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ABSTRACT. A dynamical system is saturated when for any invariant measure p,
the topological entropy of the set of the p—generic points equals the measure-
theoretic entropy of the system. This fact was confirmed by Fan, Liao and
Peyriere for systems with specification. In a recent article we extended this
result under the condition of non-uniform specification. In this work we con-
sider another weaker condition than specification called almost specification
property. This concept was introduced by Thompson as a modification of the
almost property product by Pfister and Sullivan. We prove herein the saturat-
edness of systems under the Thompson condition. The saturatedness is a key
point to establish a variational principle for V' —statistics, as was developed by

Fan, Schmeling and Wu.

AMS Classification: 37C45, 37B40
Keywords: Almost specification property; V —statistics

1. INTRODUCTION

The study of multiple ergodic averages was motivated in part by its relationship
with combinatorial number theory. In particular by mean of multiergodic averages

can be proved using arguments from Ergodic Theory and Dynamical Systems a
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version of the result of Szemeredi about the existence arithmetic progressions of
arbitrary length. This was made by Furstenberg[7]. Another interesting motivation
is the multifractal analysis of V —statistics, let us consider a topological dynamical
system (X, f), with X a compact metric space and f a continuous map. Let X"
= X X ... x X be the product of r—copies of X with r > 1,if ® : X" —- R is a

continuous map, then let

1) Valno)= o S B(f (@), S @),

1<iy,....ir<n
These averages are called the V —statistics of order r with kernel ®. The multifractal

decomposition for the spectra of V —statistics is

Eg (o) = {x : nh_)n;o Vo (n,x) = a} .
Fan, Schemeling and Wu[5] have obtained the following variational principle for

dynamical systems with the specification property.:

) heopl(Fa () = sup{hu (1) [ v = a}7

where hy,, is the topological entropy for non-compact nor invariant sets and h,, (f)
is the measure-theoretic entropy of u. Here u®™ means p X ... X y, r—times. This gen-
eralizes the variational principle established by Takens and Verbitski for r = 1[12].
It is also interesting the study of the irregular part of the spectrum, or historic set,
i.e. the set of points x for which ILm Vs (n, z) does not exist. The denomination of
historic corresponds to Ruelle, aITd iosodue to that these points may be interpreted as
the changes in the “epochs” of the system. We have proved|[8] that for topological
dynamical systems satisfying the specification property, if the irregular part of the
spectrum of multiple ergodic averages, or V —statistics is non-empty then it has the
same topological entropy of the whole space X. In a recently submitted article[9]
we considered a weak form of specification known as non-uniform specification con-
dition, notion introduced by Varandas[14], and we proved that the result of [8] can
be extended to systems with this property.

A key point to establish the variational principle for V —statistics as well the

full entropy of the irregular set is the saturatedness. as seen in [5] and [§8]. A
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dynamical system is called saturated when the topological entropy of the set of
the p—generic points equals the measure-theoretic entropy of the system. for any
invariant measure u. Therefore, our objective is to establish saturatedness under
weaker conditions than specification in order to extend the variational principle
and the full entropy of the irregular part for systems under these conditions. In
this work we consider systems satisfying an awakened version of specification called
the almost specification property, which was introduced by Thompson[13] inspired
in the g—almost product property of Pfister and Sullivan[10]. Thompson proved the
full entropy of the irregular part of the Birkhoff averages spectrum for systems with
the almost specification property. He applied this result to the case of S—shifts,
which are systems having the almost specification property but the set of values
of 8 such that the corresponding S—shift has the specification property has zero
Lebesgue measure[4],[11]. The demonstration of Thompson is not based on satu-
ratedness. Once proved that systems having the almost specification property are
saturated, going along the lines of [8],[9] can be extended the result of Thomp-
son to V —statistics or equivalently the result of [8],[9] to systems with the almost
specification property.

The result to be proved is

Theorem: Let (X, f) be a dynamical system with the almost specification prop-
erty. Let 1 be a probability, f—invariant measure on X. If G (1) denotes the set of

p—generic points then

(3) hiop (G (1)) = by () 5

where hy,, is the topological entropy for non-compact nor invariant sets and h,, (f)

is the measure-theoretic entropy of p.

The inequality
hiop (G (1)) < hyu (f)

holds for any measure p [3]. In [6] was proved that opposite inequality holds for

dynamical systems with specification.
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2. PRELIMINARIES

Let f : X — X, with X a compact metric space, and f be a continuous
map. If n > 1, then the dynamical metric, or Bowen metric, is d, (z,y) =
max {d (f* (z), f' (y)) :i=0,1,...,n — 1}. We denote by B,, . () the ball of center
z and radius ¢ in the metric d,,. By M(X) we denote the space of probability
measures on X, and by My, (X, f) the space of f—invariant measures on X. The
space M(X) is endowed the weak x— topology, and if X is compact then M(X) is
compact in the weak topology.

Let us recall the Bowen definition of topological entropy of non-compact nor
invariant sets. Let Z C X and let C (n,e, Z) be the collection of finite or countable
coverings of the set Z by balls B, . () with m > n. Let

M (Z,s,n,e) = BeCi(Irlzf,‘aZ) i ;)Esexp (—sm),

and set

M (Z,s,e) = lim M (Z,s,n,¢).

n—oo

There is an unique number 3 such that M (Z, s, ) jumps from +oo to 0. Let
hiop(Z,e) =5 =sup{s: M (Z,s,e) = oo} =inf {s: M (Z,s,e) =0},

and

(4) htop (Z) = glg(l) htop(Za €).

The number hyp(Z, €) is the topological entropy of Z.

Theorem (Distribution mass principle)[12]: Let f : X — X be a continuous
map, let Z C X. Let us assume that there are a ¢ > 0, s > 0 such that can be
found a sequence of probability measures{my}, a constant K > 0 and a natural N

satisfying

lim sup myg, (B« (z)) < K exp(—ns),

n—oo

for any ball By, . () with B, . () N Z # @& for any n > N. If it also assumed that
one x—limit m of the sequence {uy} verifies m (Z) > 0 then hy,(Z,€) > s.
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Definition: Let g9 > 0, a function g : Nx (0,69) — N is called a mistake
function if for any € € (0,g9) and for any n € N holds g (n,e) < g(n+1,¢) and

n,e . . . .
M — 0, as n — o0. For € > ¢ and for a given mistake function g is defined

n
g(n,e).=g(n,e0).

This class of mistake functions, introduced by Thompson in [13], is slightly more
general than the class of blow-up functions by Pfister and Sullivan[10] to define
the g—almost product property. This last map does not depend on €.The function

1
g(n,e) = 987 is a mistake function but it does not fall in the class of Pfister and
€
Sullivan.

For m,n € N, m <n, let

I(n,m):={A C{0,1,...n—1} : cardA > n—m}.

Let g be a mistake function and ¢ > 0, with g (n,e) < n for enough large n, set

I(g,n,e) :={A C{0,1,...n—1} : cardA > n — g (n,e)}.

If A {0,1,...,n — 1} then is introduced the metric

dp (,y) = max {d (f* (), f" (y)) :i € A},
and the ball
Bae(z) ={y:da(z,y) <c}.
The ball B, . (g, ) is defined by

Bne(9,7) ={y € Bac (), for some A € I(g,n,¢e)},

or equivalently

Bn,a (gv ‘T) = U BA,E (55) .
A €I(g,n,e)

Definition: A dynamical system (X, f) has the almost specification property if
there exists a mistake function g such that for any €1, ..., > 0 there are numbers
Ni,...;Ng, N; = N;(g,e:), i = 1,2,..., k, such that for any points x1,...,2, € X

and integers n; > N;

y - Z ng
(5) m f =t (an75j (g,g;ﬁ-)) #+ .
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The function g indicates how many mistakes are allowed to shadow an orbit in
the almost specification property. Since the class of mistake functions is larger then
the blow-up functions, the almost specification property is more general than the
g—almost product property.

A dynamical system (X, f) has the specification property if: for any € > 0 there
is an integer M (£) such that for any collection of intervals I; = [a;,b;] C ZT,
j=0,---,k—1such that a;j —b;_; > M (¢), and for any xo,--- ,xx—1 € X there
is a x € X such that

d(f ), f'z;)) <e, for 0<L<bj—aj, j=01,2.,,k—1

Pfister and Sullivan proved[10] that specification implies g—almost product prop-
erty, which in turn implies almost specification property. To see directly that spec-
ification implies the Thompson condition, set g (n,e) := M (¢) for any n > M (¢)
and N = N (g,e) + 1, € can be replaced by €1, ..., &, using the trick of [10].

Definition: A set E C Z is (n,m,e) —separated for Z if for any A € I(n,m)
and for any z,y € Z.holds dj (z,y) > e.A set E C Z is (g,n,€) —separated for Z if
it is (n,g (n,e),€) —separated for Z.

Let sy, (9,¢,Z) = max{cardE : E C Z and E is (g,n,€) — separated for Z} .

The following result was obtained by Thompson[13] as a modification to the
Katok formula for the entropy.

Theorem: Let f: X — X be continuous with X be a compact metric space.
Let g € Mino(X, f) ergodic, for any v € (0,1) and for any mistake function g is

valid

(6) hy (f) = lim limsup (inf {s,, (g,6,2) : Z C X, p(Z) > 1 —~}).

e=0 noo
The so called empirical measures on X associated to the dynamical system (X, f)

are

n—1
1
=0

Here ¢ is the point mass measure. We denote the weak limit of the sequence{&,, (z)}
by V(z). Since X is compact, V(z) # @. If 1 is a measure on X then a point
x € X is p—generic if V(z) = {u}, by G (1) is denoted the set of p—generic points.
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Following [6] the set of generic points can be characterized in the following way.
Let {p;} be a sequence of numbers with § p; = 1 and let {s;} be a sequence in
£°. The sequence {s; = sy, i}, converges t(;:ct = (a;) € €% in the weak x— topology
if and only if limy,_yo0 [Sns — ;| = 0. Let {1, ¢2, ...} a dense subset in unit ball of

C/X), for a fixed p € M;n, (X, f), let a = (a1, as,...), with a; = [ p;dp- Thus
n Y23 )) — Oy

Gw={w£&§ﬁz

where S,, (¢; (7)) = Zz;:o oi (f*(2)).

Lemma 2.1 ([15],[14]): For any g € Mn(X, f) , 0<d < 1,0 <y < 1, there
k k
is a measure v such that v = ) \;v;, where each v; is ergodic and ) \; =1, and

j=1 j=1
such that

i)h (f) = hu(f) =~
i Z Di ’f widp — fgozduf < §, where {p;} and {p;} are sequences like above.

Let N >1 and
Su i (o)~ [ s

where S, (p; (z)) = Z @i (f*(z)). By the Birkhoff ergodic theorem and the Egorov

{ Zpl

<9, forn>N},

theorem we have that

=0, vy —a.e

nlbrlgOsz @i (x)) _/Spidyk

and v; (Y; (N)) > 1 —~, for sufficiently large N.
Let o = (a1, aa,...) € £° and © = {p1, g2, ...} be a dense subset in unit ball of
C(X).If § >0, n > 1, then set

(7) Xeo (a 5” { ZP1|S 901 - ai|<57 a(ai)gfoo}

Ao (a) := lim lim lim sup — logN(a d,e,n),

e—=05—>0n—o0
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where N (g, a, d, €,n) is the minimal number of balls B, . (g, x) needed to cover the
set Xo (o, 0,n) .

3. PROOF OF THE THEOREM

We begin with the construction of a fractal set F, for this is followed that made in
[13], which is in part inspired in [12]. Let a = (g, ag,...) € £>° and © = {p1, @2, ...}
be a dense subset in unit ball of C(X).Let us introduce a sequence of positive

integers {n} and an increasing sequence of integers { Ny } with Ny = 0 and Ny — oo
k
> TN,
N1 =

and such that — 0 as k — oo.

Let {dx} be a skequence of real numbers with §; — 0, as k — oo and let {S;} be
a family of finite subsets of Xe (a, 0y, ny) with o = (o, a2, ...) and a; = [ @;dp. If
g is a mistake function then define maps hy (n,¢) := 2¢ (n, 5/2’“) and assume that
each S is (hg,nk, be) —separated. Let us consider points

(21 = (21,23, 2l ) 22 = (23,23, . 2%,) ooy 2k = (2,25, .., 28, ) € SN
Sé\b X o X Sév’“. By the almost specification property there exists a point z =

z (21, 22, ..., 2k) such that

ftri‘(j_l)nf' (Z) S Bni;5/2i (g’ l‘;) ’
i—1

forany i =1,...,k, j = 1,..., Ny and where t; = > nyn,. Let
1=0

k Ng
(8) 0(21,227...,Zk) = ﬂ m f_t"_(j_l)m (Bni,s/zi (g,x;)) # 9

i=1j=1

Then, let us define sets

N N. Ny,
F, = {0(21,22,...,zk) D (21, 22y ey 2) €57 X552 XL X Sk’”},

and let
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Let ¢, = zk: n;n,, for each n € N let j € {0,1,..., Nyt1 — 1} be the unique
number such Zt:hoat
th+ Jnerr <n <tp+ (G + 1) nggr
Let us recall that for any (z1, 22,...,2;) € S{Vl X SéVQ X . X S,JCV’C there is a z €

C (21,22, ..., 2k) , nOW let
Ly ={z=2(z1,22,...,2k) € C (21,22, e, 2k) } -

Lemma 3.1[13]: If (21, 22, ..., 2k) # (w1, w2, ..., wy) then z = (21, 22, ..., 2) # W =
w (wy, wa, ..., wy) . Consequently cardLy = MlNl...M,iV’“, M, = cardSy.

With this above result can be defined a sequence of measures concentrated on
F}. by

1
my = —v
= e
with v, = > 0, and Ay = cardLy. Let B = B,, .5 (x) such that BNF # @, it
rELy
holds[13]
i !
Mpg+ (B) S = : 3
: MM LMY MY cardLy x M

for any p > 1.Let m be the w*—limit of the sequence{u}, the measure m is

concentrated on F, and by the distribution mass principle we have

k
1
Riop(F) > liminf = (Z N; log M; + jlog MkH) .

n—oo N \ 4
i=1

The sets Sk, used in the construction of the set F, may be chosen such that

My, = cardSy > exp [ni, (Ao (a) — )] > MlNl...M,iV’“M,z+1

k
> exp [Ae (@) — 7] (Z ni N +jnk+1> > exp[n(Ae (a) =7)].

i=1
So that

k
1
hiop(F) > liminf — (Z N; log M; + jlog Mk+1> > Ao () — 7.

n—oo N —1
i=
Proposition 3.2: The fractal F is contained in the set of generic points G (i),
for any p € Min'u(Xa f) .
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Proof: Let © = {1, @2, ...} and recall that
== 1
G(p) = {x : nlggo;pi 5 (i () */cpidu ‘ 0}7

o)
where {p;} is a sequence of numbers with > p; =1. Let z € F, a; = (j — 1) ny and
i=1

2. = 7 N(2), if var (@i e) =sup{| @i (x) — @i (y)|:d(z,y) <e}, then

[Snic (i (5)) = S (9 (f (20)))] <
nkvar( @i,e) +g (nk7€/2k) || @i”oa § = 17 7k

Therefore

(9)

[Sni (om (25)) = iy

< ’Snk ( Pm (x;)) — Sn, ( Pi (f% (Zk:)))| + ‘Snk ( ®i (faJ (Zk))) — QN

< ngvar ((m,€) + g (nk,€/25) | emllo + 140,
with a; = [ @idp.

Let n be the unique number such that ¢; < n < t;x + 1 and recall that j €
{0,1, ..., N1 — 1} is the unique number such that

ti + jner <n<tp+ (G + 1) nggr-

Let us consider a partition of the interval [0, n — 1] into the subintervals [0, t;, — 1]
and I{ = [t + (0 — D npgr,ty +npia], 15 = [te + jngr,n—1], £ = 1,2,...,].

Thus we have

ag+npi1—1 n—
S =Su (el 5wl @)+ T ().

1
Let us begin with the estimation in [0, ¢, — 1], we have that t—Stk (p; (2)) asymp-
k

1
totically behaves like ——S (i (1)), with zg. = fi*71(2), 2 € F. Thus
n

NEgN
kN k

Stk ( Pi (2)) = Stkfl ( Pi (Z)) + Snka ( Pi (zk)) )

and
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Let a% € Sy, so

Snka ( Pi (Zk)) - El‘s’nj ( Pi (x;c))) < NEN,var ( @iaa/Zk) ++g (nk7€/2k) H Spi”o .

(11) Sppy, (i (21)) < {/ widp + §k] ni+nen,var (vi,6/2%)+g (nk, £/2%) lleill

so that

1

—— S, (om (21)) — /w,,idu‘ —0 as k — oo,
NN

i n
and, since E +1ask— oo, we get

k

1

nk)Nk

Spin, (i (2)) — %Stk (i (z))’ —0 as k — oo.

Therefore

klin;oZpl

for » € F and on the interval [0,¢; — 1]. Now we estimate in each interval I{,

0=1,2,...j, let it € Sy and flrt=Dmeis (z) € By e o (g, 25 %), thus

&k%x»/wmﬁu

agt+ng41—1

> Pi (ft (Z)) — Nk+1 /%’du

t=ay

ag+ng41—1

Z Pi (ft (Z)) - Snk+1 (801 (xlerl))

t=ay

+

Snpss (i (x’;"' ) = Nkt /cpid,u‘ < cardAy,, var (@i, e/281)

+9 (nrg1, 6/2k+1) lpillg + nat 10841

with A, ., C {0,1,2,...,nk41}-

MNk+41

a/z+7lk+1 1

=0,

im 3o

for z € F and on the intervals I}.

oi (1) = [ s

Nk4+1 t:ag
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Finally we do the estimations on the intervals I$, £ = 1,2, ..., 7. We have

n—1
2, ¥i (ft (Z)) —(n— 1t +jnk+1)/g0id,u, <
t=tp+jing41
(12) 2((n— tx + jnxes) [illo) < 20 llgilly

Then, since tx > Ny and n > t + jngy1,

S0 om () | widu'
< St (Om (2)) + jeardAy, var ( gpi,e/2k+1) +

leillo g (nrs1,8/25FY) + jrus10e1 + 2ns il

1 k+1
< Estk (i (2)) + Opg1 +2—— ||%||o
g ’I’Lk+1,5/2 +
var ((pi,e/25) + Q lillo
Nh+1

with A,, C {0,1,...,np — 1}, so that

(13) lim sz

k—oc0

Z ei (f' (2 ))/soidu‘o

Therefore z € G (u) O
Next we prove
Proposition 3.3: It holds Ae (a) > hy, (f), where recall that

Ao (a) := lim lim lim sup — logN(a d,e,m),

e—=05—>0n—o0

with N (g, «, d, ¢,n) the minimal number of balls B, ¢ (g, ) needed to cover the set

Xo (a,8,n) :{x Zpl|5( (x) — a4 <6, ai:fgoidu}
Proof: LetN>15>0 and
n vers ))_/%‘de

R ES it
k
and v = ) A\;jv;, v; ergodic given by the lemma 2.1, which satisty v; (Y; (N)) >
j=1
1 —+, for sufficiently large N, 0 < v < 1. Recall that by the modified Katok entropy

< 6, forn>N},

formula we have
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th (f) Z lim {hmsupsn (9767}/]' (N) 7Vja7)}7

e=0 | nosoc
where S, (g,¢, Z, p,y) =inf {s, (9,¢6,2) : ZC X, p(Z) >1—~},and sy, (9,6, 2Z) =
max {cardE : E C Z and E is (g,n,c) — separated for Z}. Thus there is a N; =
Nj (vj,4¢,7) such that

(14) Sn (29,4e,Y; (N),v5,7) 2 exp [n (hy, () =7)]
therefore if E; is a (2g, n, 4¢) —separated set for Y; (V) then
cardE; > exp [n (hy, (f) —7)], forn > N;, j=1,.. k.

Like in the construction of the set F, for any (x1,...,2x) € E1 X ... X F, we can
choose a point z = z (z1,...,x) € C (21,22, ...,2). The next auxiliary lemma is
similar to lemma 3.1 but for the sets E1,...,

Lemma 3.4: If (z1,...,2k), (z1,...,2k) € F1 X ... X By distinct k—uples the
points z1 = z1 (x1,...,x) and 2o = 25 (21, ..., %) are distinct

Proof: Let r be the coordinate for which z, # . and let Ay As € I(g,n,,e/2"),
with n,. = [nA], so

da, (f"(21),2r) < /27 and dp, (f*(22), 27) < €/27. Let A = Ay N Ay €
I(g,n,,e/2"), thus

te < dp (T 20) < day. (00, £ (1) ) Fda (J (1), % (22)) +ddn, (% (22), 20) <
e/2" L +dp (f(21), f*(22)), and then

da (f%(21), f*(22)) >4de— /2771 >3 O

k

k
Let m = Y ne = Y. [nA], A¢ = 1,we must prove that any point z = z
=1 =1 =1
(21, ...,x%) belongs to Xg (o, 50,7) , for n enough large, in this case we would have

k
N (29, ,50,e,m) > cardF...cardEy > exp Z [nAg] (hyj (f) - fy) ,
=1

[nAf] k k
— Xasn — oo and Y, A = 1 we have that >
=1

n =1
n — oo . Hence

[n)\g]

n

since — 1 as

1
lim sup - log N (2g, «, 59, ¢,7)

n—roo
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—’YZhV(f)_PyZh#(f)_’y’

~
Il

%
-
>

therefore

Ae (a) =y (f),

this proved the proposition 3.3, modulo z € X¢ (o, 50, 7) O
To see that, for n enough large, z € Xg (o, 50,7) , let

k ng—1

1 1 mett(

{=1 t=0

3

[nAe] St (i ((F*(2))) 5

Mw

zi: [n)\g] =1

thus we have
1
%Sﬁ(%‘ (2)) = [ pidu

<y

[nAe] | Sprg (@i (F™(2))) = Sty (@i (z0)| +

l
7
/=1

P

S 2 10 S (91 a0) — [ i +
=1

M1

= [nAe] — A /%dw + ’/apz-dm —/apz-du ,

(=1

since [nA¢] < nAy, and by the lemma 2.1, we get

sz, @i (2) — /cpidu’

(o9}

A /2!
< dom (Ca:ff”‘wme/zlw W¢i||o+5+a+a>
1

n

<> pi(204+05+8+6) =50, for ng > N

i=1
and therefore z € X¢ (o, 50,7) .
Now, let us recap, we have obtained
—FcG(p
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1/ k
—hiop(F) > liminf — ( N;log M; + jlog Mk+1> > Ao (@)
1

n—oo M \ =

— Ao (a) > hy (f). Therefore we get

hiop(G (1)) = hyu (f) -

As it is known the opposite inequality was proved by Bowen, and the theorem is

proved. [
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