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1. Introduction

In this article we consider the bi-dimensional nonlinear Poisson 
equation under Cauchy boundary conditions on a rectangle. We write the 
equation in the general form 

 ( ) ( ) ( ) ( ), , = , , ,xx yyu x y u x y g u x y f x ya β+ +    (1.1)

where we assume that the unknown function ( ),u x y  is defined in the 
rectangle [ ] [ ] 2

1 1 2 2, ,D a b a b≡ × ⊂   over the reals  , a  and β  are real 
numbers and g  and f  are functions: :g →  ; :f  D → . According 
to the values taken by the constants a  and β  and the functions g  and 
f, Eq.(1.1) yields particular equations which can be interpreted in terms 
of phenomena that are of interest to diverse branches of Science and 
Technology. Physically, the most relevant particular case is, perhaps, for 

4= eπa
ε

− ; = 0β  ; [ ] =1
:= expm s

s ss
b

eZg c Z
k T

 
• − • 

 
∑  and ( ),u x y  representing 

the electrostatic potential for a system of m  species of point particles at 
number concentrations sc , constrained to move on a plane with dielectric 
constant ε . Species s  ( = 1,2, ,s m

) are assumed to carry a charge seZ   
( =e  electron charge) such that electroneutrality 

=1
= 0m

s ss
c Z∑  is verified. 

In this case Eq.(1.1) is named nonlinear Poisson-Boltzmann[1]. By 
linearization of [ ]g •  the linear version of the Poisson-Boltzmann equation 

is obtained in the form ( ) ( )2 2, = ,u x y u x yκ∇  with 
2

2 2
=1

4= m
s ss

B

e c Z
k T
πκ
ε ∑  the 

square of the so called Debye-Hückel inverse length κ . Here T  denotes 
the system temperature and Bk  is the Boltzmann constant.

In general, the linear version of Eq.(1.1): 

 ( ) ( ) ( ) ( ), , = , , ,xx yyu x y u x y u x y f x ya β+ +  (1.2)

is called the Helmholtz equation. In electrostatics Eq.(1.2), with a = 0, = 1β  
and ( ),f x y  giving the charge distribution in D , yields the specifically 
called Poisson equation which can be derived from the Gauss law. If still 
we consider the absence of charge distribution ( ( ), 0f x y ≡ ) the Laplace 
equation remains. If we take 2=a κ ; = 0β , we obviously recover the 
linear Poisson-Boltzmann equation above mentioned. The Helmholtz 
equation appears also in many other branches of knowledge. With = 0β  it 
often arises in the study of physical problems involving partial differential 
equations (PDEs) in both space ( ),x y  and time t  and represents the time-
independent form that results from applying the method of variables 
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separation to the original equation[2], a  being the separation constant. A 
typical example is the wave equation 

 ( ) ( ) ( )2

1, , , , = , ,xx yy ttu x y t u x y t u x y t
c

+

that appears in areas of physics such as the study of electromagnetic 
radiation, seismology, acoustics, etc. and so the associated Helmholtz 
equation may be related to these problems.

The non linear Poisson Eq.(1.1) as well as its linear version Eq.(1.2) 
have been numerically solved for several values of their parameters and 
expressions for the functions g  and f  and also for different boundary 
conditions using diverse methods. For example, Atkinson and Hansen[3] 
used Garlekin method to solve the nonlinear Poisson equation on the unit 
disk with zero Dirichlet boundary conditions. In general the techniques 
to solve Eqs. 1.1 and 1.2 include finite difference[4], finite elements[5], 
boundary integral methods (BIM)[6]-[8], etc.

In this paper we consider Eqs.(1.1-1.2) in their general form under 
Cauchy conditions on the boundary D∂ : 

 ( ) ( ) ( ) ( )1 1 1 2= , = ; = , =xu x a y y u x a y yϕ ϕ  (1.3 a)

 ( ) ( ) ( ) ( )1 3 1 4= , = ; = , =xu x b y y u x b y yϕ ϕ  (1.3 b)

 ( ) ( ) ( ) ( )2 5 2 6, = = ; , = =yu x y a x u x y a xϕ ϕ  (1.3 c)

 ( ) ( ) ( ) ( )2 7 2 8, = = ; , = = ,yu x y b x u x y b xϕ ϕ  (1.3 d)

and numerically solve them by transforming the involved problem into a 
bi-dimensional inverse moment one. This approach was already suggested 
by Ang et. al.[9] in relation with the heat conduction equation and we have 
applied it to the nonlinear Klein-Gordon equation[10].

The work is organized as follows. In principle, we consider separately 
the linear and the nonlinear equations. Next section is devoted to the first 
one. There we transform Eq.(1.2) into an integral equation by using Green 
identity. The resulting integral equation is considered as a bi-dimensional 
Hausdorff moment problem which is regularized by solving a related 
finite problem as we did in reference [11] and also discuss in Appendix A. 
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In section III the nonlinear Poisson equation is considered. Now we view 
the resulting integral equation, obtained from the application of Green 
identity, as a bi-dimensional generalized moment problem of the type 
we have discussed in reference [12] for just one dimension and that we 
extend to involve two dimension integrals in[10] (see also Appendix B). 
In each of both cases we validate the corresponding numerical procedure 
by applying it to solve an equation that we specifically build from a given 
function in such a way that it be the exact solution.

2. Linear Poisson equation (Helmholtz equation)

2.1 Green identity

This section will be devoted to the linear Poisson equation (1.2) in 
the domain [ ] [ ]0, 0,D M M≡ ×  with M →∞ . According to our program we 
firstly transform the PDE into an integral equation using Green identity. 
To this let take the auxiliary function 

 ( ), ; , = xr ysh x y r s e e− −  (2.1)

that verifies 

 ( ) ( ) ( ) ( )2 2, ; , , ; , = , ; , .rr ssh x y r s h x y r s x y h x y r s+ +  (2.2)

In the region D [ ] [ ]= 0, 0,M M×  we apply the planar Green identity 

 
D D D

u hdA u h dA u h nd∫∫ ∫∫ ∫∇ + ∇ ∇( ) ∇
∂

2 . = .� � �  (2.3)

 where D∂  is the contour of the region D .
Replacing here expression 2.1 for h  and using Eq.(2.2) together with 

Eq.(1.2) we obtain 

 
( ) ( ) ( ) ( ) ( ) ( )2 2

0 0

, ; , , , , ; , = ,
M M

x y h x y r s u r s u r s h x y r s drds x ya φ + − ∫ ∫  

 (2.4)
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 where 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

0 0

0 0

,

, ; , , , , ; , , ,

, ; ,0 ,0 ,0 , ;0, 0, 0,

, ; , , .

M M

s r

M M

s r

M M

x y

h x y r M u r M yu r M dr h x y M s u M s xu M s ds

h x y r u r yu r dr h x y s u s xu s ds

h x y r s f r s drds

φ

β

≡ + − +      

− + + +      

+

∫ ∫

∫ ∫

∫ ∫
 

(2.5)

2.2 Hausdorff moment problem

We assume that 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

, ; , , , 0lim

, ; , , , 0.lim

M

r
M

M

s
M

h x y M s u M s xu M s ds

h x y r M u r M yu r M dr

→∞

→∞

+ →  

+ →  

∫

∫

Then, taking the limit M →∞  in Eq.(2.5), we have 

 ( ) ( ) ( ) ( )2 2

0 0

, ; , , = , .x y h x y r s u r s drds x ya φ
∞∞

∗+ −∫∫  (2.6)

with 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

0 0

,

, ; ,0 ,0 ,0 , ;0, 0, 0,

, ; , , .

s r

x y

h x y r u r yu r dr h x y s u s xu s ds

h x y r s f r s drds

φ

β

∗

∞ ∞

∞∞

≡ − + + +      

+

∫ ∫

∫∫
 

  (2.7)

Setting =x m  and =y n   ( ),m n∈  we obtain

 ( )
0 0

, = , , = 0,1,2,mr ns
mne e u r s drds m nm

∞∞
− −∫∫ 

 (2.8)
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 where

 µ
φ

αmn

m n
m n

=
,

.
2 2

∗ ( )
+ −( )

 (2.9)

 This can be viewed as a bi-dimensional generalized Stieltjes moment 
problem. By changing variables ( ) ( )1 2, ,r s z z→  where 1 = rz e− ; z2 = e–s, 
we have a Hausdorff moment problem given by 

 ( )
1 1

1 2 1 2 1 2
0 0

, = , , = 0,1,2,m n
mnz z w z z dz dz m nm∫∫ 


 (2.10)

where  ( ) ( ) ( )2 2
1 2 1 21 , 1 / 1 1mn m n m nm φ a a a a a∗  ≡ + + + + + + + + + − 

 and 

 ( ) ( )1 2
1 2 1 2 1 2, = ln , ln .w z z z z u z za a − −

Here, 1a and 2a  are conveniently chosen numbers so that the 
moments mnm  be well defined. Eqs. (2.9) and (2.10) represent a bi-
dimensional Hausdorff moment problem for ( )1 2,w z z . We have studied 
this problem in reference [11]. There we first consider the relative finite 
moment problem, say Eq. 2.9 but with , = 0,1,2, ,m n N

; ( N ∈ ) 
whose solution is expanded 

 ( ) ( )1 2 1 2
=0 =0

, = ,ij ij
i j

w z z P z zl
∞ ∞

∑∑

where ( ) ( ) ( )1 2 1 2, =ij i jP z z P z P z with ( )iP z   ( )= 0,1,2,i 

 the Legendre 
polynomials defined in [0, 1 and the coefficients 

ijl  are 

 ( ) ( ) ( )
1 1

1 2 1 2 1 2
0 0

= , , , = 0,1,2, .ij ijw z z P z z dz dz i jl ∫∫ 

 Then we estimate ( )1 2,w z z  by truncating the expansion: 

 ( ) ( ) ( )1 2 1 2 1 2
=0 =0

, , = ,
N N

N ij ij
i j

w z z w z z P z zl≈ ∑∑  (2.11)

 where the coefficients ijl  are explicitly given by 

 ( )
1 2 1 2

1 2

= , = 0,1,2, ,
=0 =0

ij ik jk k
k k

ji
c c i j Nkl m∑ ∑ 

 (2.12)

 with 

 ( )= 2 1 1 k
ik

i i k
c i

k k
+  

+ −   
  

 (2.13)
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In order that this method of truncated expansion[13] be valid we 
require[10] that φ∗ ( ) ∈ ∞[ ) × ∞[ ) x y L, 0, 0,2  and 

 ( ) ( ) ( )2 2

0 0

, , < .x y
x yxu x y yu x y e dxdy

∞∞
+ + ∞ ∫∫  (2.14)

In the Appendix A can be viewed the proof of the following theorem, 
which adapts some of the results of reference [10] to the present context:

Theorem 1:  Calling ( ) ( )1 2, = ,x y
N N

x yu x y e e w e ea a − − , if ( ),u x y  verifies 

 ( ) 1, x

w
u x y e E≤

 ( ) 2, x
x w

u x y e E≤

 ( ) 3, y

w
u x y e E≤

 ( ) 4, ,y
y w

u x y e E≤

where 1E , 2E , 3E , 4E  are positive constants and the norm ( ) 2
,

w
f x y  is 

defined as 

 ( ) ( ) ( ) ( )2 2 1 2 1 21 2

0 0

, , ,
w

x yf x y f x y e e dxdya a
∞∞

− + − +
≡ ∫∫  (2.15)

 then

 ( ) ( )
( )

( )2 2 2 2 2 2 2
1 1 2 2 3 42

1, , .
4 1N w

u x y u x y E E E E
N

a a− ≤ + + +
+

 (2.16)

Moreover if the moments ( )1 21 , 1mn m nm φ a a≡ + + + +  have error 
such that ( ) 2

=1 =1
= N NT

mnm n
Tr mm m ε≤∑ ∑ , then 

 
( ) ( )

( )
( )2 2 2 2 2 2 2 2 2

1 1 2 2 3 42
1, , ,

4 1N w
u x t u x t E E E E c

N
a a ε− ≤ + + + +

+
 (2.17)

 with ( )( )
8

2 6
6

2= 2 1 1 2
2 1

Nc N N+ +
−

.  
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Example 1: As an example of application of the procedure outlined, we 
numerically solve the linear Poisson equation 

 ( ) ( ) ( ) ( ) ( ), , = , 2 2 2 x y
xx yyu x y u x y u x y x y x e− ++ − − −  

with the boundary conditions: 

 ( ) ( )= 0, = 0; = 0, = y
xu x y u x y ye−  

 ( ) ( ), = 0 = 0; , = 0 = x
yu x y u x y xe−

 and compare our result with the exact solution 

 ( ) ( ), = .x yu x y xye− +

Here we use = 5N  moments and obtain ( ) ( )5 , , = 0.000556895
w

u x t u x t− . 
In Fig.1 the two surfaces are shown.

3. Nonlinear Poisson equation

In this Section we consider the nonlinear Poisson equation defined in 
general by Eq.(1.1) with the boundary conditions 1.3.

3.1 Green identity

In this case we use as the auxiliary function 

 ( ) ( )1, ; , = cos[ ]x rh x t r s e ys− +  (3.1)

 that verifies 

 ( ) ( ) ( ) ( )2 2, ; , , ; , = , ; , .rr ssh x y r s h x y r s x y h x y r s+ −  (3.2)

If we take here =x y  then we have 

 ( ) ( ), ; , , ; , = 0.rr ssh y y r s h y y r s+

In the region [ ] [ ]1 1 2 2, ,D a b a b≡ ×  we apply the planar Green identity 
(2.3). Replacing there the expression 3.1 for h  and using Eq.(3.2) together 
with Eqs.(1.1) and (1.3d) we obtain 
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 α φ
a

b

a

b

g u r s h y y r s drds y
1

1

2

2

, , ; , =∫ ∫ ( )  ( ) ( )  (3.4)

 where 

 

φ y h y y b s u b s h y y a s u a s ds
a

b

r r

a

( ) ≡ − ( ) ( ) − ( ) ( ) 

+

∫
2

2

1 1 1 1, ; , , , ; , ,

11

1

2 2 2 2

1

1

, ; , , , ; , ,
b

s s

a

b

s

h y y r b u r b h y y r a u r a dr

h

∫

∫

( ) ( ) − ( ) ( ) 

+ yy y r b u r b h y y r a u r a dr

h y y b

s

a

b

r

, ; , , , ; , ,

, ;

2 2 2 2

2

2

1

( ) ( ) − ( ) ( ) 

− ∫ ,, , , ; , ,

, ; ,

1 1 1

1

1

2

2

s u b s h y y a s u a s ds

h y y r s

r

a

b

a

b

( ) ( ) − ( ) ( ) 

+ ∫ ∫β (( ) ( )u r s drds, .

 (3.5)

3.2 Generalized moment problem

Defining the kernel 

 ( ) ( ), ; , ; , = cos[ ]yrK r s y h y y r s e ys−≡  (3.6)

 we have 

 
a

b

a

b

g u r s K r s y drds y
1

1

2

2

, , ; = 1∫ ∫ ( )( ) ( ) − ( )
α
φ  (3.7)

By using a basis ( ){ } =0m m
y

∞
Ψ  we transform this bi-dimensional 

Fredholm integral equation of the first kind into a bi-dimensional 
generalized moment problem of the type we study in reference [12]: 

 
a

b

a

b

m mg u r s K r s drds m
1

1

2

2

, , = = 0,1,2,∫ ∫ ( )( ) ( ) ( )µ 

 (3.8)
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where 

 K r s K r s y y dym
a

b

m, = , ;
2

2

( ) ( ) ( )∫ Ψ  (3.9)

 and the moments mm are

 µ
α

φm
a

b

my y dy= 1 .
2

2

− ( ) ( )∫ Ψ  (3.10)

If the functions ( ){ },m m
K r s are linearly independent the problem of 

generalized moments defined by Eqs. (3.8)-(3.10) can be solved as we do 
in [12]: finding the solution ( ) ( )( ), = ,r s g u r sχ  to the corresponding finite 
problem, say with  = 0,1,2, ,m N

   ( N ∈ ). Thus, if ( )g u  has continuous 
inverse, then ( )1 ,g r sχ−     will be a estimation of ( ),u r s .

Let consider the basis { } =0
( , )i i
r sψ ∞  obtained by applying the Gram-

Schmidt orthonormalisation process on ( ){ } =0
,

N
m m

K r s  and then adding 
to the resulting set the necessary functions until an orthonormal basis is 
achieved. Thus   

 ψ ψ ψ ψ δi j
a

b

a

b

i j ijr s r s r s r s drds i j( , ) ( , ) = ( , ) ( , ) = ( , = 0,1,2
1

1

2

2

| ∫ ∫ ,,...)

and the solution ( ),r sχ  can be expanded:

 ( )
=0

, = ( , ),i i
i

r s r sχ lψ
∞

∑

but we approximate it by truncating the expansion[11]: 

 χ χr s r sN, ,( ) ( )≈  (3.11)

 where 

 ( )
=0

= = 0,1,2, ,
i

i ij j
j

C i Nl m∑ 

 (3.12)
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 with the coefficients ijC  verifying the linear system 

 ( )
1

1
2

=

( , ) | ( , )
= ( 1) . ( , ) 1 < ;1 < .

( , )

i
i k

ij kj i
k j k

K r s r s
C C r s i N j i

r s
ψ

ψ
ψ

−
− 

 −  ≤ ≤
 
 
∑  

(3.13)

The diagonal terms are 1= ( )ii iC xψ −  ( = 0,1,..., )i N   and 
( , ) | ( , )u r s v r s  denotes the inner product in the Hilbert space.

In the Appendix B we extend to the bi-dimensional case the arguments 
used in reference [12] to demonstrate the

Theorem 2:  Let the set of real numbers { } =0

N
k k

m  and let ε  and E  be two positive 
numbers such that 

 
k

N

a

b

a

b

k kK r s r s drds
=0 1

1

2

2
2

2, ,∑ ∫ ∫ ( ) ( ) − ≤χ µ ε  (3.14)

 and

 
a

b

a

b

r sb b drds E
1

1

2

2

1 1
2 2

2 2
2 2 2 ,∫ ∫ −( ) + −( )



 ≤α χ α χ  (3.15)

 then

 
a

b

a

b

n
r s drds

n
E n N

1

1

2

2
2 2 2 2, 1

2 1
; = 0,1,...∫ ∫ ( ) ≤ +

+( )





χ εmin  C C






 (3.16)

where C  is the lower triangular matrix with elements ( )1 < ;1 <ijC i N j i≤ ≤  
(Eq.3.13) and †C  its transpose. Moreover the truncated solution  ( ),N r sχ  
given by Eq.(3.11) verifies

 
a

b

a

b

N r s r s drds
N

E
1

1

2

2
2 2 2 2, , 1

2 1
.∫ ∫ ( ) − ( ) ≤ +

+( )χ χ εC C  (3.17)

If  ( )1g x−  is Lipschitz in 2 , say if ( ) ( )1 1g x g x' x x'l− −− ≤ −  for 
some l  and 2,x x'∀ ∈  then, according to the previous theorem, is 
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 a

b

a

b

Nu r s u r s drds
N

E
1

1

2

2
2 2 2 2, , 1

2 1
.∫ ∫ ( ) − ( ) ≤ +

+( )











λ εC C 

Example 2: We apply the method to the nonlinear Poisson equation 

 ( ) ( ) ( ),, , = u x y
xx yyu x y u x y e+

in the domain [ ] [ ]= 0,1 0,1D ×  and boundary conditions given by 

 ( )
( )

( )2
4 2= 0, = ln ; = 0, =

11 xu x y u x y
yy

−
++

 

 ( )
( )

( )2
4 2= 1, = ln ; = 1, =

22 xu x y u x y
yy

−
++

 

 ( )
( )

( )2
4 2, = 0 = ln ; , = 0 =

21 yu x y u x y
xx

−
++

  

 ( )
( )

( )2
4 2, = 1 = ln ; , = 1 = ,

22 yu x y u x y
xx

−
++

In Fig. 2 we compare our numerical solution, obtained with = 4N  
moments, with the exact solution 

 ( )
( )2

4, = ln .
1

u x y
x y+ +

In this case the error is ( ) ( ) 24 , , = 0.137322
L

u x t u x t− .
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Tecnológica of Argentina (PICT 2007-00908) is greatly appreciated. F.V. is 
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Appendix A: Proof of Theorem 1 
Taking into account the definitions of ( ),Nu x t  and of the norm 2

w
•

we have 

 ( ) ( ) ( ) ( )2 2
1 2 1 2, , = , ,N Nw

u x t u x t w z z w z z− −

where ( ) ( )
1 12 2

0 0
, ,f x y f x y dxdt≡ ∫ ∫  . But it is proved that
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Derivating ( )1 2,w z z  in Eq.(2.9) with respect to zγ  ( )= 1,2γ  and effecting 
the double integral we obtain for Iγ  the expression
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 Besides, if noise is considered such that ( ) 2TTr mm ε≤ , since in this 
case is[10]
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, then Eq.(2.17) is recovered.  
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 Appendix B: Proof of Theorem 2 
We closely follow the demonstration given in reference [12] for the 

one-dimensional moment problem which in turn is based in Talenti 
work[13] for the Hausdorff problem. Here we just introduce the necessary 
modifications for the general bi-dimensional problem.

Without lost of generality we take = 0km   ( = 0,1,2, , )k N
 in 

Eq.(3.14). Let write ( ),r sψ  in the form

( ) ( ) ( ), = , ,N Nr s h r s t r sχ +

where ( ),Nh r s  is the orthogonal projection of ( ),r sχ  on the linear space 
generated by the set ( ){ } =0

,
N

m m
K r s  and ( ) ( ) ( ), = , ,N Nt r s r s h r sχ −  the 

orthogonal projection of ( ),r sχ  onto the orthogonal complement. The 
functions ( ),Nh r s  and ( ),Nt r s  can be expanded in the basis { } =0

( , )i i
r sψ ∞ : 
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where the matrix components ijC  are given by Eq.(3.13) in the text. Thus, 
we have
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or, in matricial form, l = Cm where
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Taking into account previous equations, the orthonormalisation 
condition of the set { } =0

( , )i i
r sϕ ∞  and the condition given by Eq.(3.14), we have
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In order to estimate the norm of ( , )Nt r s , we observe that each 
element of the orthonormal set { } =0

( , )i i
r sψ ∞ can in turn be expanded in 

terms of the elements of another orthonormal basis, in particular the set 
{ }0

( , )klP r s ∞ , with ( ) ( )( , ) = r s
kl k lP r s e L r e L s− −  where ( )kL r  denotes Laguerre 

polynomials: 

 
;

=0 =0
( , ) = ( , )i i kl kl

k l
r s P r sψ γ

∞ ∞

∑∑

   Then, calling =kll  
= 1i N

∞

+∑  ;i i kll γ , it follows

               a

b

a

b

N
k l

klt r s drds
k
N

1

1

2

2
2

=0 =0

2( , )
1
1∫ ∫ ∑∑≤

+( )
+

∞ ∞

λ



942 M. B. PINTARELLI AND F. VERICAT

and also
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By adding these expressions for the two norms 2( , )Nh r s  and 
2( , )Nt r s the result 3.16 in the text is obtained. In a similar way is proved 

the inequality 3.17.       
        

Fig. 1
Comparison of the exact solution u(x, y) (dark grey) with the estimate u5(x, y)  
(light grey) for example 1. The function u5(x, y)  is a truncated solution to the 
bi-dimensional finite Hausdorff moment problem obtained by transforming the 
linear Poisson equation using Green identity.
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Fig. 2
Comparison of the exact solution u(x, y) (dark grey) with the estimate u4(x, 

y) (light grey) for example 2. The function u4(x, y)  is a truncated solution to the 
bi-dimensional finite generalized moment problem obtained by transforming 
the nonlinear Poisson equation using Green identity.                                            
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