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Abstract Bradyrhizobium diazoefficiens, a nitro-

gen-fixing endosymbiont of soybeans, is a model

strain for studying rhizobial denitrification. This

bacterium can also use nitrate as the sole nitrogen

(N) source during aerobic growth by inducing an

assimilatory nitrate reductase encoded by nasC

located within the narK-bjgb-flp-nasC operon along

with a nitrite reductase encoded by nirA at a different

chromosomal locus. The global nitrogen two-compo-

nent regulatory system NtrBC has been reported to

coordinate the expression of key enzymes in nitrogen

metabolism in several bacteria. In this study, we

demonstrate that disruption of ntrC caused a growth

defect in B. diazoefficiens cells in the presence of

nitrate or nitrite as the sole N source and a decreased

activity of the nitrate and nitrite reductase enzymes.

Furthermore, the expression of narK-lacZ or nirA-lacZ

transcriptional fusions was significantly reduced in the

ntrCmutant after incubation under nitrate assimilation

conditions. A B. diazoefficiens rpoN1/2mutant, lacking

both copies of the gene encoding the alternative sigma

factor r54, was also defective in aerobic growth with

nitrate as the N source as well as in nitrate and nitrite

reductase expression. These results demonstrate that

the NtrC regulator is required for expression of the

B. diazoefficiens nasC and nirA genes and that the

sigma factor RpoN is also involved in this regulation.

Keywords Alternative sigma factor �
Bradyrhizobium � Nitrate assimilation � Nitrate
reductase � Nitrite reductase � Two-component-

regulatory system

Abbreviations

Bjgb Bradyrhizobium japonicum haemoglobin

BN3 Bergersen minimal medium-nitrate

C Carbon

CFU Colony formation units

Flp Flavoprotein

MU Miller units

MV-NiR Methyl viologen-dependent nitrite

reductase

MV-NR Methyl viologen-dependent nitrate

reductase

N Nitrogen

NarK Nitrate/nitrite transporter

NasC Assimilatory nitrate reductase

NirA Assimilatory nitrite reductase

NO Nitric oxide
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NtrB Two-component system kinase

NtrC Two-component system response

regulator

OD500 Optical density-500 nm

PSY Peptone–salts–yeast extract

RpoN Alternative sigma factor

WT Wild-type

YEM Yeast-extract-mannitol

Introduction

Bacteria have developed diverse mechanisms to sense,

respond, and adapt to changes in the environmental

availability of nutrients (reviewed by Shimizu 2016).

Adaptive physiological responses to these changes

usually include two-component signal (TCS) trans-

duction systems that allow bacteria to respond to

diverse environmental stimuli (Stock et al. 2000).

Extensive studies have been done on several TCS

systems including NtrB–NtrC. This TCS is a classical

regulatory system involved in the regulation of

expression of genes in response to nitrogen limitation

(Jiang and Ninfa 1999, 2009; Pioszak et al. 2000;

Schumacher et al. 2013). NtrBC has been well

characterised in enteric bacteria (Merrick and

Edwards 1995; Reitzer 2003; Li and Lu 2007; van

Heeswijk et al. 2013). NtrB is the sensor kinase that

responds to an internal signal and autophosphorylates

on a conserved histidine residue. The phosphoryl

group of this histidine is then transferred to a

conserved aspartate residue of the response-regulator

protein NtrC within the receiver domain. Once

phosphorylated, NtrC binds DNA at specific promot-

ers and activates transcription of target genes (Weiss

et al. 1992; Chen and Reitzer 1995).

PII signal-transduction proteins are recognized to

coordinate the regulation of central carbon and

nitrogen metabolism (Leigh and Dodsworth 2007;

Forchhammer 2008). Under nitrogen-limiting condi-

tions, the ratio of a-ketoglutarate to glutamine

increases and stimulates the PII functions, thereby

activating the kinase activity of NtrB which, in turn,

leads to phosphorylation of NtrC. Recent studies have

proposed an in vivo model in which a-ketoglutarate
has a predominant regulatory role acting as a

metabolic signal of nitrogen regulation (Schumacher

et al. 2013). The phosphorylated NtrC activates the

transcription of genes involved in nitrogen scaveng-

ing, in metabolism, and in regulation (Zimmer et al.

2000), in conjunction with a specific sigma factor

(r54), the product of the rpoN gene (Reitzer and

Magasanik 1985; Ninfa et al. 1987; Kullik et al. 1991;

Merrick 1993; North et al. 1993).

In bacteria, nitrate-assimilation begins with the

transport of nitrate into the cell. Then, intracellular

nitrate is further reduced to nitrite by a cytoplasmic

molybdenum-containing nitrate reductase followed by

a sirohaem-containing nitrite reductase that reduces

nitrite to ammonia (Moreno-Vivián et al. 1999;

Richardson et al. 2001; Luque-Almagro et al. 2011).

The genetic organization of the assimilatory nitrate-

reducing systems (Nas) have been well characterised

in bacteria such as Rhodobacter capsulatus (Cabello

et al. 2004; Pino et al. 2006), Klebsiella oxytoca (Lin

and Stewart 1998), Azotobacter vinelandii (Gutiérrez

et al. 1995), Bacillus subtilis (Ogawa et al. 1995), and

Paracoccus denitrificans (Gates et al. 2011; Luque-

Almagro et al. 2013). In Gram-negative bacteria, the

nas genes are subjected to dual control: an ammonia

repression by the general nitrogen-regulatory NtrBC

system and a specific nitrate or nitrite induction

(Luque-Almagro et al. 2011).

Bradyrhizobium diazoefficiens is a soil Gram-

negative alphaproteobacterium able to form a symbi-

otic association with soybean plants. Like other

rhizobia species B. diazoefficiens can assimilate soil

N sources like ammonia (i.e., NH4
?) and nitrate in free

living conditions. In rhizobia, several studies have

reported the role of NtrC in the regulation of genes

involved in NH4
? metabolism (reviewed by Patriarca

et al. 2002). In contrast, very little information is

available on the function of NtrC in the control of

nitrate assimilation genes expression in rhizobia

(Szeto et al. 1987; Martin et al. 1988). Within this

context, recent DNA microarray-based transcriptional

profiling has revealed a NtrC-dependent regulon

operating in response to nitrogen limitation in B.

diazoefficiens and the role of NtrC in regulating the

utilization of nitrite as a sole N source (Franck et al.

2015). However, the involvement of NtrC on the

control of assimilatory nitrate reduction to nitrite has

not been reported so far.

In B. diazoefficiens, a recent genetic and biochem-

ical analysis has given novel insights into bacterial

nitrate assimilation (Cabrera et al. 2016). Unlike
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related bacteria that assimilate nitrate, the genes

encoding the assimilatory nitrate reductase (nasC)

and nitrite reductase (nirA) are located at separate

chromosomal loci. The nasC gene belongs to the

narK-bjgb-flp-nasC operon, which also codes for a

major facilitator superfamily–type nitrate and nitrite

transporter (NarK), a bacterial hemoglobin (Bjgb)

previously reported to be involved in NO detoxifica-

tion (Cabrera et al. 2011; Sánchez et al. 2011), and a

flavin-adenine-dinucleotide dependent NAD(P)H-ox-

idoreductase protein (Flp). The nirA gene is in a

cluster with loci containing a nitrate and nitrite

responsive regulator system (NasST). In B. diazoeffi-

ciens, the nitrate-dependent expression of the narK-

bjgb-flp-nasC operon and the nirA gene requires the

NasST system for transcription antitermination (Cabr-

era et al. 2016).

In this paper, we demonstrate that NtrC is essential

for the expression of the assimilatory nitrate and nitrite

reductase activities. We also report that the transcrip-

tion of the B. diazoefficiens narK-bjgb-flp-nasC

operon and the nirA gene in response to nitrate also

requires NtrC and that the alternative sigma factor

RpoN is essential for the expression of the NtrC-

dependent genes involved in nitrate and nitrite

assimilation.

Materials and methods

Bacterial strains, plasmids and primers

Table 1 lists the bacterial strains, plasmids and

primers used in this study.

Bacterial growth conditions

Bacteria were routinely grown at 28 �C in complete

yeast-extract-mannitol medium (YEM) (Vincent

1974). To test growth kinetics, a single rhizobial

colony cultured in 10 ml Evans minimal medium

(Evans et al. 1970) with 10 g mannitol l-1 as the

carbon source and 20 mM (NH4)2SO4 as the N source

was grown at 28 �C on a rotary shaker at 180 rpm for a

week. The culture was then diluted 1:100 in fresh

Evans medium and grown again for additional 3 days

under the same conditions. Next, this starter culture

was diluted 1:50 in Erlenmeyer flasks containing a

volume of the medium to be assayed equal to 20% of

the flasks’ capacity. Growth curves under different N

sources were performed by modifying the original

Evans formulation through the addition of 10 mM

NaNO3 or 1 mM NaNO2 as the sole N source. Growth

was monitored by measuring the optical density of the

cultures at 500 nm (OD500) and the number of viable

colony-forming units (CFU) estimated by plate counts

in solid YEM after the appropriate serial dilutions

every 24 h for 15 or 17 days.

Antibiotics were added to B. diazoefficiens cultures

at the following concentrations (mg ml-1): chloram-

phenicol 20; spectinomycin 200; kanamycin 200; and

tetracycline 100.

Escherichia coli strains were cultured in Luria–

Bertani medium (Miller 1972) at 37 �C. The antibi-

otics used were (mg ml-1): gentamycin, 10; kanamy-

cin, 25; and tetracycline, 10.

To test for enzymatic activities, B. diazoefficiens

strains were grown at 30 �C in peptone–salt–yeast-

extract (PSY) medium supplemented with 0.1% (w/v)

L-arabinose (Regensburger and Hennecke 1983).

Dilutions of these cultures were then transferred to

Bergersen minimal medium (Bergersen 1977) supple-

mented with 10 mM KNO3 as the sole N source (i.e.,

BN3 medium). Since the protocols for the determina-

tion of nitrate-reductase (NR) and nitrite-reductase

(NiR) activity had been optimized in Bergersen media,

we first confirmed that the growth phenotype of the

LP4488 mutant (see further on) was similar when

determined in Evans’s nitrate media (data not shown).

Construction of a B. diazoefficiens ntrC mutant

Cloning procedures — including DNA isolation,

restriction-enzyme digestion, ligation, and transfor-

mation — were performed as described previously

(Sambrook and Russell 2001). Biparental matings

were effected with the E. coli strain S17-1 (Simon

et al. 1983). Electroporation was carried out with a

Gene-Pulser system (Bio-Rad, Hercules, CA) at

1.5 V, 25 lF, and 200 X in a 0.1 cm gap-width

electroporation cuvette.

Genomic- and plasmid-DNA was isolated through

the use of the Wizard Genomic DNA purification Kit

(Promega) and Accuprep Plasmid MiniPrep DNA

Extraction Kit (Bioneer), respectively. Custom

oligonucleotide primers were supplied by Genbiotech

and the polymerase-chain reaction (PCR) run with the

Taq DNA polymerase from Embiotec or the Pfx
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polymerase from invitrogen. DNA was digested with

the Fast Digest (Fermentas) or Promega enzymes.

To obtain the B. diazoefficiens ntrC-deletion

mutant (ORF blr4488; http://genome.microbedb.jp/

rhizobase/), upstream (237-bp) and downstream (330-

bp) DNA fragments flanking the ntrC locus were

generated by PCR from total B. diazoefficiensDNA by

means of the ntrC50FW, ntrC50RV, ntrC30FW, and

Table 1 Bacterial strains, plasmids and primers used in this study

Genotype and phenotype Reference

Strains

E. coli

DH5a supE44 DlacU169 (/80 lacZ DM15) hsdR17 recA1 endA1 gyrA96

thi-1 relA1

Bethesda Research Laboratories

S17-1 Tra?, recA pro thi hsdR chr::RP4-2 Simon et al. 1983

B. diazoefficiens

USDA 110 Wild-type strain,Cmr US Department of Agriculture, Beltsville,

MD, USA

110spc4 USDA 110 derivative, Spcr Regensburger and Hennecke, 1983

LP4488 USDA 110 DntrC, Kmr This work

N50-97 110spc4 DrpoN1/2, Spc
r Kullik et al. 1991

4009 USDA 110::narK-lacZ, Cmr, Tcr Cabrera et al. 2016

4018 USDA 110::nirA-lacZ, Cmr, Tcr Cabrera et al. 2016

LP4488-

4009

LP4488::narK-lacZ, Cmr, Tcr This work

LP4488-

4018

LP4488::nirA-lacZ, Cmr, Tcr This work

110spc4-

4009

110spc4::narK-lacZ, Cmr, Tcr This work

110spc4-

4018

110spc4::nirA-lacZ, Cmr, Tcr This work

N50-97-

4009

N50-97::narK-lacZ, Cmr, Tcr This work

N50-97-

4018

N50-97::nirA-lacZ, Cmr, Tcr This work

Plasmids

pG18mob2 Rhizobial suicide plasmid Kirchner and Tauch 2003

pMFL4488 pG18mob2::ntrC5́::Km::ntrC3́, Kmr This work

pDB4009 pSUP3535::narK-lacZ, Tcr Cabrera et al. 2016

pDB4018 pSUP3535:: nirA-lacZ, Tcr Cabrera et al. 2016

Primers Sequence Reference

ntrC50FW AGCCGCGCAAGACCACCTTC This work

ntrC50RV TGCCGGTGAGCCTGACCTCA This work

ntrC30-SphI FW TAGCATGCCTCTATCCGCAGGACGTGAT This work

ntrC30-HindIII RV AAAAAGCTTGCTCCGATAGACCTGGATGT This work

ntrB50(checking) GCGCTTCCCAATCCCGTGCT This work

cheqRVntrC (checking) ATTCCGGCTTGACTGGGATG This work

Km FW (checking) TGTATGGGAAGCCCGATG Mongiardini et al. 2016

Km RV (checking) TGCCATTCTCACCGGATT Mongiardini et al. 2016
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ntrC30RV primers (Table 1). These fragments were

inserted into the rhizobial suicide plasmid pG18mob2

(Kirchner and Tauch 2003) as a SmaI and a SphI-

HindIII fragment. Then, the kanamycin-resistance

cassette from the pUC4k plasmid (Vieira and Messing

1982) was inserted in the BamHI restriction site,

resulting in the pMFL4488 plasmid (this work). This

plasmid was introduced into E. coli S17-1 electro-

competent cells that served as donor in a conjugative

plasmid transfer to B. diazoefficiens USDA 110. The

transconjugants obtained were screened as kanamy-

cin-resistant, gentamycin-sensitive and the correct

recombination at the target gene checked by both PCR

and genetic sequencing (Macrogen Inc, Korea). The

following experiments were accordingly carried out

with the clone referred to as LP4488.

Determination of nitrate- and nitrite-reductase

activities

B. diazoefficiens cells were grown under aerobic

conditions in PSY medium, harvested by centrifuga-

tion at 80009g for 10 min at 4 �C, washed twice with
BN3 medium, and inoculated at an OD500 of ca. 0.3 in

the same minimal medium. After 48 h the cells were

harvested, washed with 50 mM Tris/HCl buffer (pH

7.5) to remove excess nitrite, and then resuspended in

1 ml of the same buffer before the assay for enzymatic

activity. Methyl-viologen (MV)-dependent nitrate

reductase (MV-NR) and nitrite reductase (MV-NiR)

activities were measured as described by Delgado and

coworkers with dithionite-reduced MV as an artificial

electron donor (Delgado et al. 2003). The MV-NR and

MV-NiR activities are expressed as nanomol of nitrite

produced (for NR) or consumed (for NiR) per mg

protein-1 min-1. For more details see Cabrera et al.

(2016).

b-galactosidase activity of narK-lacZ and nirA-

lacZ fusions

The transcriptional-fusion plasmids pDB4009 and

pDB4018 containing narK-lacZ and nirA-lacZ

fusions, respectively (Table 1), were integrated by

homologous recombination into the chromosomes of

the wild-type (WT) strain 110spc4, the ntrC mutant,

and the rpoN1/2 double mutant (strain N50–97;

Regensburger and Hennecke 1983) to produce strains

110spc4-4009, 110spc4-4018, and LP4488-4009 plus

LP4488-4018, N50-97-4009, and N50-97-4018,

respectively (Table 1). The correctness of recombina-

tion was checked by PCR and by sequencing analysis

of the genomic DNA isolated from each strain.

The cells were grown aerobically in PSY medium,

collected by centrifugation, washed twice with nitro-

gen-free Bergersen medium, and finally incubated

aerobically in the same medium with or without the

addition of 10 mM NaNO3 as the N source. After

cultures having an initial OD500 of about 0.3 had been

incubated for 48 h, the ß-galactosidase activity was

assayed in triplicate on permeabilized cells from at

least three independently grown cultures for each

strain and condition, as previously described (Miller

1972). The absorbance data at 420 and 500 nm were

read for all samples and cultures with a plate reader

(SUNRISE Absorbance Reader, TECAN, Männedorf,

Switzerland) and recorded by means of the software

XFluor4 (TECAN). The specific activities were finally

calculated in Miller units (MU).

Analytical methods

The nitrite concentration was estimated after diazoti-

zation by adding the sulfanilamide–naphthylethylene-

diamine-dihydrochloride reagent (Nicholas and Nason

1957) and the protein concentration measured by the

Bio-Rad assay (Bio-Rad Laboratories, Richmond,

CA) with a standard curve of varying bovine-serum-

albumin concentrations.

Results

Involvement of NtrC and RpoN in nitrate-

and nitrite-dependent growth

The B. diazoefficiens USDA 110–NtrBC two-compo-

nent system is encoded by the blr4487 and blr4488

genes belonging to the nifR3-ntrB-ntrC-gene cluster,

respectively. The targets of the NtrC protein are

usually r54-dependent, and involved in the transcrip-

tion of genes related to nitrogen metabolism. B.

diazoefficiens has two functional, highly conserved

rpoN genes (rpoN1 and rpoN2) encoding for the r54-

RNA-polymerase alternative factor RpoN (Kullik

et al. 1991). In this work, we have constructed a B.

diazoefficiens mutant strain (i.e., LP4488) where the

ntrC gene (i.e., blr4488) has been deleted. To
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investigate the role of NtrC and RpoN in nitrate

assimilation, the B. diazoefficiens mutant ntrC and the

double mutant rpoN1/2 were incubated aerobically in

Evans minimal medium with 10 mM NaNO3 as the

sole N source. Growth was determined by monitoring

the OD500 (Fig. 1, Panel a) or the number of CFU

(Fig. 1, Panel b). In contrast to the B. diazoefficiens

USDA 110 parental strain, the ntrCmutant exhibited a

severe defect in growth, reaching an OD500 of only

0.097 compared to 3.8 determined in the WT cells

after 15 days of incubation (Fig. 1, Panel a). As

observed for ntrC mutant, growth rates of the rpoN1/2

mutant were very low compared to those observed in

the B. diazoefficiens 110spc4 WT strain (Fig. 1, Panel

a). The maximal CFU reached by the parental strains

was around 7.2 9 1010 CFU ml-1 after 15 days incu-

bation, whereas ntrC and rpoN1/2 mutants reached

values only around 6.5 9 108 CFU ml-1 (Fig. 1,

Panel b). In addition, we confirmed that the growth

phenotype of the mutants in Bergersen medium was

the same as that observed in Evans medium (data not

shown), which observation was useful for the follow-

ing studies.

To test the capacity of the ntrCmutant to use NH4
?

as an N source, cells were grown to early stationary

phase with nitrate (to a final OD500 value of 0.17).

Then, 20 mM NH4Cl was added to the USDA 110

(WT) and the ntrC mutant cultures. A significant

increase in growth of the ntrC mutant cells was

observed that attained a OD500 similar to that reached

by the WT cells after 10 days of incubation in the

presence of NH4
? (Fig. 2). These observations con-

firm that NtrC has a key role in nitrate, but not NH4
?,

assimilation. In order to further confirm that possibil-

ity, we also tested the capacity of the NtrC-deficient

LP4488 strain to grow in mineral-salts minimum

medium with 20 mM NH4Cl (a high-nitrogen condi-

tion) or 0.1 lMNH4Cl (a nitrogen-limiting condition)

as the sole N source. In concordance with previous

reports, ntrCmutant displayed similar growth kinetics

to those of the WT strain in the presence of either

concentration of NH4Cl as the sole N source (data not

shown; Martin et al. 1988).

In order to study the involvement of NtrC and RpoN

in nitrite assimilation, cells from the wild-type strains

USDA 110 and 110spc4 along with the ntrC and

rpoN1/2 mutants were incubated in Evans minimal

medium with 1 mM NaNO2 as the sole N source.

Figure 3, Panel a indicates that a significantly delay in

growth measured as OD500 was observed in the ntrC-

or the rpoN1/2-mutant cells compared to that recorded

with the WT strains. In a similar manner, the kinetics

Fig. 1 Nitrate-dependent aerobic growth of wild-type B.

diazoefficiens USDA 110 (black circles) and 110spc4 (white

upright triangles) strains and the ntrC (white squares), and

rpoN1/2 (black inverted triangles) mutants in Evans minimal

medium with 10 mM nitrate as N source. (Panel a) optical

density at 500 nm of cell cultures. In the figure, the optical

density of the cultures at 500 nm is plotted on the ordinate as a

function of the time in days on the abscissa. (Panel b) viable cell

counts as colony-forming units (CFU) per ml of culture. In the

figure, the colony-forming units per ml of the cultures is plotted

on the ordinate as a function of the time in days on the abscissa.

The results presented are the means with the error bars

representing the standard deviation from two biologic replicates

assayed in triplicate. The absence of error bars indicates the

error to be smaller than the symbol
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of colony-formation counts by ntrC or rpoN1/2mutants

exhibited a delay with respect to the corresponding

time observed inWT cells (Fig. 3, Panel b). Moreover,

mutants strains OD500 and CFU ml-1 started increas-

ing between days 7 and 8 while their parental strains

growth rose significatively at day 3 (ANOVA data

analysis, p\ 0.05; Tukey test). Nevertheless, after

10 days incubation the growth rates and extent of

colony formation of both ntrC or rpoN1/2mutants were

very similar to those obtained by both the USDA 110

and the 110spc4 wild-type strains, with no statistically

significant differences between the four strains by the

end of the culture period tested (Fig. 3, Panels a, b).

Nitrate- and nitrite-reductase activities are

controlled by NtrC and RpoN

In this work, we also investigated whether the inability

of the ntrC and rpoN1/2 mutants to grow with nitrate or

nitrite as the sole N source resulted from an alteration

in the activity of the assimilatory nitrate and nitrite

reductases, respectively. Here, MV-NR and MV-NiR

activities were measured in whole cells following

aerobic incubation with nitrate as the sole N source.

Accordingly, and as expected, the respective NR rates

observed in the ntrC and rpoN1/2 mutants were about

18- and 23-fold lower than those recorded in the WT

cells (ANOVA data analysis, p\ 0.01) (Table 2).

These results strongly support the inability of those

mutants to grow in the presence of nitrate as the only N

source (Fig. 1). The NR activity that is lost in the ntrC

and rpoN1/2 mutants corresponds to that of NasC since

a similar phenotype had been previously observed in a

B. diazoefficiens nasC mutant incubated under the

same conditions (Cabrera et al. 2016).

NiR activity was decreased by about 5-fold in the

ntrC and rpoN1/2 mutants with respect to the WT

strains (ANOVA data analysis, p\ 0.01). As shown

in Table 2, about 20% of the WT NiR activity, was

retained in the ntrC and rpoN1/2mutants. This residual

activity could explain the observed capacity of ntrC

and rpoN1/2 mutants to grow (Fig. 3, Panel a, b) after

10 days of incubation in a medium containing nitrite

as the only N source.

These results clearly suggest that the expression of

the B. diazoefficiens assimilatory nitrate reductase and

nitrite reductase encoded by nasC and nirA respec-

tively are controlled by NtrC and RpoN.

Role of NtrC and RpoN on the transcription

of nasC and nirA

In order to evaluate the involvement of NtrC and

RpoN in the expression of the nasC and nirA genes

involved in the synthesis of the assimilatory NR and

NiR, we used the narK-lacZ and nirA-lacZ transcrip-

tional fusions previously constructed by Cabrera et al.

(2016). The narK-lacZ fusion, which contains the

promoter region of narK, the first gene of the narK-

bjgb-flp-nasC operon containing nasC. Both the narK-

lacZ and the nirA-lacZ transcriptional fusions were

transferred to the WT strains (USDA 110 and

110spc4) and to the ntrC and rpoN1/2 mutants. ß-

galactosidase activity was monitored in the resulting

strains incubated in the absence or presence of nitrate

as the sole N source (Fig. 4). As previously reported

(Cabrera et al. 2016), low levels of ß-galactosidase

activity were observed in the narK-lacZ and nirA-lacZ

fusions in USDA 110 incubated without nitrate,

whereas the presence of this molecule induced the

expression of the two fusions by approximately 4.4-

Fig. 2 Ammonium effect on the nitrate-dependent aerobic

growth of the wild-type B. diazoefficiens USDA 110 (black

circles) and the ntrCmutant (black and white squares) in Evans

minimal medium with 10 mM sodium nitrate as the sole

N source. The optical density at 500 nm is plotted on the ordinate

as a function of time in days on the abscissa to illustrate bacterial

growth. As indicated in the figure, 20 mM ammonium chloride

was added to two of the four ntrC-mutant cultures 5 days after

inoculation (white squares). The results presented are the means

with the error bars representing the standard deviation from two

biologic replicates assayed in triplicate. The absence of error bars

indicates the error to be smaller than the symbol
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and 2.4-fold, respectively. Similarly, nitrate induced

the expression of ß-galactosidase in the narK-lacZ and

nirA-lacZ fusions in the wild-type strain 110spc4 by

about 4.2- and 1.6-fold, respectively (Fig. 4). That the

ß-galactosidase activities from the narK-lacZ fusions

were almost undetectable in the ntrC and rpoN1/2

mutants incubated in the presence of nitrate was

notable, with those activities representing less than 1%

of the WT levels (ANOVA data analysis, p\ 0.01)

(Fig. 4). This very low transcription of the narK-bjgb-

flp-nasC operon observed in the ntrC and rpoN1/2

mutants is consistent with the low levels of NasC

activity observed in both mutants and strongly

demonstrates the regulatory role of NtrC and RpoN

in the transcription of the nasC gene. These results are

in agreement with previous reports in other bacteria,

where the regulation of nasC transcription by NtrC has

already been demonstrated (Ishida et al. 2002; Ohashi

et al. 2011; Romeo et al. 2012; Wang et al. 2012).

Similarly, as observed for the narK-lacZ fusion, a

significant decrease in nirA-lacZ expression of about

15- and 11-fold was observed in the ntrC and rpoN1/2

mutants, respectively, compared to the WT levels

(ANOVA data analysis, p\ 0.01) (Fig. 4). Neverthe-

less, about 7 and 9% of the WT ß-galactosidase

activity from the nirA-lacZ fusion was still retained in

those two mutants, respectively. These basal levels of

nirA-lacZ expression in both mutants might explain

the residual NiR activity observed in the ntrC and

rpoN1/2 mutants as well as the growth capacity

recovery of those mutants after 10 days of incubation

in a medium containing nitrite as the only N source.

Fig. 3 Nitrite-dependent aerobic growth of the wild-type

strains B. diazoefficiens USDA 110 (black circles) and

110spc4 (white upright triangles) and the mutant strains ntrC

(white squares) and rpoN1/2 (black inverted triangles) in

minimal medium with 1 mM sodium nitrite as the sole

N source. (Panel a) optical density at 500 nm of cell cultures

is plotted on the ordinate as a function of time in days on the

abscissa. (Panel b) viable cell counts as colony forming units

(CFUs) per ml of culture is plotted on the ordinate as a function

of time in days on the abscissa. The results presented are the

means with the error bars representing the standard deviation

from two biologic replicates assayed in triplicate. The absence

of error bars indicates the error to be smaller than the symbol

Table 2 Methyl-viologen-dependent nitrate-reductase (MV-

NR) and nitrite-reductase (MV-NiR) activities of Bradyrhizo-

bium diazoefficiens USDA 110 and 110spc4 wild-type strains

and ntrC and rpoN1/2 mutant strains incubated aerobically for

48 h in Bergersen minimum medium with 10 mM nitrate as the

nitrogen source

Strain Relevant genotype Activities

MV-NRa MV-NiRb

USDA 110 Wild-type 8.77 ± 1.42 2.49 ± 0.40

LP4488 ntrC 0.49 ± 0.07 0.45 ± 0.25

110spc4 Wild-type 7.83 ± 0.80 2.20 ± 0.22

N50-97 rpoN1/2 0.34 ± 0.07 0.42 ± 0.18

The data are expressed as the means ± the standard deviation

from at least two different cultures assayed in triplicate
a MV-NR and bMV-NiR activities are expressed as nmol

NO2
- produced or consumed mg protein-1 min-1
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Discussion

In K. oxytoca (Wu et al. 1999), A. vinelandii (Wang

et al. 2012) and Pseudomonas aeruginosa (Li and Lu

2007; Romeo et al. 2012), NtrBC plays a role in the

transcription of genes related to nitrate assimilation,

but in rhizobia the main function of NtrC reported thus

far implicates the transcriptional regulation of genes

involved in NH4
? assimilation (Patriarca et al. 2002).

It has been previously demonstrated the involvement

of NtrC on nirA expression as well as the inability of a

B. diazoefficiens ntrCmutant to grow on nitrite as sole

N source (Franck et al. 2015). Our biochemical results

confirm the NtrC control over nirA and demonstrate

for the first time the involvement of NtrC as a

transcriptional regulator of the nasC gene encoding

the assimilatory nitrate reductase as well as in the

ability of B. diazoefficiens to grow with nitrate as the

sole nitrogen source. Indeed, we showed that NtrC is

essential for the expression of the assimilatory nitrate

and nitrite reductase activities.

The results obtained for the growth kinetics of a B.

diazoefficiens ntrC mutant have demonstrated the

previously reported role ofNtrC in the nitrate-dependent

growth of this bacterium (Martin et al. 1988). Consistent

with these observations, the inability of another ntrC

mutant of Sinorhizobium meliloti to grow on nitrate as

the sole N source has also been reported (Szeto et al.

1987). A Bradyrhizobium japonicum rpoN1/2 mutant

was also found to be unable to use nitrate, suggesting a

role of the sigma factor r54 on the NtrC-dependent

expression of nitrate assimilation. These results confirm

previous findings where the requirement of at least one

functional rpoN gene in nitrate assimilation by B.

japonicum was reported (Kullik et al. 1991).

Interestingly, in this work it has also been con-

firmed that under nitrogen-limiting conditions (i.e.,

0.1 lM NH4Cl), the growth of the ntrC mutant was

similar to the WT strain (data not shown). This finding

suggests that NtrBC does not play a main role in NH4
?

assimilation, perhaps because of a possible cross talk

with another two-component regulatory system. In

fact, downstream from the ntrBC genes, B. diazoeffi-

ciens contains the ntrYX loci that code for an

additional two-component regulatory system, NtrYX.

In support of this hypothesis, in Azospirillum brasi-

lense and Azorhizobium caulinodans such a possible

mutual interaction between the NtrYX and NtrBC has

also been suggested (Pawlowski et al. 1991; Ishida

et al. 2002). Furthermore, the possibility that the NtrB

and NtrY in R. capsulatus can substitute for each other

as phosphodonors for NtrC has also been proposed

(Drepper et al. 2006).

With respect to nitrite-dependent growth, the ntrC

and rpoN1/2mutants exhibited a strong delay in growth

kinetics, but were nevertheless able to reach WT

Fig. 4 ß-galactosidase

activity derived from the

narK-lacZ and nirA-lacZ

fusions present in the WT

strains B. diazoefficiens

USDA 110 or 110spc4 and

the ntrC or rpoN1/2 mutants.

Cells were cultured

aerobically for 48 h in

minimal medium with

(white bars) or without

(black bars) 10 mM nitrate

as the sole N source. In the

figure, the ß-galactosidase

activity in Miller units (MU)

is plotted on the ordinate for

each of the strains indicated

on the abscissa. Data are the

means ± the standard error

from at least three

independent cultures,

assayed in triplicate
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growth rates after 10 days of incubation. This pattern

is in contrast to recent studies where a B. diazoefficiens

ntrCmutant was unable to growwith nitrite as the only

N source (Franck et al. 2015). This apparent discrep-

ancy could be explained by the different growth

conditions used by Frank and colleagues from those

used in this work. Whereas they used MMB minimal

medium containing 2 mM nitrite as N source and 4 ml

glycerol l-1 as the carbon source, in these experiments

we used Evans minimal medium containing 1 mM

nitrite and 10 g mannitol l-1 as those respective

sources. The difference in the C/N ratio present in

the two growth formulations might possibly have

altered the effect of NtrC on nirA expression and

consequently on the ability of the mutants to grow on

nitrite as the sole N source.

The growth defect of ntrC and rpoN1/2mutants with

nitrate as the N source could be explained by the

significant inhibition of NR expression in those

mutants. In fact, NR activity analyses showed that

only 5% of WT NR activity was retained in either of

the two mutants. Similarly, narK-lacZ expression in

those mutants was nearly undetectable.With respect to

NiR activity and ß-galactosidase activity from a nirA-

lacZ fusion, a significant decrease in both activities

was also observed in the ntrC and rpoN1/2 mutants.

However, a residual NiR activity (20% of WT

activity) as well some basal levels of nirA-lacZ

expression were still present in both mutants. These

basal levels of nirA expression and NiR activity could

explain how both ntrC and rpoN1/2 mutants were able

to grow on nitrite after 10 days of incubation, albeit

after a significant delay.

The stronger effect of NtrC and RpoN on the NR

and ß-galactosidase activity from a narK-lacZ fusion

than on the NiR and ß-galactosidase activity from a

nirA-lacZ fusion might explain the different growth

responses of the ntrC and rpoN1/2 mutants in media

containing nitrate and nitrite as the respective sole N

sources. As stated above, in contrast to the majority of

bacteria where the genes encoding an assimilatory

nitrate reductase or nitrite reductase are arranged in

the same operon (for a review see Luque-Almagro

et al. 2011), in B. diazoefficiens the nasC and nirA are

located at separate chromosomal loci. This genetic

organization may explain the slight differences

observed between the expression of those genes with

respect to their dependence on NtrC and RpoN.

Moreover, in A. vinelandii and P. denitrificans it has

been demonstrated that in addition to NtrBC, the

NasST two-component system also controls nitrate

assimilation, with NasT an RNA-binding protein with

a positive effect over transcription and the sensor NasS

a negative regulator (Wang et al. 2012; Luque-

Almagro et al. 2013). In B. diazoefficiens, the genes

coding for the NasST system are clustered with nirA,

in contrast to other bacteria, and it was reported that

this two-component system also controls nitrate

assimilation in this rhizobium (Cabrera et al. 2016).

Thus, it could be possible that NasST contributes to

nirA expression, allowing a partial remaining NiR

activity and the recovery of ntrC mutant growth in

nitrite. Nevertheless, further studies must be carried

out in order to elucidate how NtrBC and NasST

control the expression of nitrate and nitrite reductases

in B. diazoefficiens.

Taken together, the results reported here clearly

demonstrate the fundamental role of NtrC and RpoN

in the transcriptional control of the B. diazoefficiens

nasC and nirA genes, those being involved in nitrate

assimilation.
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Zürich, Institute of Microbiology, Zürich, Switzerland) for
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