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Abstract Let (X, ν) and Y be a measured space and a CAT (0) space, respectively. If
M2(Y ) is the set of measures on Y with finite second moment then a map bar : M2(Y ) →
Y can be defined. Also, for any x ∈ X and for a map ϕ : X → Y , a sequence

{
EN,ϕ(x)

}

of empirical measures on Y can be introduced. The sequence
{
bar

(
EN,ϕ(x)

)}
replaces in

CAT (0) spaces the usual ergodic averages for real valuated maps. It converges in Y (to a
map ϕ (x)) almost surely for any x ∈ X (Austin J Topol Anal. 2011;3: 145–152). In this
work, we shall consider the following multifractal decomposition in X :

Ky,ϕ =
{
x : lim

N→∞ bar
(
EN,ϕ(x)

) = y

}
,

and we will obtain a variational formula for this multifractal spectrum.

Keywords Multifractal analysis · Barycenter map · CAT(0)-spaces

Mathematics Subject Classification (2010) 37C45 · 37C85

1 Introduction

An important subject in the area of Dimension Theory of Dynamical Systems is the Multi-
fractal Analysis. It was originated in physics to study the behavior of measures supported
on strange attractors. When chaotic dynamical behaviors are analyzed, invariant sets with a
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complex mathematical structure can be found. The analysis of these attractors can be done
by a fractal decomposition of such invariant sets.

The general formulation of the Multifractal Analysis can be presented as follows. Let X

be a set and f : X → [−∞,+∞]; X can be partitioned in level sets:

Kα = Kα (f ) = {x : f (x) = α} .

Let G be a function defined on sets, and let F (α) = G (Kα), the map F is called the
multifractal spectrum specified by the pair (f,G). An important example is when

f (x) = Dμ (x) := lim
r→0

log (μ (Br (x)))

− log r
,

the pointwise dimension of the measure μ, and F (α) = dimH Kα, the Hausdorff
dimension. This is called the pointwise dimension spectrum.

Dynamical examples are (with T a map T : X → X):
Local entropies spectrum. In this case, we have

f (x) = hμ (T , x) and F (α) = htop (T , Kα) ,

where hμ (T , x) is the pointwise entropy of the measure μ and htop (T , .) is the topological
entropy defined by Bowen [2] (here the underlying set need not to be neither compact nor
invariant).

Ergodic averages. Here,

f (x) = lim
n→∞

1

n

n∑

i=0

ϕ
(
T i (x)

)
, with ϕ : X → R.

The problem of describing these spectra has been extensively studied. For dynamical sys-
tems satisfying special conditions, the description can be given by a map which is the
Legendre transform of the multifractal map F (α). For the spectrum of ergodic averages, a
variational description is given in [7]:

htop (T , Kα) = sup

{
hμ (T ) :

∫
ϕdμ = α

}
,

where hμ (T ) is the measure-theoretic entropy.
Here, we propose to study spectra specified by a map f valuated in more general spaces.

Let X be a compact metric space with a Lebesgue measure ν, T : X → X, and let
ϕ : X → Y, where Y is a complete, separable, CAT (0) space. Empirical measures on Y

across the image by ϕ : X → Y of the orbits of T can be defined by

EN,ϕ(x) := 1

N

N−1∑

n=0

δϕ(T n(x)), (1)

where δ is the point mass measure.
Let M2(Y ) be the set of measures on Y with finite second moment, a map bar :

M2(Y ) → Y , called the barycenter map, can be defined. With bar(μ) is denoted the
barycenter of the measure μ. It holds the contraction property

d (bar (μ1) , bar (μ2)) ≤ W2 (μ1, μ2) ,

where W2 is the 2−Wasserstein metric in M2(Y ). This important result was initially proved
by Sturm [6] and extended by Navas [4] to Buseman spaces. In the work of Navas, a new
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definition of barycenter, where the map bar is applied to measures with finite first moment
and controlled by 1−Wasserstein metric, was introduced.

For maps in the class L2(X, Y, ν) (see next section for the definition), the sequence
bar(EN,ϕ(x)) converges in Y , almost surely for any x, to a map ϕ (x) which is constant
almost surely when the action is ergodic [1]. In fact, this result was established in the more
general setting of amenable, locally compact groups �, provided for this general situation
the existence of adequate sequences (Fn) ⊂ �. This barycentric convergence can be seen
as the CAT (0) version of the Birkhoff ergodic average convergence, which corresponds to
Y = R. In his above mentioned work, Navas extended the result by Austin to L1 maps
valuated in non-positively curved spaces

This article is inspired in the work by Austin, and so we work in the L2 setting. We
believe that the main result can be extended to the L1 setting and maps valuated in non-
positively curved spaces.

We consider the multifractal decomposition

Ky,ϕ =
{
x : lim

N→∞ bar(EN,ϕ(x)) = y

}

and we describe the corresponding multifractal spectrum. We obtain a variational formula
like Takens and Verbitski but with a contraction on the set

{ν : bar (ϕ∗ (ν)) = y} ,

where ϕ∗ (ν) is the pushforward of the measure ν by ϕ.
For the dynamics, we shall impose the conditions of uniform separation and the

g−almost product property (g − APP), which is weaker than specification. Also, we shall
consider a class of maps ϕ : X → Y with the following distortion property: for any ε > 0,

there exist a number η > 0 such that for any N holds that z ∈ BN,ε (g, x) =⇒ ϕ
(
T i (z)

) ∈
BN,ε

(
T i (x)

)
for any i ∈ 	N ⊂ {0, 1, ..., N − 1}. The definitions of BN,ε (g, x) and 	N

are remembered in next section as well as the g−almost product property.
The main result to be proved in this work reads:

Theorem 1 Let T : X → X with the g−almost product property and with the uniform
separation property. Let ϕ : X → Y be a map with Y a geodesic, complete, separable,
CAT (0)−space, and satisfying the bounded distortion property. Then

htop

(
T , Ky,ϕ

) = sup {hν (T ) : ϕ∗ (ν) ∈ M2 (Y ) , bar (ϕ∗ (ν)) = y} .

To proof it, we shall go along the lines of reference [5], where the variational result
Takens and Verbitski gave in [7] is generalized.

2 Preliminary Definitions

A geodesic space (Y, d) is a CAT (0)–space if for every geodesic triangle 
 in Y there is
a comparison triangle 
 in R2, i.e., a triangle with sides of the same length as the sides
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of 
, such that distances between points on 
 are less than or equal to the distances between
corresponding points on 
.

Let M (Y ) be the space of measures on Y , This space is endowed with the metric

d (μ1, μ2) =
∞∑

n=0

2−n

∣∣∣∣

∫
ϕndμ1 −

∫
ϕndμ2

∣∣∣∣ ,

where {ϕn} is a dense subset of C (X) with 0 ≤ ϕn ≤ 1. The topology induced by this
distance is known as the ∗−weak topology.

Let M2 (Y ) be the set of all the measures in M (Y ) with finite second moment, i.e., the
measures μ which satisfy

∫

Y

d(y, z)2dμ(z) < ∞, for any y ∈ Y.

A map ϕ : X → Y belongs to the class L2(X, Y, ν), where ν is a measure on X, if
∫

X

d(ϕ(x), y)2dν(x) < ∞ for any y ∈ Y.

The space L2(X, Y, ν) can be endowed with the metric

d2 (ϕ, ψ) :=
√∫

X

d (ϕ (x) , ψ (x))2 dν(x). (2)

The barycenter map bar : M2 (Y ) → Y is defined in the following way: for any μ ∈
M2 (Y ), there is an unique y ∈ Y which minimizes

∫
Y

d(y, z)2dμ(z) [3], thus is defined
bar (μ) = y, and the value y is defined as the barycenter of the measure μ.

A coupling of two measures μ1, μ2 ∈ M (Y ) is a measure m ∈M (Y × Y ) that projects
into μ 1 and μ 2 on the first and the second factor, respectively. The 2− Wasserstein metric
is defined as

W2 (μ1, μ2) = inf
m coupling of

μ1,μ2∈M(Y )

√∫

Y×Y

d (y, z)2 dm(y, z). (3)

We recall that the map bar is controlled by W2 [6]: if μ1, μ2 ∈ M2 (Y ) then

d (bar (μ1) , bar (μ2)) ≤ W2 (μ1, μ2) . (4)

The dynamical ball for T : X → X is

Bn,ε(x) =
{
z : max

{
d
(
T i (x) , T i (z)

)
: i = 0, 1, .., n

}
< ε
}

Let g : N → N be a non-decreasing, non-bounded function such that

g(n)

n
< 1 and

g(n)

n
→ 0 as n → ∞.

The dynamic ball for T and g is defined as:

Bn,ε (g, x) = {z : there is a 	n ⊂ {0, 1, ..., n − 1} with

card ({0, 1, . . . , n − 1} − 	n) ≤ g(n) and

max
{
d
(
T i (x) , T i (z)

)
: i ∈ 	n

}
< ε
}

.
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Definition 1 A map T : X → X has thespecification property if: for any ε > 0, there is an
integer M (ε) such that for any collection of intervals Ij = [aj , bj

]⊂ Z
+, j = 0, · · · , k−1

such that aj − bj−1 ≥ M (ε), j = 1, · · · , k − 1 and for any x0, · · · , xk−1 ∈ X there is a
x ∈ X such that

d
(
T aj +n (x), T n(xj )

)
< ε, for 0 ≤ n ≤ bj − aj , j = 0, 1, 2., , , k − 1.

Definition 2 A map T : X → X satisfies the g−almost product property (APP ), with g a
function as above, if there exists a map m : R+ → N such that for any points x1, x2, ..., xk ∈
X , for any ε1 > 0, ε2 > 0, ..., εk > 0 and for any numbers ni ≥ m (εi) , i = 1, 2, .., k holds

k⋂

j=1

T nj−1
(
Bnj ,εj

(
g, xj

)) 
= ∅.

The specification property implies APP , but there are systems with APP that do not fulfil
specification [5].

Definition 3 Two points x, z are (n, ε)−separated if d
(
T j (x) , T j (z)

)
> ε

holds for some j = 0, 1, . . . , n. A set E ⊂ X is (n, ε) −separated if all points
of E are (n, ε) −separated. A pair of points x, z are (δ, n, ε)−separated
if card

{
j = 0, 1, ..., n − 1 : d

(
T j (x) , T j (z)

)
> ε
} ≥ δn. A set E ⊂ X is

(δ, n, ε)−separated if all points of E are (δ, n, ε) −separated.
Let ϕ : X → Y with Y a geodesic, complete, separable, CAT (0) space, if F ⊂ M (Y )

then define

XN,F,ϕ := {x : EN,ϕ(x) ∈ F
}
.

By RN,ε,F,ϕ will be denote the maximal cardinality of (N, ε)−separated sets contained in
XN,F,ϕ and by Rδ,N,ε,F,ϕ the maximal cardinality of (δ,N, ε)−separated sets contained in
XN,F,ϕ .

Let ν ∈ M (X) and let Fϕ∗(ν) be the filter of neighborhoods of ϕ∗ (ν) in the weak
topology in M (Y ). We consider the following entropies:

S (ν, ε, ϕ) = inf
F∈Fϕ∗(ν)

lim sup
N→∞

1

N
log RN,ε,F,ϕ,

S (ν, ε, ϕ) = inf
F∈Fϕ∗(ν)

lim inf
N→∞

1

N
log RN,ε,F,ϕ,

and

S (ν, ϕ) = lim
ε→0

S (ν, ε, ϕ) ,

S (ν, ϕ) = lim
ε→0

S (ν, ε, ϕ) .

If hν (T ) is the measure-theoretic entropy of the measure ν and the map T , then we shall
see that S (ν, ε, ϕ) ≤ hν (T ), for any ϕ, where the equality holds when ν is ergodic.
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Finally, we recall the Bowen definition of topological entropy of sets. Let Z ⊂ X and let
C (n, ε, Z) be the collection of finite or countable coverings of the set Z by balls Bm,ε (x)

with m ≥ n. Let

M (Z, s, n, ε) = inf
B∈C(n,ε,Z)

∑

Bm,ε(x)∈B
exp (−sm) ,

and set

M (Z, s, ε) = lim
n→∞ M (Z, s, n, ε) .

This limit does exist since M (Z, s, n, ε) is a non-decreasing function of n. There is an
unique number s such that M (Z, s, ε) jumps from +∞ to 0. Let

H(Z, ε) = s = sup {s : M (Z, s, ε) = +∞} = inf {s : M (Z, s, ε) = 0}
and [2]

htop (T , Z) = htop (Z) = lim
ε→0

H(Z, ε).

The number htop (Z) is the topological entropy of Z.

3 Description of the Barycentric Averages Multifractal Spectrum

As we have mentioned, we want to analyze the multifractal spectrum for the decomposition

Ky,ϕ =
{
x : lim

N→∞ bar(EN,ϕ(x)) = y

}
.

Recall that we are considering the class of maps ϕ : X → Y with the bounded distortion
property as defined above.

Definition 4 The map T : X → X has the uniform separation property if the following
condition is satisfied: for any γ > 0, there are numbers δ > 0, ε > 0 such that for any
ergodic measure ν and for any F ∈ Fϕ∗(ν) there is a natural N = N(F, ϕ, ν) such that for
any N ≥ N

Rδ,N,ε,F,ϕ ≥ exp(N (hν (T ) − γ )).

Definition 5 A subset M0 of M (X) is entropy dense if for any ν ∈ M (X), any F ∈
Fϕ∗(ν) and any h > hν (T ) there is a ρ ∈ M0 such that ϕ∗ (ν) ∈ F and h > hρ (T ).

Proposition 1 Let us consider a dynamical system (X, T ) having the g−almost product
property. Let x1, x2, ..., xk ∈ X , ε1 > 0, ε2 > 0, ..., εk > 0 and Nj ≥ m

(
εj

)
, j =

1, 2, .., k, be given. Let us assume that for ρ1, ρ2, ..., ρk ∈ M (Y ) holds ENj ,ϕ

(
xj

) ∈
Brj

(
ρj

)
. Then for any z ∈

k⋂

J=1
T −Mj−1

(
BNj ,εj

(
g, xj

))
and for any probability measure ρ

holds
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dM
(
EMk,ϕ(z), μ

) ≤ 1

Mk

k∑

j=1

Nj

[
1

Nj

(
g
(
Nj

)+ ηj

(
Nj + g

(
Nj

))+ rj + dM
(
ρj , μ

))]
,

(5)
with Mj = N1 + N2 + ... + Nj . The numbers ηj are those that correspond to εj in the
bounded distortion property of ϕ.

Proof We have

ENj ,ϕ

(
T Mj−1(z)

)
= 1

Nj

Nj −1∑

i=0

δ
ϕ
(
T

Mj−1 (z)
), (6)

then

EMk,ϕ(z) = 1

Mk

k∑

j=1

NjENj ,ϕ

(
T Mj−1 (z)

)
. (7)

Therefore,

dM
(
ENj ,ϕ

(
xj

)
, ENj ,ϕ

(
T Mj−1(z)

))
≤ 1

Nj

Nj −1∑

i=0

d
(
ϕ
(
T i
(
xj

))
, ϕ
(
T Mj−1+i (z)

))
.

Since
T Mj−1 (z) ∈ BNj ,εj

(
g, xj

)
, for any j = 1, 2, ..., k,

by the bounded distortion property of the map ϕ and the metric considered in Y , we obtain

dM
(
ENj ,ϕ

(
xj

)
, ENj ,ϕ(T Mj−1 (z))

) ≤ 1

Nj

card
({

0, 1, ..., Nj−1 − 1
}
) − 	Nj

)

+ηj

(
Nj − g(Nj )

Nj

)
≤

1

Nj

[
g(Nj ) + ηj

(
Nj − g(Nj )

)]
.

Let μ ∈ M (Y ), so

dM
(
EMk,ϕ(z), μ

) = dM

⎛

⎝ 1

Mk

k∑

j=1

NjENj ,ϕ

(
T Mj−1 (z)

)
, μ

⎞

⎠ ≤

1

Mk

k∑

j=1

Nj

[
dM

(
ENj ,ϕ

(
xj

)
, ENj ,ϕ

(
T Mj−1(z)

))
+ dM

(
ENj ,ϕ

(
xj

)
, ρj

)+ dM
(
ρj , μ

)]≤

1

Mk

k∑

j=1

Nj

[
1

Nj

[
g(Nj ) + ηj

(
Nj − g(Nj )

)]+ rj + dM
(
ρj , μ

)
]

Next, we consider some results about the entropy maps ν �−→ S (ν, ϕ) and ν �−→
S (ν, ϕ).
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Lemma 1 For any measure ν ∈ M(X) and ϕ : X → Y holds

S (ν, ϕ) ≤ hν (T ) .

Proof Let us suppose that S (ν, ϕ) = lim
ε→0

inf
F∈Fϕ∗(ν)

lim
N→∞ sup

1

N
log RN,ε,F,ϕ > hν (T ),

so there are numbers ε > 0, δ > 0 such that for ε ≥ ε

inf
F∈Fϕ∗(ν)

lim
N→∞ sup

1

N
log RN,ε,F,ϕ ≥ hν (T ) + 2δ. (8)

Let us consider a sequence {DN } of closed, convex sets in M(X) with

⋂

N≥1

DN = {ν} .

If {EN } be a sequence of (N, ε) −separated sets, then, like in the demonstration of the
variational principle for the entropy (Theorem 8.6 in [8]) it can be proved that when the
sequence of measures

νN := 1

cardEN

∑

x∈EN

1

N

N−1∑

n=0

δT n(x) ∈ DN. (9)

weakly converges to a measure ν holds

lim
N→∞

1

N
log cardEN ≤ hν (T ) .

Let us consider a family of sets(N, ε) −separated sets {EN }, of maximal cardinality in
XN,CN ,ϕ, with

CN = ϕ∗ (DN).

Since {νN } converges weakly to ν and ϕ∗ is continuous, we have that {ϕ∗ (νN)} converges
to ϕ∗ (ν), and so CN ∈ Fϕ∗(ν), for any N ≥ 1.

Now

lim
N→∞ sup

1

N
log RN,ε,CN ,ϕ ≥ hν (T ) + 2δ,

but if x ∈ EN then
EN,ϕ(x) ∈ CN

and x ∈ XN,CN,ϕ
.Therefore, if the EN are of maximal cardinality in XN,CN ,ϕ , then

hν (T ) ≥ lim
N→∞

1

N
log cardEN = lim

N→∞
1

N
log RN,ε,F,ϕ

contradicting (8).

Lemma 2 If T : X → X has the uniform separation property and the set of ergodic
measures is entropy-dense then holds S (ν, ϕ) = hν (T ).

Proof Let γ > 0 and F ∈ Fϕ∗(ν), when ν is ergodic for γ /2 there are δ > 0, ε > 0 such
that

Rδ,N,ε,F,ϕ ≥ exp [N ( hν (T )) − γ /2)] ,
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for n ≥ N = N (F, γ /2, μ). Let ρ be non-ergodic, and let h := hρ (T ) − γ /2 < hρ (T ) ,

then there exists an ergodic measure ν with

hν (T ) − hρ (T ) < γ/2.

Thus, there is a natural N = N (F, γ /2, ν) such that

Rδ,N,ε,F,ϕ ≥ exp [N ( hν (T ) − γ /2)] > exp
[
N
(
hρ (T ) − γ

)]

for N ≥ N . Then

Rδ,N,ε,F,ϕ ≥ exp
[
N
(
hρ (T ) − γ

)]
,

for N ≥ N1 (F, η, ρ) := N (F, η/2, ν).
Therefore,

hν (T ) ≤ lim
ε→0

lim
δ→0

inf
F∈Fϕ∗(ν)

lim
n→∞ inf

1

N
log Rδ,N,ε,F,ϕ ≤ S (ν, ϕ) ≤ S (ν, ϕ) .

By Lemma 1 is valid that S (ν, ϕ) ≤ hν (T ) , for any measure ν. Thus,

S (ν, ϕ) = hν (T ) .

The Theorem 1 will be derived from a more general result. Let Vϕ(x) be the set of limit
points of the sequence

{
EN,ϕ(x)

}
and let � be a compact, connected subset of M2 (Y ). Now

set

G�,ϕ = {x : Vϕ(x) = �
}
.

The multifractal spectrum appears as a particular case, which corresponds to

� = A(y) := {μ : bar (μ) = y} .

Notice that lim
N→∞ bar(EN,ϕ(x)) = y is equivalent, by the continuity of bar, to that the

sequence
{
EN,ϕ(x)

}
has all its limit points in the set A(y)

Before proving the Theorem 1, we find the upper bound for htop(G�,ϕ).

Proposition 2 It holds:

htop(G�,ϕ) ≤ inf { hν (T ) : ϕ∗ (ν) ∈ �}

Proof Let s := sup { hν (T ) : ϕ∗ (ν) ∈ �} and let s be such that s − s = 2δ > 0. For
F ∈ Fϕ∗(ν) we have

inf
F∈Fϕ∗(ν)

lim
N→∞ sup

1

N
log RN,ε,F,ϕ ≤ hν (T ) .

For any ε > 0, there is a neighborhood F (ν, ε) of ϕ∗ (ν) and a natural N = N (F (ν, ε))

such that
1

N
log RN,ε,F (ν,ε),ϕ ≤ hν (T ) + δ,

for N ≥ N .
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Let E be a (N, ε) −separated set in XN,F(ν,ε) which maximal cardinality. If it is
considered the covering

{
BN,ε (x) : x ∈ E

}
of Xn,F(μ,ε) then results

M
(
XN,F(μ,ε), s, N, ε

) ≤ exp(−ns) RN,ε,F (ν,ε),ϕ ≤
exp(−N (δ − s)) exp (Nhν (T ) ) ≤ exp(−Nδ).

Let
g�,ϕ = {x : {EN,ϕ(x)

}
has a limit point in �

}
.

Let us cover � with sets
{
F
(
νj , ε

)}
j=1,...,kε

, so if
{
EN,ϕ(x)

}
has a limit point in � then

x ∈ XN,F(νj ,ε) for N ≥ N
(
F
(
νj , ε

))
and for some 1 ≤ j ≤ kε . Thus, if

N ≥ max
{
N
(
F
(
νj , ε

)) : 1 ≤ j ≤ kε

}

then

M
(
g�,ϕ, s, N, ε

) ≤ kε

∑

m≥N

exp(−mδ),

and so
M
(
g�,ϕ, s, N, ε

)
< ∞.

Hence,

htop( g�,ϕ) ≤ s = sup { hν (T ) : ϕ∗ (ν) ∈ �} .

Let
Gν,ϕ = {x : Vϕ(x) = {ϕ∗ (ν)}} ,

therefore htop(Gν,ϕ) ≤ hν (T ) and G�,ϕ ⊂ Gν,ϕ, for any ν ∈ M (X). So that

htop(G�,ϕ) ≤ inf { hν (T ) : ϕ∗ (ν) ∈ �} (10)

Remark As seen, to obtain the above result, the conditions of uniform separation and almost
product property are not used. They are used for getting the lower bound for htop

(
G�,ϕ

)
.

Proof of the Theorem 1: Let γ > 0 and h := inf { hν (T ) : ϕ∗ (ν) ∈ �}−γ , we construct,
following Pfister1, a set G contained in G�,ϕ and with htop(G) ≥ h. Let ε > 0, there
is a sequence of measures {ρ1, ρ2, ..., ρn} ⊂ � such that if μ ∈ � then dM (μ, ρi) <

ε, i = 1, 2, ..., n. Then can be found an infinite sequence {ρ1, ρ2, ..., ρn, ...} ⊂ � with
dM (ρn, ρn+1) → 0, as n → ∞ and such that {ρi : i > n} = �. There exist δ > 0, ε > 0
such that for F ∈ Fϕ∗(ν), there is a natural N = N(F, ϕ, ν) such that for any N ≥ N

Rδ,N,ε,F,ϕ ≥ exp [N ( hν (T ) − γ )] .

Let {rk}, {εk} be sequences with rk ↘ 0, εk ↘ 0 and such that if {Nk} are the correspond-
ing of {εk} in the bounded distortion property of ϕ then ηk ↘ 0. We can now consider a
sequence of measures {ρk} such that Brk (ρk) ∈ Fϕ∗(ν). Thus, for ε1 < ε, there is a sequence
{Nk} and a family of

(
δ,Nk, ε

)−separated sets {Ek} ⊂ XNk,Brk
(ρk) such that

cardEk ≥ exp
[
N h

]
.

So that if x ∈ Ek then dM
(
ENk,ϕ (x) , ρk

)
< rk . It can be assumed that
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δNk > 2g (Nk) + 1 and
g (Nk)

Nk

< εk.

It holds that if x ∈ Ek , z ∈ BNk,εk (g, x) then ENk,ϕ (z) ∈ Brk+2εk (ρk). Let us choose an
increasing sequence {Lk}, Lk ∈ N, such that

Nk+1 ≤ rk
k∑

j=1
LjNj and

k−1∑

j=1
LjNj ≤ rk

k∑

j=1
LjNj . Now let us consider the sequences

{
Nj́

}
,
{
έj

}
,
{
Éj

}
defined as follows:

for j = L1 + ... + Lk−1 + r , 1 ≤ r ≤ Lk let Nj́ = Nk, έj = εk and Éj = Ek .

Let Mj =
j∑

l=1
Nĺ and let

Gm =
⎧
⎨

⎩
z : T Mj−1 (z)) ∈

⋃

xj ∈Éj

BNj́ ,έj

(
g, xj

)
, xj ∈ Éj , j = 1, .., m

⎫
⎬

⎭
. (11)

Now set
G :=

⋂

m≥1

Gm.

Any element of G can be labeled by a sequence x1 x2..., with xj ∈ Éj . Also is valid: let
xj , yj ∈ Éj , xj 
= yj , if x ∈ BNj́ ,έj

(
g, xj

)
, y ∈ BNj́ ,έj

(
g, yj

)
then

max
{
d (Tk(x), Tk(y)) : k = 0, ..., Nj − 1

}
> 2ε,

with ε < ε/4. Let us see now that
G ⊂ G�,ϕ.

For this let
{
ρ́m

}
be the sequence of measures in Y defined by:

ρ́m = ρkif

k−1∑

j=1

LjNj ≤ m ≤
k∑

j=1

LjNj .

We may suppose that
j∑

l=1
NlLl ≤ Mk ≤

j+1∑

l=1
NlLl , so that ρ́Mk

= ρj+1. Thus

dM
(
EMk,ϕ (z) , ρ́Mk

) ≤ 1

Mk

j∑

l=1

NlLl × dM

⎛

⎝E j∑

l=1
NlLl,ϕ

(z) , ρ́Mk

⎞

⎠

+NjLj

Mk

[
ρj + 2Kj + dM

(
ρj , ρj+1

)]

+
Mk −

j∑

l=1
NlLl

Mk

[
ρj+1 + 2Kj+1

]

≤ 2rj + 2Kj + dM
(
ρj , ρj+1

)+ rj+1 + 2Kj+1.

Therefore, if
j∑

l=1
NlLl ≤ Mk ≤

j+1∑

l=1
NlLl , then dM

(
EMk,ϕ (z) , ρ́Mk

) → 0, as j → ∞, so

that the sequence
{
EMk,ϕ (z)

}
, z ∈ G, has the same limit points of

{
ρ́m

}
, which is consid-

ered to have all its limit points in G�,ϕ . This proves that G ⊂ G�,ϕ and so htop(G�,ϕ) ≥
htop(G) ≥ h.
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Let s < h, the set G is closed, and so it is compact, let us consider a finite covering U
by balls Bm,ε (x) having non-empty intersection with G. Now

M (G, s, N, ε) = inf
U∈C(n,ε,G)

∑

Bm,ε(x)∈U
exp (−sm) ,

it can considered balls BMr,ε (x), instead of Bm,ε (x), with Mr ≤ m ≤ Mr+1, and let U0 be
the covering formed by these such a balls. Thus

M (G, s,N, ε) = inf
U∈C(n,ε,G)

∑

Bm,ε(x)∈U
exp (−sm) ≥ inf

U∈C(n,ε,G)

∑

BMr ,ε∈U0

exp (−sMr+1) .

Let U0 be a covering by balls BMr,ε (z) and let m = max
{
r : BMr,ε (z) ∈ U0

}
. Let

Wk :=
k∏

i=1

Ei, Wm =
m⋃

k=1

Wk.

Let us consider the points xj , yj ∈ Éj , xj 
= yj , as we pointed out earlier, if x ∈
BNj́ ,έj

(
g, xj

)
, y ∈ BNj́ ,έj

(
g, yj

)
then d

(
T l(x), T l(y)

)
> 2ε, for any l = 0, ..., Nj − 1,

and with ε < ε/4. Now for any x ∈ BMr,ε (z) ∩ G there is a uniquely determined
z = z(x) ∈ Wr .

We have, as a particular case of the earlier results, that

htop(Gν,ϕ) = hν (T ) , for any ν ∈ M (X) .

Recall that x ∈ Ky,ϕ and Vϕ(x) ⊂ A(y) := {μ : bar (μ) = y} are equivalent statements.
Let ν ∈ M (X) with ϕ∗ (ν) ∈ A(y) ∩ M2 (Y ), therefore Gν,ϕ ⊂ GA(y),ϕ and

htop(GA(y),ϕ) ≥ htop( Gν,ϕ) ≥ hν (T ) for any ν ∈ M (X) withϕ∗ (ν) ∈ A(y)∩M2 (Y ) .

For the other inequality, we have

GA(y),ϕ ⊂ gA(y),ϕ,

and so

htop(GA(y),ϕ) ≤ htop(gA(y),ϕ) ≤ sup { hν (T ) : ϕ∗ (ν) ∈ A(y) ∩ M2 (Y )} ,

(by Proposition 2).
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