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2 ALEJANDRO MESÓN AND FERNANDO VERICAT

version of the result of Szemeredi about the existence arithmetic progressions of

arbitrary length. This was made by Furstenberg[7]. Another interesting motivation

is the multifractal analysis of V−statistics, let us consider a topological dynamical

system (X, f) , with X a compact metric space and f a continuous map. Let Xr

= X × ... × X be the product of r−copies of X with r ≥ 1, if Φ : Xr → R is a

continuous map, then let

(1) VΦ (n, x) =
1

nr

∑
1≤i1,...,ir≤n

Φ
(
f i1 (x) , ..., f ir (x)

)
.

These averages are called the V−statistics of order r with kernel Φ. The multifractal

decomposition for the spectra of V−statistics is

EΦ (α) =
{
x : lim

n→∞
VΦ (n, x) = α

}
.

Fan, Schemeling and Wu[5] have obtained the following variational principle for

dynamical systems with the specification property.:

(2) htop(EΦ (α)) = sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
,

where htop is the topological entropy for non-compact nor invariant sets and hµ (f)

is the measure-theoretic entropy of µ. Here µ⊗r means µ×...×µ, r−times. This gen-

eralizes the variational principle established by Takens and Verbitski for r = 1[12].

It is also interesting the study of the irregular part of the spectrum, or historic set,

i.e. the set of points x for which lim
n→∞

VΦ (n, x) does not exist. The denomination of

historic corresponds to Ruelle, and is due to that these points may be interpreted as

the changes in the ¨epochs¨ of the system. We have proved[8] that for topological

dynamical systems satisfying the specification property, if the irregular part of the

spectrum of multiple ergodic averages, or V−statistics is non-empty then it has the

same topological entropy of the whole space X. In a recently submitted article[9]

we considered a weak form of specification known as non-uniform specification con-

dition, notion introduced by Varandas[14], and we proved that the result of [8] can

be extended to systems with this property.

A key point to establish the variational principle for V−statistics as well the

full entropy of the irregular set is the saturatedness. as seen in [5] and [8]. A
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SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 3

dynamical system is called saturated when the topological entropy of the set of

the µ−generic points equals the measure-theoretic entropy of the system. for any

invariant measure µ. Therefore, our objective is to establish saturatedness under

weaker conditions than specification in order to extend the variational principle

and the full entropy of the irregular part for systems under these conditions. In

this work we consider systems satisfying an awakened version of specification called

the almost specification property, which was introduced by Thompson[13] inspired

in the g−almost product property of Pfister and Sullivan[10]. Thompson proved the

full entropy of the irregular part of the Birkhoff averages spectrum for systems with

the almost specification property. He applied this result to the case of β−shifts,

which are systems having the almost specification property but the set of values

of β such that the corresponding β−shift has the specification property has zero

Lebesgue measure[4],[11]. The demonstration of Thompson is not based on satu-

ratedness. Once proved that systems having the almost specification property are

saturated, going along the lines of [8],[9] can be extended the result of Thomp-

son to V−statistics or equivalently the result of [8],[9] to systems with the almost

specification property.

The result to be proved is

Theorem: Let (X, f) be a dynamical system with the almost specification prop-

erty. Let µ be a probability, f−invariant measure on X. If G (µ) denotes the set of

µ−generic points then

(3) htop (G (µ)) = hµ (f) ,

where htop is the topological entropy for non-compact nor invariant sets and hµ (f)

is the measure-theoretic entropy of µ.

The inequality

htop (G (µ)) ≤ hµ (f) ,

holds for any measure µ [3]. In [6] was proved that opposite inequality holds for

dynamical systems with specification.
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4 ALEJANDRO MESÓN AND FERNANDO VERICAT

2. Preliminaries

Let f : X → X, with X a compact metric space, and f be a continuous

map. If n ≥ 1, then the dynamical metric, or Bowen metric, is dn (x, y) =

max
{
d
(
f i (x) , f i (y)

)
: i = 0, 1, ..., n− 1

}
. We denote by Bn,ε (x) the ball of center

x and radius ε in the metric dn. By M(X) we denote the space of probability

measures on X, and by Minv(X, f) the space of f−invariant measures on X. The

spaceM(X) is endowed the weak ∗− topology, and if X is compact thenM(X) is

compact in the weak topology.

Let us recall the Bowen definition of topological entropy of non-compact nor

invariant sets. Let Z ⊂ X and let C (n, ε, Z) be the collection of finite or countable

coverings of the set Z by balls Bm,ε (x) with m ≥ n. Let

M (Z, s, n, ε) = inf
B∈C(n,ε,Z)

∑
Bm,ε(x)∈B

exp (−sm) ,

and set

M (Z, s, ε) = lim
n→∞

M (Z, s, n, ε) .

There is an unique number s such that M (Z, s, ε) jumps from +∞ to 0. Let

htop(Z, ε) = s = sup {s : M (Z, s, ε) = +∞} = inf {s : M (Z, s, ε) = 0} ,

and

(4) htop (Z) = lim
ε→0

htop(Z, ε).

The number htop(Z, ε) is the topological entropy of Z.

Theorem (Distribution mass principle)[12]: Let f : X → X be a continuous

map, let Z ⊂ X. Let us assume that there are a ε > 0, s > 0 such that can be

found a sequence of probability measures{mk} , a constant K > 0 and a natural N

satisfying

lim sup
n→∞

mk (Bn,ε (x)) ≤ K exp(−ns),

for any ball Bn,ε (x) with Bn,ε (x) ∩ Z 6= ∅ for any n ≥ N. If it also assumed that

one ∗−limit m of the sequence {µk} verifies m (Z) > 0 then htop(Z, ε) > s.
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SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 5

Definition: Let ε0 > 0, a function g : N× (0, ε0) → N is called a mistake

function if for any ε ∈ (0, ε0) and for any n ∈ N holds g (n, ε) ≤ g (n+ 1, ε) and
g (n, ε)

n
→ 0, as n → ∞. For ε > ε0 and for a given mistake function g is defined

g (n, ε) . = g (n, ε0) .

This class of mistake functions, introduced by Thompson in [13], is slightly more

general than the class of blow-up functions by Pfister and Sullivan[10] to define

the g−almost product property. This last map does not depend on ε.The function

g (n, ε) =
log n

ε
is a mistake function but it does not fall in the class of Pfister and

Sullivan.

For m,n ∈ N, m < n, let

I(n,m) := {Λ ⊂ {0, 1, ..., n− 1} : cardΛ ≥ n−m} .

Let g be a mistake function and ε > 0, with g (n, ε) < n for enough large n, set

I(g, n, ε) := {Λ ⊂ {0, 1, ..., n− 1} : cardΛ ≥ n− g (n, ε)} .

If Λ ⊂ {0, 1, ..., n− 1} then is introduced the metric

dΛ (x, y) = max
{
d
(
f i (x) , f i (y)

)
: i ∈ Λ

}
,

and the ball

BΛ,ε (x) = {y : dΛ (x, y) < ε} .

The ball Bn,ε (g, x) is defined by

Bn,ε (g, x) = {y ∈ BΛ,ε (x) , for some Λ ∈ I(g, n, ε)} ,

or equivalently

Bn,ε (g, x) =
⋃

Λ ∈I(g,n,ε)

BΛ,ε (x) .

Definition: A dynamical system (X, f) has the almost specification property if

there exists a mistake function g such that for any ε1, ..., εk > 0 there are numbers

N1, ..., Nk, Ni = Ni (g, εi) , i = 1, 2, ..., k, such that for any points x1, ..., xk ∈ X

and integers ni ≥ Ni

(5)

k⋂
j=1

f
−

j−1∑
i=1

ni (
Bnj ,εj (g, xj)

)
6= ∅.
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6 ALEJANDRO MESÓN AND FERNANDO VERICAT

The function g indicates how many mistakes are allowed to shadow an orbit in

the almost specification property. Since the class of mistake functions is larger then

the blow-up functions, the almost specification property is more general than the

g−almost product property.

A dynamical system (X, f) has the specification property if: for any ε > 0 there

is an integer M (ε) such that for any collection of intervals Ij = [aj , bj ] ⊂ Z+,

j = 0, · · · , k − 1 such that aj − bj−1 ≥ M (ε), and for any x0, · · · , xk−1 ∈ X there

is a x ∈ X such that

d
(
faj+`(x), f `(xj)

)
< ε, for 0 ≤ ` ≤ bj − aj , j = 0, 1, 2., , , k − 1.

Pfister and Sullivan proved[10] that specification implies g−almost product prop-

erty, which in turn implies almost specification property. To see directly that spec-

ification implies the Thompson condition, set g (n, ε) := M (ε) for any n ≥ M (ε)

and N = N (g, ε) + 1, ε can be replaced by ε1, ..., εk using the trick of [10].

Definition: A set E ⊂ Z is (n,m, ε)−separated for Z if for any Λ ∈ I(n,m)

and for any x, y ∈ Z.holds dΛ (x, y) > ε.A set E ⊂ Z is (g, n, ε)−separated for Z if

it is (n, g (n, ε) , ε)−separated for Z.

Let sn (g, ε, Z) = max {cardE : E ⊂ Z and E is (g, n, ε)− separated for Z} .
The following result was obtained by Thompson[13] as a modification to the

Katok formula for the entropy.

Theorem: Let f : X → X be continuous with X be a compact metric space.

Let µ ∈ Minv(X, f) ergodic, for any γ ∈ (0, 1) and for any mistake function g is

valid

(6) hµ (f) = lim
ε→0

lim sup
n→∞

(inf {sn (g, ε, Z) : Z ⊂ X, µ (Z) > 1− γ}) .

The so called empirical measures on X associated to the dynamical system (X, f)

are

En (x) =
1

n

n−1∑
i=0

δfi(x).

Here δ is the point mass measure. We denote the weak limit of the sequence{En (x)}
by V (x). Since X is compact, V (x) 6= ∅. If µ is a measure on X then a point

x ∈ X is µ−generic if V (x) = {µ} , by G (µ) is denoted the set of µ−generic points.
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SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 7

Following [6] the set of generic points can be characterized in the following way.

Let {pi} be a sequence of numbers with
∞∑
i=1

pi = 1 and let {si} be a sequence in

`∞. The sequence {si = sn,i}i converges to α = (αi) ∈ `∞ in the weak ∗− topology

if and only if limn→∞ |sn,i − αi| = 0. Let {ϕ1, ϕ2, ...} a dense subset in unit ball of

C/X), for a fixed µ ∈Minv(X, f), let α = (α1, α2, ...), with αi =
∫
ϕidµ- Thus

G (µ) =

{
x : lim

n→∞

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (x))− αi
∣∣∣∣ = 0

}
,

where Sn (ϕi (x)) =
n−1∑
k=0

ϕi
(
fk(x

)
).

Lemma 2.1 ([15],[14]): For any µ ∈ Minv(X, f) , 0 < δ < 1, 0 < γ < 1, there

is a measure ν such that ν =
k∑
j=1

λjνj , where each νj is ergodic and
k∑
j=1

λj = 1, and

such that

i) hν (f) ≥ hµ (f)− γ.

ii)
∞∑
i=1

pi
∣∣∫ ϕidµ− ∫ ϕidν∣∣ < δ, where {ϕi} and {pi} are sequences like above.

Let N ≥ 1 and

Yj (N) =

{
x :

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (x))−
∫
ϕidνj

∣∣∣∣ < δ, for n > N

}
,

where Sn (ϕi (x)) =
n−1∑
k=0

ϕi
(
fk(x

)
). By the Birkhoff ergodic theorem and the Egorov

theorem we have that

lim
n→∞

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (x))−
∫
ϕidνk

∣∣∣∣ = 0, νk − a.e,

and νj (Yj (N)) > 1− γ, for sufficiently large N.

Let α = (α1, α2, ...) ∈ `∞ and Θ = {ϕ1, ϕ2, ...} be a dense subset in unit ball of

C(X). If δ > 0, n ≥ 1, then set

(7) XΘ (α, δ, n) =

{
x :

∞∑
i=1

pi |Sn (ϕi (x))− αi| < δ, α = (αi) ∈ `∞
}

ΛΘ (α) := lim
ε→0

lim
δ→0

lim
n→∞

sup
1

n
logN (α, δ, ε, n) ,
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8 ALEJANDRO MESÓN AND FERNANDO VERICAT

where N (g, α, δ, ε, n) is the minimal number of balls Bn,ε (g, x) needed to cover the

set XΘ (α, δ, n) .

3. Proof of the theorem

We begin with the construction of a fractal set F, for this is followed that made in

[13], which is in part inspired in [12]. Let α = (α1, α2, ...) ∈ `∞ and Θ = {ϕ1, ϕ2, ...}
be a dense subset in unit ball of C(X).Let us introduce a sequence of positive

integers {nk} and an increasing sequence of integers {Nk} with N0 = 0 and Nk →∞

and such that
nk+1

Nk
→ 0 and

k∑
i=1

niNi

Nk+1
→ 0 as k →∞.

Let {δk} be a sequence of real numbers with δk → 0, as k →∞ and let {Sk} be

a family of finite subsets of XΘ (α, δk, nk) with α = (α1, α2, ...) and αi =
∫
ϕidµ. If

g is a mistake function then define maps hk (n, ε) := 2g
(
n, ε/2k

)
and assume that

each Sk is (hk, nk, 5ε)−separated. Let us consider points(
z1 =

(
x1

1, x
1
2, ..., x

1
N1

)
, z2 =

(
x2

1, x
2
2, ..., x

2
N2

)
, ..., zk =

(
xk1 , x

k
2 , ..., x

k
Nk

))
∈ SN1

1 ×
SN2

2 × ... × SNk

k . By the almost specification property there exists a point z =

z (z1, z2, ..., zk) such that

f ti+(j−1)ni (z) ∈ Bni,ε/2i

(
g, xij

)
,

for any i = 1, ..., k, j = 1, ..., Nk and where ti =
i−1∑
l=0

nlNl
. Let

(8) C (z1, z2, ..., zk) :=

k⋂
i=1

Nk⋂
j=1

f−ti−(j−1)ni

(
Bni,ε/2i

(
g, xij

))
6= ∅

Then, let us define sets

Fk =
{
C (z1, z2, ..., zk) : (z1, z2, ..., zk) ∈ SN1

1 × SN2
2 × ...× SNk

k

}
,

and let

F :=
⋂
k≥1

Fk.
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SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 9

Let tk =
k∑
i=0

niNi , for each n ∈ N let j ∈ {0, 1, ..., Nk+1 − 1} be the unique

number such that

tk + jnk+1 ≤ n < tk + (j + 1)nk+1.

Let us recall that for any (z1, z2, ..., zk) ∈ SN1
1 × SN2

2 × ... × SNk

k there is a z ∈
C (z1, z2, ..., zk) , now let

Lk = {z = z (z1, z2, ..., zk) ∈ C (z1, z2, ..., zk)} .

Lemma 3.1[13]: If (z1, z2, ..., zk) 6= (w1, w2, ..., wk) then z = (z1, z2, ..., zk) 6= w =

w (w1, w2, ..., wk) . Consequently cardLk = MN1
1 ...MNk

k , Mk = cardSk.

With this above result can be defined a sequence of measures concentrated on

Fk by

mk =
1

Ak
νk,

with νk =
∑
x∈Lk

δx and Ak = cardLk. Let B = Bn,ε/2 (x) such that B∩F 6= ∅, it

holds[13]

mk+p (B) ≤
M

Nk+1−j
k+1

MN1
1 ...MNk

k M
Nk+1

k+1

=
1

cardLk ×M j
k+1

,

for any p ≥ 1.Let m be the w∗−limit of the sequence{µk} , the measure m is

concentrated on F, and by the distribution mass principle we have

htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi + j logMk+1

)
.

The sets Sk, used in the construction of the set F, may be chosen such that

Mk = cardSk ≥ exp [nk (ΛΘ (α)− γ)] ≥MN1
1 ...MNk

k M j
k+1

≥ exp [ΛΘ (α)− γ]

(
k∑
i=1

niNi + jnk+1

)
≥ exp [n (ΛΘ (α)− γ)] .

So that

htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi + j logMk+1

)
≥ ΛΘ (α)− γ.

Proposition 3.2: The fractal F is contained in the set of generic points G (µ) ,

for any µ ∈Minv(X, f) .
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10 ALEJANDRO MESÓN AND FERNANDO VERICAT

Proof: Let Θ = {ϕ1, ϕ2, ...} and recall that

G (µ) =

{
x : lim

n→∞

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (x))−
∫
ϕidµ

∣∣∣∣ = 0

}
,

where {pi} is a sequence of numbers with
∞∑
i=1

pi = 1. Let z ∈ F, aj = (j − 1)nk and

zk. = f tk−1(z), if var ( ϕi, ε) = sup {| ϕi (x)− ϕi (y)| : d (x, y) < ε} , then

∣∣Snk

(
ϕi
(
xsj
))
− Snk

(ϕi (faj (zk)))
∣∣ ≤

nkvar ( ϕi, ε) + g
(
nk, ε/2

k
)
‖ ϕi‖0 , s = 1, ..., k.

Therefore

(9)∣∣Snk

(
ϕm
(
xsj
))
− αink

∣∣
≤
∣∣Snk

(
ϕm
(
xsj
))
− Snk

( ϕi (faj (zk)))
∣∣+ |Snk

( ϕi (faj (zk)))− αink|
≤ nkvar ( ϕm, ε) + g

(
nk, ε/2

k
)
‖ ϕm‖0 + nkδk,

with αi =
∫
ϕidµ.

Let n be the unique number such that tk ≤ n < tk + 1 and recall that j ∈
{0, 1, ..., Nk+1 − 1} is the unique number such that

tk + jnk+1 ≤ n < tk + (j + 1)nk+1.

Let us consider a partition of the interval [0, n− 1] into the subintervals [0, tk − 1]

and I`1 = [tk + (`− 1)nk+1, tk + `nk+1] , I`2 = [tk + jnk+1, n− 1] , ` = 1, 2, ..., j.

Thus we have

Sn ( ϕi (z)) = Stk ( ϕi (z)) +
a`+nk+1−1∑

t=a`

ϕi
(
f t (z)

)
+

n−1∑
t=tk+`nk+1

ϕi
(
f t (z)

)
.

Let us begin with the estimation in [0, tk − 1] , we have that
1

tk
Stk (ϕi (z)) asymp-

totically behaves like
1

nkNk

SnkNk
(ϕi (zk)) , with zk. = f tk−1(z), z ∈ F. Thus

Stk ( ϕi (z)) = Stk−1 ( ϕi (z)) + SnkNk
( ϕi (zk)) ,

and

SnkNk
( ϕi (zk)) =

Nk∑
j=1

Snj

(
ϕi
(
f tj−1(zk)

))
.
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SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 11

Let xkj ∈ Sk, so

(10)

SnkNk
( ϕi (zk))−

Nk∑
j=1

Snj

(
ϕi
(
xkj )
))
≤ nkNk

var
(
ϕi, ε/2

k
)

+ +g
(
nk, ε/2

k
)
‖ ϕi‖0 .

Then

(11) SnkNk
(ϕi (zk)) ≤

[∫
ϕidµ+ δk

]
nk+nkNk

var
(
ϕi, ε/2

k
)
+g
(
nk, ε/2

k
)
‖ϕi‖0 ,

so that ∣∣∣∣ 1

nkNk

SnkNk
(ϕm (zk))−

∫
ϕmdµ

∣∣∣∣→ 0 as k →∞,

and, since
nkNk

tk
→ 1 as k →∞, we get

∣∣∣∣ 1

nkNk

SnkNk
(ϕi (zk))− 1

tk
Stk (ϕi (z))

∣∣∣∣→ 0 as k →∞.

Therefore

lim
k→∞

∞∑
i=1

pi

∣∣∣∣ 1

tk
Stk (ϕm (z))−

∫
ϕiodµ

∣∣∣∣ = 0,

for z ∈ F and on the interval [0, tk − 1] . Now we estimate in each interval I`1,

` = 1, 2, ..., j, let xk+1
` ∈ Sk+1 and f tk+(`−1)nk+1 (z) ∈ Bnk+1,ε/2k+1

(
g, xk+1

`

)
, thus∣∣∣∣∣a`+nk+1−1∑

t=a`

ϕi
(
f t (z)

)
− nk+1

∫
ϕidµ

∣∣∣∣∣ ≤
∣∣∣∣∣a`+nk+1−1∑

t=a`

ϕi
(
f t (z)

)
− Snk+1

(
ϕi
(
xk+1
`

))∣∣∣∣∣
+

∣∣∣∣Snk+1

(
ϕi
(
xk+1
`

))
− nk+1

∫
ϕidµ

∣∣∣∣ ≤ cardΛnk+1
var

(
ϕi, ε/2

k+1
)

+g
(
nk+1, ε/2

k+1
)
‖ϕi‖0 + nk+1δk+1.

with Λnk+1
⊂ {0, 1, 2, ..., nk+1} .

lim
k→∞

∞∑
i=1

pi

∣∣∣∣∣ 1

nk+1

a`+nk+1−1∑
t=a`

ϕi
(
f t (z)

)
−
∫
ϕidµ

∣∣∣∣∣ = 0,

for z ∈ F and on the intervals I`1.
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12 ALEJANDRO MESÓN AND FERNANDO VERICAT

Finally we do the estimations on the intervals I`2, ` = 1, 2, ..., j. We have∣∣∣∣∣ n−1∑
t=tk+jnk+1

ϕi
(
f t (z)

)
− (n− tk + jnk+1)

∫
ϕidµ

∣∣∣∣∣ ≤
2 ((n− tk + jnk+1) ‖ϕi‖0) ≤ 2nk+1 ‖ϕi‖0(12)

Then, since tk > Nk and n > tk + jnk+1,

∣∣∣∣Sn (ϕm (z))− n
∫
ϕidµ

∣∣∣∣
≤ Stk (ϕm (z)) + jcardΛnk+1

var
(
ϕi, ε/2

k+1
)

+

‖ϕi‖0 g
(
nk+1, ε/2

k+1
)

+ jnk+1δk+1 + 2nk+1 ‖ϕi‖0

≤ 1

tk
Stk (ϕi (z)) + δk+1 + 2

nk+1

Nk
‖ϕi‖0 +

var
(
ϕi, ε/2

k+1
)

+
g
(
nk+1, ε/2

k+1
)

nk+1
‖ϕi‖0 ,

with Λnk
⊂ {0, 1, ..., nk − 1}, so that

(13) lim
k→∞

∞∑
i=1

pi

∣∣∣∣ 1nn−1∑
t=0

ϕi
(
f t (z)

)
−
∫
ϕidµ

∣∣∣∣ = 0

Therefore z ∈ G (µ) �

Next we prove

Proposition 3.3: It holds ΛΘ (α) ≥ hµ (f), where recall that

ΛΘ (α) := lim
ε→0

lim
δ→0

lim
n→∞

sup
1

n
logN (α, δ, ε, n) ,

with N (g, α, δ, ε, n) the minimal number of balls Bn,ε (g, x) needed to cover the set

XΘ (α, δ, n) =

{
x :

∞∑
i=1

pi |Sn (ϕi (x))− αi| < δ, αi =
∫
ϕidµ

}
.

Proof : Let N ≥ 1, δ > 0, and

Yj (N) =

{
x :

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (x))−
∫
ϕidνj

∣∣∣∣ < δ, for n > N

}
,

and ν =
k∑
j=1

λjνj , νj ergodic given by the lemma 2.1, which satisfy νj (Yj (N)) >

1−γ, for sufficiently large N, 0 < γ < 1. Recall that by the modified Katok entropy

formula we have
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hνj (f) ≥ lim
ε→0

{
lim sup
n→∞

Sn (g, ε, Yj (N) , νj , γ)

}
,

where Sn (g, ε, Z, µ, γ) = inf {sn (g, ε, Z) : Z ⊂ X, µ (Z) > 1− γ} , and sn (g, ε, Z) =

max {cardE : E ⊂ Z and E is (g, n, ε)− separated for Z} . Thus there is a Nj =

Nj (νj , 4ε, γ) such that

(14) Sn (2g, 4ε, Yj (N) , νj , γ) ≥ exp
[
n
(
hνj (f)− γ

)]
,

therefore if Ej is a (2g, n, 4ε)−separated set for Yj (N) then

cardEj ≥ exp
[
n
(
hνj (f)− γ

)]
, for n ≥ Nj , j = 1, ..., k.

Like in the construction of the set F, for any (x1, ..., xk) ∈ E1 × ...×Ek, we can

choose a point z = z (x1, ..., xk) ∈ C (x1, x2, ..., xk). The next auxiliary lemma is

similar to lemma 3.1 but for the sets E1, ..., Ek

Lemma 3.4: If (x1, ..., xk) , (x1, ..., xk) ∈ E1 × ... × Ek distinct k−uples the

points z1 = z1 (x1, ..., xk) and z2 = z2 (x1, ..., xk) are distinct

Proof : Let r be the coordinate for which xr 6= x́r and let Λ1,Λ2, ∈ I(g, nr, ε/2
r),

with nr = [nλr] , so

dΛ1, (fa (z1) , xr) < ε/2j and dΛ2 (fa (z2) , x́r) < ε/2j . Let Λ = Λ1 ∩ Λ2 ∈
I(g, nr, ε/2

r), thus

4ε < dΛ (x́r, xr) ≤ dΛ1, (xr, f
a (z1) )+dΛ (fa (z1) , fa (z2))+dΛ2 (fa (z2) , x́r) ≤

ε/2r−1 + dΛ (fa (z1) , fa (z2)) , and then

dΛ (fa (z1) , fa (z2)) > 4ε− ε/2r−1 > 3ε �

Let n =
k∑̀
=1

n` =
k∑̀
=1

[nλ`] ,
k∑̀
=1

λ` = 1,we must prove that any point z = z

(x1, ..., xk) belongs to XΘ (α, 5δ, n) , for n enough large, in this case we would have

N (2g, α, 5δ, ε, n) ≥ cardE1...cardEk ≥ exp

[
k∑
`=1

[nλ`]
(
hνj (f)− γ

)]
,

since
[nλ`]

n
→ λ` as n → ∞ and

k∑̀
=1

λ` = 1 we have that
k∑̀
=1

[nλ`]

n
→ 1 as

n→∞ . Hence

lim sup
n→∞

1

n
logN (2g, α, 5δ, ε, n)
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14 ALEJANDRO MESÓN AND FERNANDO VERICAT

≥
k∑
`=1

hνj (f)− γ = hν (f)− γ ≥ hµ (f)− γ,

therefore

ΛΘ (α) ≥ hµ (f) ,

this proved the proposition 3.3, modulo z ∈ XΘ (α, 5δ, n) �

To see that, for n enough large, z ∈ XΘ (α, 5δ, n) , let

1

n
Sn (ϕi (z)) =

1

n

k∑
`=1

n`−1∑
t=0

ϕi
(
fn`+t(z

)
=

1
k∑̀
=1

[nλ`]

k∑
`=1

[nλ`]S[nλ`] (ϕi ((fn`(z))) ,

thus we have

∣∣∣∣ 1nSn (ϕi (z))−
∫
ϕidµ

∣∣∣∣
≤

k∑
`=1

1

n
[nλ`]

∣∣S[nλ`] (ϕi ((fn`(z)))− S[nλ`] (ϕi (xl))
∣∣+

k∑
`=1

1

n
[nλ`]

∣∣∣∣S[nλ`] (ϕi (xl))−
∫
ϕidνl

∣∣∣∣+
k∑
`=1

∣∣∣∣ 1n [nλ`]− λ`
∣∣∣∣ ∣∣∣∣∫ ϕidνl

∣∣∣∣+

∣∣∣∣∫ ϕidνl −
∫
ϕidµ

∣∣∣∣ ,
since [nλ`] ≤ nλ`, and by the lemma 2.1, we get

∞∑
i=1

pi

∣∣∣∣ 1nSn (ϕi (z))−
∫
ϕidµ

∣∣∣∣
≤

∞∑
i=1

pi

(
cardΛnl

nl
var

(
ϕi, ε/2

l
)

+
g
(
nl, ε/2

l
)

nl
‖ϕi‖0 + δ + δ + δ

)

≤
∞∑
i=1

pi (2δ + δ + δ + δ) = 5δ, for nl > N

and therefore z ∈ XΘ (α, 5δ, n) .

Now, let us recap, we have obtained

−F ⊂ G (µ)

D
ow

nl
oa

de
d 

by
 [

Fe
rn

an
do

 V
er

ic
at

] 
at

 1
4:

09
 0

3 
A

ug
us

t 2
01

6 



SATURATEDNESS OF DYNAMICAL SYSTEMS — JDSGT VOL. 14, NUMBER 1 (2016) 15

−htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi + j logMk+1

)
≥ ΛΘ (α)

− ΛΘ (α) ≥ hµ (f) . Therefore we get

htop(G (µ)) ≥ hµ (f) .

As it is known the opposite inequality was proved by Bowen, and the theorem is

proved. �

References

[1] V. Bergelson, Weakly mixing PET, Ergod. Th. and Dynam. Sys. 7, (1987) 337-349.

[2] J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew Math 404,

140-161 (1990).

[3] .R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184, 125-136

(1973).

[4] J. Buszzi, Specification on the interval, Trans. Amer. Math. Soc. 349, 2737-2754 (1997).

[5] A. H. Fan, J. Schmeling and J. Wu, The multifractal spectrta of V−statistics, preprint,

arXiv:1206.3214v1 (2012)

[6] A. Fan, I. M. Liao and J.Peyrière, Generic points in systems of specification and Banach

valued Birkhoff averages, Disc. Cont. Dynam. Sys., 21, 1103-1128 (2008).

[7] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szmerédi on arith-
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