewed as an early-
warning signal of a critical threshold approaching.

B. Patterns and characterization of clusters

In Fig. 4 spatial distribution of individuals, for the three
typical configurations mentioned above (z = 0.1, 0.5, 3.0),
are analyzed with the help of a pair correlation function g(r)
[35,41]. This function gives the probability of finding an indi-
vidual at a given distance from the center of another individual.
For all cases studied the function shows high peaks at short
distances (see inset in Fig. 4) and one or more smooth peaks at
larger distances. Clearly the first peaks tell us about the cluster

FIG. 3. (a) Snapshot of an irregular pattern, for z = 0.1. This
configuration is typical of a very sensitive region. Similar patterns
are observed in Argentina (43° 48′ S, 65° 41′ W). (b) Snapshot from
the system with z = 0.5. Trees form nearly ordered clumps producing
an almost arranged honeycomb structure. (c) Snapshot captured from
a simulated system at z = 3.0. As z increases coalescence of drops (b)
produces a labyrinthine pattern. These external resources produced
an almost insensitive ecosystem (
ρ/
z ≈ const.)

and cluster’s size, while the peaks at larger distances give us
information of cluster arrangement. It must be pointed out that
when z = 0.1 there are not peaks at a larger distance, which
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FIG. 4. Comparison of pair correlation functions for three differ-
ent values of z. For z > 0.5 oscillations at long distances indicate
certain long-range order of tree clumps.

means that ecosystems are formed by irregular clumps [see
Fig. 3(a)]. For larger z the oscillations in g(r) indicate order at
long range as in Figs. 3(b) and 3(c). For z = 0.5, the symmetry
of the system is manifested by peaks with greater amplitude.

Individuals self-organized in clusters—and at the same
time clusters of different shapes and sizes—distribute on a
given surface. Our technical problem is that there is not a
unique criterion to identify a cluster (see [42] and references
therein). It is established that two individuals belong to the
same cluster if their interdistance is shorter than a facilitative
or clustering distance df [42]. Then the main challenge
of this section is to detect cluster size distributions, by
estimating a value of df that allows each plant in that cluster
to better manage the basic resources to survive in a given
environment. But what is that facilitative distance? For each
persistent plant community configuration, found via GCMC,
different distances d are considered (with La < d < 4La)
for setting up the cluster size frequencies fd (n) (number of
clusters with n individuals belonging to the clump, n = 1,
N , characterized by the particular d). Then the mean cluster
size 〈n〉d =∑N

n=1 fd (n)n/
∑N

n=1 fd (n), corresponding to the
distance d, is estimated. With these data we compute the
coefficient of variation (CV) of the mean cluster size, defined
as the ratio of the sample standard deviation to the sample
mean for a given set of data:

CV (d) =

√∑N
n=1 fd (n)(n − 〈n〉d )2

/∑N
n=1 fd (n)

〈n〉d . (9)

The dimensionless function CV (d) characterizes the dis-
persion of the cluster sizes, the higher the CV the greater the
cluster size dispersion. As it has been shown in microalgae
stressed ecosystems [43], the variation of biomass increases
with higher stress intensity, giving some support for the notion
that selection effects become more important in more stressed
ecosystems. Then high dispersion of cluster size could be
necessary for the ecosystem to guarantee different sizes and
variety of different structures, in order to provide itself with
different self-organization options. Then it is proposed that
the facilitative distance is the one that gives the maximum

FIG. 5. Coefficient of variation of the clusters size versus the
plant-plant interdistance, represented for a consumed resources
per individual 〈rc〉 = 0.6 and different values of the activity of
the external resources 0.1 � z � 3.0. For low resources the area
needed to survive is larger. For z ∼ 0.5 (desertification threshold)
the maximum CV (d) occurs at d ∼ 1.22La .

CV. CV (d) is represented in Fig. 5 for consumed resources per
individuals 〈rc〉 = 0.6 and different values of the activity of the
external resources, 0.1 � z � 3.0. For low values of the water
activity of the external resources, e.g., z = 0.1, the biomass
density is very low [Fig. 2(a)]. In this case maximum dispersion
of the clusters’ size occurs at d ∼ 1.7La , implying that plant
interdistance is too long to avoid evaporation from the soil
(reduction of facilitative effect). For z ∼ 0.5 the interdistance
at which the maximum CV (d) occurs is d ∼ 1.22La. The
system is in the transition region [Figs. 2(a) and 3(b)]. For
z = 3.0 the maximum CV occurs at d slightly larger than
1.22La . Then the minimum interdistance at which the CV is
maximum occurs at z ∼ 0.5, so this distance is chosen as the
optimum facilitative distance df ∼ 1.22La. Figure 6 shows a
zoomed snapshot for the z = 0.5 system [Fig. 3(b)]. It can be
seen how the election of the clustering distance defines the
cluster formation for the same clump of individuals. As was
previously mentioned there is not a unique way to define a
cluster [42,44], but the use of the CV could be an interesting
approach in the determination of the facilitative distance if a
cluster is defined by the individuals that belong to the same
clump and collaborate each other.

Now with the previously defined distance df , we study
how the cluster size distribution changes for 〈rc〉 = 0.6 with
0.1 � z � 3.0 (see Fig. 7). For the lowest values of z[z = 0.1
in Fig. 7(a), for instance] the distribution of cluster size is
Pareto-like, a truncated power law which is rather similar
to that obtained by Kefi et al. for different conditions of
grazing [1,37]. In our model this range of z is characterized by
a high value of sensitivity (see Fig. 2). With z increasing,
bimodal distributions of the intermingled clusters occur: a
power law for small clusters and a Gaussian distribution for
the other cluster sizes (Fig. 7). This change in the distributions
characterizes a clear change in the obtained patterns, from
polydisperse aggregates with no apparent order [Fig. 3(a)] to
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FIG. 6. Representative clumps have been zoomed from a snap-
shot for z = 0.5 [Fig. 3(b)]. Black and gray symbols indicate indi-
viduals that have r int larger or smaller than 〈rc〉 = 0.6, respectively.
A bond is drawn between two individuals when their interdistance is
less than or equal to d . (a) When considering a connectivity distance
d = 1.1La , it is evident that all the relevant individuals in the patch are
not included in the same cluster. (b) For di = 1.22La , black-colored
individuals are clusterized in nearly one cluster and there is a clear
exclusion from the cluster of those individuals that do not have
enough resources, the gray ones. (c) For d = 2.0La it seems that
individuals other than those in collaboration are also included in the
cluster.

(a)

(b)

FIG. 7. (a) Changes of cluster size distribution with z, for df =
1.22La . For the lowest z values the distribution of cluster size is
Pareto-like (truncated power law), but as z increases Pareto and
Gaussian distributions are mixed up. (b) A close-up view of the
distributions around z = 0.5. This result confirms that around this
value of z the system has the smallest dispersion in the mean cluster
size and a maximum in the cluster frequency. This finding when
assessed jointly with the pair correlation function, Fig. 4, clearly
shows that clusters of around 16–20 individuals are homogeneously
distributed.

droplike clusters hexagonally arranged [Fig. 3(b)]. Another
result that reinforces this self-organization is the change from
a system with high sensitivity to one with low sensitivity
[Figs. 2(a) and 3] which occurs at z ∼ 0.5. The symmetry
in the system is clearly seen when the clusters’ size and their
spatial distribution are observed (see Figs. 3, 4, and 7). Over
z = 0.5 [Figs. 2(a) and 3(c)] clump size increases, the mix of
cluster size distributions being less noteworthy. A study has
been done to show that, for the chosen system parameters in
this work, the cluster frequency gives a maximum for z = 0.5
[Fig. 7(b)]. From this analysis, the desertification threshold
could be associated with the transition in the cluster size
distributions (maximum symmetry in the spatial distribution
of vegetation and an abrupt change in the sensitivity of the
system [30,31]). The transition in the distribution of cluster
sizes that happens at z ∼ 0.5, from a Gaussian distribution with
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a power law tail to a truncated power law and vice versa, might
indicate the presence of extreme events. The system may go to
a desertification due to a self-thinning process or increase its
density via a self-organization around this region (small causes
↔ big changes). As it has been previously shown [30,31],
critical transition to a barren state is characterized by regular
patterns because of a symmetry-breaking stability. It is worth
mentioning that for higher values of z, the system experiences
different self-organized patterns, from clumps to a percolated
system with voids hexagonally arranged [10,45]. It is worth
emphasizing that in the description of an arid or semiarid
ecosystem, the facilitative distance df together with the spatial
distribution of clusters and distribution of cluster size might
indicate how far the system from the desertification threshold
is. When the system is close to this point, individuals that
belong to the clumps should be separated by a distance smaller
than 1.22La , the facilitation distance, and the individual mean
density of the system should be close to but less than 0.2.

It is interesting to mention at this point that a more
exhaustive analysis of the kind of interaction studied here
has been done by Archer and Wilding [46]. They state that
the effect of repulsion generates an inhomogeneous region,
between the gas and liquid phases, limited by two first-order
transition lines, in substitution of the liquid-vapor critical
point and a portion of the associated liquid-vapor transition
line. This inhomogeneous region corresponds to the structured
system, from a fluid of spherical liquidlike clusters to a fluid
of spherical voids.

IV. DISCUSSION

Maximization of Shannon entropy is the first step to find
the resource probability distribution function of the ecosystem.
Then the minimization of resources [Eq. (2)] via the Monte
Carlo technique allows us to predict different biomass densities
and persistent vegetation patterns, when plants interact via a
facilitation-competition pairwise interaction. These competing
interactions when introduced in the description of real ecolog-
ical processes between individuals are, within the framework
of statistical mechanics, a powerful tool that provides an
alternative probabilistic interpretation of the behavior of
complex systems of dissimilar nature [10].

In this reductionist view of complexity, vegetation patterns
are determined by a balance between facilitation and competi-
tion for the scarce resources, mainly water. Each individual
obtains resources from a common zone of influence. The
area occupied by a plant at the critical threshold is πd2

f . The
facilitative distance df depends on the plant’s characteristics
and its environment. Evidence of the threshold transition
is shown when the quasihexagonal symmetry of clusters
[Fig. 3(b)] is broken by decreasing or increasing density
[Figs. 3(a) or 3(c), respectively]. The dimensionless function
CV (d) together with the cluster size distribution could be useful
tools to identify how far a system is from the critical threshold.

In agreement with the experimental predictions, the model
shows that facilitation in extreme environments (see [19] and
references therein) is more important than competition. In
fact, simulations with 〈rc〉 = 0.6 and 0 < z < 4.0 and εf = 0
have been done. Contrary to the work of Martinez et al. [29],

neither clusters nor patterns were observed in the simulated
ecosystems without collaboration.

Collaboration and competition for resources only reveals
a basic mechanism of surviving in a hostile environment.
Organization of complexity (evolutionary transitions) may
result from the facilitative-competitive interaction among the
individuals [47].

The present model reproduces results and vegetation
patterns as that predicted by the work of Gilad et al. [17,18].
In that theoretical work, for drylands with a precipitation less
than 500 mm/yr (in our representation, z < 0.5), densities
are of the order of or less than 0.3 [see Figs. 2(a) and 2(b)].
The patterns obtained in the present simulations (Fig. 3) are
similar to those obtained by Gilad and co-workers. Predicted
densities are in qualitative agreement with experimental values
for shrubs in water limited ecosystems [48].

The model introduces a tool for studying the self-organized
ecosystems in order to describe the system at individual scale.
As a consequence, it would be possible to compare the model
parameters with those from real ecosystems. Quantities that
describe individuals (structural ratio between crown and root
lengths, foliage density or facilitative strength, root length and
the geometry or strength of competition, etc.) can be included
in the model and simulated. The facilitative interdistance df

is an important parameter as it could be measured in arid or
semiarid ecosystems. It is worth remarking that in cellular
automata this distance is taken constant and equal to unity
(the distance between two adjacent cells in a grid) [1,9].
Other quantities, representing the external environment or the
inhomogeneities of the surface, like soil-water distribution
inside and outside the cluster, the slope of the surface and
runoff, etc., are feasible to introduce in the model.

In the present version, the model cannot capture time
evolution of the system, which can be very desirable when
studying how desertification evolves. Anyway, there are
some implementations in statistical mechanics in which it
is possible to do some equivalence of a Monte Carlo step
with a time step [49–51], an interesting improvement that
could be implemented in future works. Including time in
the simulation process might be a powerful tool in order to
study the reaction of the system when small variations in the
external water activity are considered, whether this variation
produces hysteresis, and the effects on the spatial distribution
of the clusters due to the addition of new individuals or the
deletion of those that die. Even more, in an individual-based
growth model, from a particular initial configuration, different
lineages can be tracked over time following an interesting
birth-death process [51].

The model outlined here could be easily extended to include
two or more species coexisting in the ecosystem, in order to
study or give some insight, for instance, in invasion biology or
in colonization processes [52].

ACKNOWLEDGMENTS

Financial support from Comisión de Investigaciones
Cientı́ficas de la Provincia de Buenos Aires CICPBA, Con-
sejo de Investigaciones Cientı́ficas y Tı́cnicas (CONICET),
Argentina, and Universidad Nacional de La Plata (UNLP),
Argentina are acknowledged.

052810-7



MEYRA, ZARRAGOICOECHEA, AND KUZ PHYSICAL REVIEW E 91, 052810 (2015)
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